Tasmota/tasmota/xdrv_23_zigbee_4_persistenc...

333 lines
12 KiB
Arduino
Raw Normal View History

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// Ensure persistence of devices into Flash
//
// Structure:
// (from file info):
// uint16 - start address in Flash (offset)
// uint16 - length in bytes (makes sure parsing stops)
//
// File structure:
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of revice record
// uint16 - short address
// uint64 - long IEEE address
// uint8 - number of endpoints
// [Array of endpoints]
// uint8 - endpoint number
// uint16 - profileID of the endpoint
// Array of uint8 - clusters In codes, 0xFF end marker
// Array of uint8 - clusters Out codes, 0xFF end marker
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// reserved for extensions
// Memory footprint
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
const static size_t z_spi_len = 0x1000; // 4kb blocs
const static size_t z_block_offset = 0x0800;
const static size_t z_block_len = 0x0800; // 2kb
class z_flashdata_t {
public:
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
uint16_t len; // len of object
uint16_t reserved; // align on 4 bytes boundary
};
const static uint32_t ZIGB_NAME = 0x3167697A; // 'zig1' little endian
const static size_t Z_MAX_FLASH = z_block_len - sizeof(z_flashdata_t); // 2040
// encoding for the most commonly 32 clusters, used for binary encoding
const uint16_t Z_ClusterNumber[] PROGMEM = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F,
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017,
0x0018, 0x0019, 0x001A, 0x001B, 0x001C, 0x001D, 0x001E, 0x001F,
0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
0x0100, 0x0101, 0x0102,
0x0201, 0x0202, 0x0203, 0x0204,
0x0300, 0x0301,
0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0406,
0x0500, 0x0501, 0x0502,
0x0700, 0x0701, 0x0702,
0x0B00, 0x0B01, 0x0B02, 0x0B03, 0x0B04, 0x0B05,
0x1000,
0xFC0F,
};
// convert a 1 byte cluster code to the actual cluster number
uint16_t fromClusterCode(uint8_t c) {
if (c >= sizeof(Z_ClusterNumber)/sizeof(Z_ClusterNumber[0])) {
return 0xFFFF; // invalid
}
return pgm_read_word(&Z_ClusterNumber[c]);
}
// convert a cluster number to 1 byte, or 0xFF if not in table
uint8_t toClusterCode(uint16_t c) {
for (uint32_t i = 0; i < sizeof(Z_ClusterNumber)/sizeof(Z_ClusterNumber[0]); i++) {
if (c == pgm_read_word(&Z_ClusterNumber[i])) {
return i;
}
}
return 0xFF; // not found
}
class SBuffer hibernateDevice(const struct Z_Device &device) {
SBuffer buf(128);
buf.add8(0x00); // overall length, will be updated later
buf.add16(device.shortaddr);
buf.add64(device.longaddr);
uint32_t endpoints = device.endpoints.size();
if (endpoints > 254) { endpoints = 254; }
buf.add8(endpoints);
// iterate on endpoints
for (std::vector<uint32_t>::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) {
uint32_t ep_profile = *ite;
uint8_t endpoint = (ep_profile >> 16) & 0xFF;
uint16_t profileId = ep_profile & 0xFFFF;
buf.add8(endpoint);
buf.add16(profileId);
for (std::vector<uint32_t>::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t c_endpoint = (*itc >> 16) & 0xFF;
if (endpoint == c_endpoint) {
uint8_t clusterCode = toClusterCode(cluster);
if (0xFF != clusterCode) { buf.add8(clusterCode); }
}
}
buf.add8(0xFF); // end of endpoint marker
for (std::vector<uint32_t>::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t c_endpoint = (*itc >> 16) & 0xFF;
if (endpoint == c_endpoint) {
uint8_t clusterCode = toClusterCode(cluster);
if (0xFF != clusterCode) { buf.add8(clusterCode); }
}
}
buf.add8(0xFF); // end of endpoint marker
}
// ModelID
size_t model_len = device.modelId.length();
if (model_len > 32) { model_len = 32; } // max 32 chars
buf.addBuffer(device.modelId.c_str(), model_len);
buf.add8(0x00); // end of string marker
// ManufID
size_t manuf_len = device.manufacturerId.length();
if (manuf_len > 32) {manuf_len = 32; } // max 32 chars
buf.addBuffer(device.manufacturerId.c_str(), manuf_len);
buf.add8(0x00); // end of string marker
// FriendlyName
size_t frname_len = device.friendlyName.length();
if (frname_len > 32) {frname_len = 32; } // max 32 chars
buf.addBuffer(device.friendlyName.c_str(), frname_len);
buf.add8(0x00); // end of string marker
// update overall length
buf.set8(0, buf.len());
return buf;
}
class SBuffer hibernateDevices(void) {
SBuffer buf(2048);
size_t devices_size = zigbee_devices.devicesSize();
if (devices_size > 32) { devices_size = 32; } // arbitrarily limit to 32 devices, for now
buf.add8(devices_size); // number of devices
for (uint32_t i = 0; i < devices_size; i++) {
const Z_Device & device = zigbee_devices.devicesAt(i);
const SBuffer buf_device = hibernateDevice(device);
buf.addBuffer(buf_device);
}
size_t buf_len = buf.len();
if (buf_len > 2040) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Devices list too big to fit in Flash (%d)"), buf_len);
}
// Log
char *hex_char = (char*) malloc((buf_len * 2) + 2);
if (hex_char) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "ZigbeeFlashStore %s"),
ToHex_P(buf.getBuffer(), buf_len, hex_char, (buf_len * 2) + 2));
free(hex_char);
}
return buf;
}
void hidrateDevices(const SBuffer &buf) {
uint32_t buf_len = buf.len();
if (buf_len <= 10) { return; }
uint32_t k = 0;
uint32_t num_devices = buf.get8(k++);
for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) {
uint32_t dev_record_len = buf.get8(k);
SBuffer buf_d = buf.subBuffer(k, dev_record_len);
uint32_t d = 1; // index in device buffer
uint16_t shortaddr = buf_d.get16(d); d += 2;
uint64_t longaddr = buf_d.get64(d); d += 8;
zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
uint32_t endpoints = buf_d.get8(d++);
for (uint32_t j = 0; j < endpoints; j++) {
uint8_t ep = buf_d.get8(d++);
uint16_t ep_profile = buf_d.get16(d); d += 2;
zigbee_devices.addEndointProfile(shortaddr, ep, ep_profile);
// in clusters
while (d < dev_record_len) { // safe guard against overflow
uint8_t ep_cluster = buf_d.get8(d++);
if (0xFF == ep_cluster) { break; } // end of block
zigbee_devices.addCluster(shortaddr, ep, fromClusterCode(ep_cluster), false);
}
// out clusters
while (d < dev_record_len) { // safe guard against overflow
uint8_t ep_cluster = buf_d.get8(d++);
if (0xFF == ep_cluster) { break; } // end of block
zigbee_devices.addCluster(shortaddr, ep, fromClusterCode(ep_cluster), true);
}
}
// parse 3 strings
char empty[] = "";
// ManufID
uint32_t s_len = buf_d.strlen_s(d);
char *ptr = s_len ? buf_d.charptr(d) : empty;
zigbee_devices.setModelId(shortaddr, ptr);
d += s_len + 1;
// ManufID
s_len = buf_d.