Tasmota/tasmota/tasmota_xdrv_driver/xdrv_76_serial_i2c.ino

502 lines
17 KiB
Arduino
Raw Normal View History

/*
xdrv_76_serial_i2c.ino - UART to I2C using SC18IM704 compatible protocol
Copyright (C) 2024 Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C_SERIAL
#define XDRV_76 76
2024-11-07 20:54:16 +00:00
#ifndef I2C_SERIAL_TIMEOUT
#define I2C_SERIAL_TIMEOUT 20 // number of millisecond to wait for a return from MCU
#endif // I2C_SERIAL_TIMEOUT
2024-11-07 20:54:16 +00:00
#ifndef I2C_SERIAL_INIT_TIMEOUT
#define I2C_SERIAL_INIT_TIMEOUT 2000 // number of millisecond to wait for the RP2040 to start
#endif // I2C_SERIAL_INIT_TIMEOUT
#ifndef I2C_SERIAL_BAUDRATE
#define I2C_SERIAL_BAUDRATE 115200 // good number to start from
#endif // I2C_SERIAL_BAUDRATE
class TwoWireSerial; // anticipated declaration of class
// Global structure to keep the global state
// Due to packed structure, it consumes only 8 bytes so we don't use a pointer here
struct {
2024-11-07 20:54:16 +00:00
bool active = false; // is I2C_SERIAL feature active
uint8_t bus = 0; // which I2C bus number are we virtualizing: 0 or 1
uint8_t tx = 0; // GPIO for Serial Tx
uint8_t rx = 0; // GPIO for Serial Rx
TwoWireSerial *wire_serial = nullptr; // instance of the TwoWire instance to be used instead of `Wire` or `Wire1`
} I2C_Serial;
2024-11-07 20:54:16 +00:00
// The class `TwoWireSerial` implements the minimal part of `TwoWire` to be used as a replacement for `Wire` or `Wire1`
class TwoWireSerial : public TwoWire {
protected:
2024-11-07 20:54:16 +00:00
uint8_t tx; // GPIO for Serial Tx
uint8_t rx; // GPIO for Serial Rx
TasmotaSerial serial; // TasmotaSerial instance to communicate with SC18IM704
uint8_t rx_buffer[I2C_BUFFER_LENGTH]; // statically allocated Rx buffer - size of 128 is more than enough here
uint8_t tx_buffer[I2C_BUFFER_LENGTH]; // statically allocated Tx buffer - size of 128 is more than enough here
size_t rx_index; // offset of cursor in rx_buffer
size_t rx_length; // length of data in rx_buffer
size_t tx_length; // length of data in tx_buffer
bool non_stop; // if `true` used for read after write or write after write
uint8_t tx_address; // I2C address for tx_buffer
public:
2024-11-07 20:54:16 +00:00
// Constructor
// `bus_num` is still unclear whether it's actually needed
TwoWireSerial(uint8_t bus_num, uint8_t _tx, uint8_t _rx) :
tx(_tx),
rx(_rx),
serial(rx, tx), // TasmotaSerial constructor
TwoWire(bus_num) // parent class
{};
2024-11-07 20:54:16 +00:00
// Destructor
~TwoWireSerial() {
// nothing to do here:
// - TasmotaSerial destructor is implcitly called after this
// - buffers are statically allocated so we don't need to free them here
};
2024-11-07 20:54:16 +00:00
// bool begin() override {}; -- 'final' cannot be overriden -- don't use !!!
// bool begin(uint8_t address) override{}; -- 'final' cannot be overriden -- don't use !!!
bool end() override { return true; };
2024-11-07 20:54:16 +00:00
// Start UART
bool beginSerial() {
2024-11-07 20:54:16 +00:00
// AddLog(LOG_LEVEL_DEBUG_MORE, "ICR: beginSerial tx %i rx %i", tx, rx);
if (tx >= 0 && rx >= 0) {
2024-11-07 20:54:16 +00:00
#if CONFIG_IDF_TARGET_ESP32S3
pinMode(tx, OUTPUT);
digitalWrite(tx, HIGH);
sleep(1);
#endif // CONFIG_IDF_TARGET_ESP32S3
serial.begin(I2C_SERIAL_BAUDRATE);
return true;
}
return false;
}
virtual bool setClock(uint32_t freq) override {
2024-11-07 20:54:16 +00:00
// Ignore
return true;
}
2024-11-07 20:54:16 +00:00
// Internal function to read I2C_STAT internal register and get the state of the last read or write
int32_t read_i2c_stat(void) {
serial.flush();
serial.write('R');
serial.write(0x0A); // I2CStat
serial.write('P');
int32_t r = serial.read();
uint32_t wait_until = millis() + I2C_SERIAL_TIMEOUT;
while (r < 0 && !TimeReached(wait_until)) {
delay(1);
r = serial.read();
}
return r;
}
// unused function, but override to NOP just in case
void onReceive(void (*)(int)) override {};
void onRequest(void (*)(void)) override {};
void beginTransmission(uint8_t address) override {
non_stop = false;
tx_address = address;
tx_length = 0;
};
2024-11-07 20:54:16 +00:00
/*
https://www.arduino.cc/reference/en/language/functions/communication/wire/endtransmission/
endTransmission() returns:
0: success.
1: data too long to fit in transmit buffer.
2: received NACK on transmit of address.
3: received NACK on transmit of data.
4: other error.
5: timeout
*/
uint8_t endTransmission(bool stopBit) override {
// AddLog(LOG_LEVEL_DEBUG_MORE, "ICR: endTransmission txAddress=%i txBuffer=%p bufferSize=%i txLength=%i _timeOutMillis=%i stopBit=%i", txAddress, txBuffer, bufferSize, txLength, _timeOutMillis, stopBit);
serial.flush();
serial.write('S'); // Start I2C
serial.write((tx_address << 1) + 0); // Address for Write
serial.write(tx_length); // length in bytes
for (int32_t i = 0; i < tx_length; i++) {
serial.write(tx_buffer[i]);
}
if (stopBit) {
serial.write('P'); // Stop
}
// Read I2CStat
int32_t r = read_i2c_stat();
// AddLog(LOG_LEVEL_DEBUG_MORE, "ICR: endTransmission i2c_stat=%i", r);
if (r < 0) { return 4; } // fatal error
r = (r & 0x0F); // keep only 4 low bits
if (r == 0) { return 0; } // OK
if (r == 1) { return 2; } // I2C_NACK_ON_ADDRESS
if (r == 2) { return 3; } // I2C_NACK_ON_DATA
if (r == 3) { return 5; } // I2C_TIME_OUT
return 4;
}
// variant
uint8_t endTransmission() override {
return endTransmission(true);
}
// override `write` to use statically allocated buffers
size_t write(uint8_t data) override {
if (tx_length >= I2C_BUFFER_LENGTH) {
return 0;
}
tx_buffer[tx_length++] = data;
return 1;
}
size_t write(const uint8_t *data, size_t quantity) override {
for (size_t i = 0; i < quantity; ++i) {
if (!write(data[i])) {
return i;
}
}
return quantity;
}
2024-11-07 20:54:16 +00:00
int available() override {
int result = rx_length - rx_index;
return result;
}
int read() override {
int value = -1;
if (rx_index < rx_length) {
value = rx_buffer[rx_index++];
}
return value;
}
int peek() override {
int value = -1;
if (rx_index < rx_length) {
value = rx_buffer[rx_index];
}
return value;
}
void flush() {
rx_index = 0;
rx_length = 0;
tx_length = 0;
rxIndex = 0;
rxLength = 0;
}
2024-11-07 20:54:16 +00:00
virtual size_t requestFrom(uint8_t address, size_t len, bool stopBit) override {
if (len > I2C_BUFFER_LENGTH) {
return 0;
}
// AddLog(LOG_LEVEL_DEBUG, "ICR: address=0x%02X read_len=%i r=%02X", address, len);
serial.flush();
serial.write('S'); // Start I2C
serial.write((address << 1) + 1); // Address for Read
serial.write(len); // length in bytes
serial.write('P'); // Stop
rx_index = 0;
rx_length = 0;
for (int32_t read_len = 0; read_len < len; read_len++) {
int32_t r = serial.read();
uint32_t wait_until = millis() + I2C_SERIAL_TIMEOUT;
while (r < 0 && !TimeReached(wait_until)) {
delay(1);
r = serial.read();
}
if (r >= 0) {
rx_buffer[rx_length++] = r;
} else {
break;
}
}
// AddLog(LOG_LEVEL_DEBUG_MORE, "ICR: requestFrom(addr=%i, len=%i, stop=%i) returned %i bytes", address, len, stopBit, rx_length);
return rx_length;
};
// Variant
size_t requestFrom(uint8_t address, size_t size) override {
return requestFrom(address, size, true);
}
};
// return the original Wire object or the I2C Serial object
TwoWire & I2CSerialGetWire(TwoWire & orig_wire, uint8_t bus) {
2024-11-07 20:54:16 +00:00
if (I2C_Serial.active && I2C_Serial.wire_serial && I2C_Serial.bus == bus) {
return *I2C_Serial.wire_serial;
} else {
return orig_wire;
}
}
// Initialize I2C Serial
// - check if I2C serial is configured on some GPIOs
// - configure serial bus
// - register serial bus with Tasmota
void I2CSerialInit(void) {
2024-11-07 20:54:16 +00:00
I2C_Serial.active = false;
// check if I2C serial is configured on some GPIOs
for (uint32_t bus = 0; bus < MAX_I2C; bus++) {
if (PinUsed(GPIO_I2C_SER_TX, bus) && PinUsed(GPIO_I2C_SER_RX, bus)) {
2024-11-07 20:54:16 +00:00
if (I2C_Serial.active) {
// Error: I2C Serial was already configured on bus 0, we don't accept a second one
AddLog(LOG_LEVEL_ERROR, "I2C: I2C serial can be configured only on 1 bus");
continue;
}
if (TasmotaGlobal.i2c_enabled[bus]) {
// Error: I2C was already configured with SDA/SCL on this bus
AddLog(LOG_LEVEL_ERROR, "I2C: I2C serial failed on bus %i because SDA/SCL already configured", bus + 1);
} else {
// all good
2024-11-07 20:54:16 +00:00
I2C_Serial.bus = bus;
I2C_Serial.tx = Pin(GPIO_I2C_SER_TX, bus);
I2C_Serial.rx = Pin(GPIO_I2C_SER_RX, bus);
I2C_Serial.active = true;
}
}
}
// configure serial bus
2024-11-07 20:54:16 +00:00
if (I2C_Serial.active) {
I2C_Serial.wire_serial = new TwoWireSerial(1, I2C_Serial.tx, I2C_Serial.rx); // TODO is it ok to use UART 1 ?
if (I2C_Serial.wire_serial->beginSerial()) {
TasmotaGlobal.i2c_enabled[I2C_Serial.bus] = true; // enable at Tasmota level
AddLog(LOG_LEVEL_INFO, "I2C: I2C serial configured on GPIO TX %i / RX %i for bus %i", I2C_Serial.tx, I2C_Serial.rx, I2C_Serial.bus + 1);
} else {
2024-11-07 20:54:16 +00:00
delete I2C_Serial.wire_serial;
I2C_Serial.wire_serial = nullptr;
I2C_Serial.active = false;
}
}
2024-11-07 20:54:16 +00:00
// reading I2C_stat to check if connection is alive
if (I2C_Serial.active) {
int32_t r = -1; // result, or -1 of nothing was received
uint32_t wait_until_init = millis() + I2C_SERIAL_INIT_TIMEOUT;
while (r < 0 && !TimeReached(wait_until_init)) {
r = I2C_Serial.wire_serial->read_i2c_stat();
delay(10); // wait for 10ms before iterating
}
if (r < 0) {
AddLog(LOG_LEVEL_INFO, "I2C: I2C serial failed to communicate with target");
delete I2C_Serial.wire_serial;
I2C_Serial.wire_serial = nullptr;
I2C_Serial.active = false;
} else {
AddLog(LOG_LEVEL_DEBUG, "I2C: I2C serial initialized");
}
}
// AddLog(LOG_LEVEL_DEBUG_MORE, "I2C: I2C serial active %i, bus %i, tx %i / rx %i, wire %p", I2C_Serial.active, I2C_Serial.bus + 1, I2C_Serial.tx, I2C_Serial.rx, I2C_Serial.wire_serial);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv76(uint32_t function) {
bool result = false;
if (FUNC_PRE_INIT == function) {
I2CSerialInit();
2024-11-07 20:54:16 +00:00
} else if (I2C_Serial.active) {
switch (function) {
case FUNC_ACTIVE:
result = true;
break;
}
}
return result;
}
#endif // USE_I2C_SERIAL
2024-11-07 20:54:16 +00:00
/********************************************************************************\
# below is an example of Micropython code for Seedstudio SenseCap
# that allows to bridge the UART on GPIO 16/17 to I2C on GPIO 20/21
from machine import Pin, I2C
from machine import Pin
from machine import UART, Pin
import time
uart = UART(0, baudrate=115200, tx=Pin(16), rx=Pin(17), timeout=30000, timeout_char=50, txbuf=128, rxbuf=128)
print(f"CFG: UART initialized")
power_i2c = Pin(18, Pin.OUT) # create output pin on GPIO0
power_i2c.on() # set pin to "on" (high) level
i2c = I2C(0, scl=Pin(21), sda=Pin(20), freq=400_000, timeout=1000)
# print(f"I2C: scan {i2c.scan()}")
# i2c_stat:
# 0: no error
# 1: I2C_NACK_ON_ADDRESS
# 2: I2C_NACK_ON_DATA
# 3: I2C_TIME_OUT
i2c_stat = 0
def set_i2c_stat(v):
global i2c_stat
i2c_stat = v
def get_i2c_stat():
global i2c_stat
return i2c_stat
def ignore_until_P():
# read uart until none left or 'P' reached
# return last unprocessed char or None
while True:
c = uart.read(1)
if c is None:
return None # end of receive
if c == b'P':
cur_char = None
return None # end reached
def process_cmd_start():
# return last unprocessed char or None
addr_b = uart.read(1)
if addr_b is None: print("start: no address sent"); return None
addr = addr_b[0] >> 1
is_write = not bool(addr_b[0] & 1)
len_b = uart.read(1)
if len_b is None: print("start: no length sent"); return None
len_i = len_b[0]
cmd_next = None
# dispatch depending on READ or WRITE
if is_write:
payload_b = bytes()
if len_i > 0:
payload_b = uart.read(len_i)
if len(payload_b) < len_i:
print(f"start: payload {payload_b} too small, expected {len_i} bytes")
return None
stop_bit = False
cmd_next = uart.read(1)
if cmd_next == b'P':
stop_bit = True
try:
set_i2c_stat(0)
acks_count = i2c.writeto(addr, payload_b, stop_bit)
#print(f"{acks_count=} {len_i=}")
if acks_count < len_i:
set_i2c_stat(2)
else:
print(f"I2C: [0x{addr:02X}] W '{payload_b.hex()}'")
#print(f"{acks_count=} {len_i=} {get_i2c_stat()=}")
except Exception as error:
#print(f"{error=}")
set_i2c_stat(1) # I2C_NACK_ON_ADDRESS
# if 'S' is followed, return to main loop
if cmd_next == b'S':
return cmd_next
else:
# read
payload_b = b''
#print(f"read: [0x{addr:02X}] {len_i}")
try:
set_i2c_stat(0)
payload_b = i2c.readfrom(addr, len_i, True)
print(f"I2C: [0x{addr:02X}] R '{payload_b.hex()}' {len(payload_b)}/{len_i}")
uart.write(payload_b)
except Exception as error:
print(f"I2C: error while reading from 0x{addr:02X} len={len_i} error '{error}'")
set_i2c_stat(1) # I2C_NACK_ON_ADDRESS
return None
return None
def process_cmd_stop():
# return last unprocessed char or None
return None # do nothing
def process_cmd_read():
# return last unprocessed char or None
# we accept only 1 register for now
reg = uart.read(1)
if reg is None: print("read: no register sent"); return None
cmd_next = uart.read(1)
if cmd_next is None or cmd_next != b'P': print("read: unfinished command"); return None
#
reg = reg[0] # convert to number
if reg == 0x0A: # I2CStat
uart.write(int.to_bytes(get_i2c_stat() | 0xF0))
else:
uart.write(int.to_bytes(0x00))
return None
def process_cmd_write():
# return last unprocessed char or None
print("I2C: ignore 'W' commmand")
return ignore_until_P()
def process_cmd_version():
ignore_until_P()
uart.write(b'Tasmota I2C uart bridge 1.0\x00')
return None
def process_cmd_ignore():
# return last unprocessed char or None
return ignore_until_P()
def process_discard():
# discard all bytes in input
# return last unprocessed char or None
while uart.any() > 1:
uart.read(uart.any())
return None
def run():
cmd = None
while True:
if cmd is None and uart.any() > 0:
cmd = uart.read(1)
if cmd is None:
time.sleep(0.01)
else:
#print(f"SER: received cmd {cmd}")
if cmd == b'S':
cmd = process_cmd_start()
elif cmd == b'P':
cmd = process_cmd_stop()
elif cmd == b'R':
cmd = process_cmd_read()
elif cmd == b'W':
cmd = process_cmd_write()
elif cmd == b'V':
cmd = process_cmd_version()
elif cmd == b'I' or cmd == b'O' or cmd == b'Z':
cmd = process_cmd_ignore()
else:
cmd = process_discard()
run()
\********************************************************************************/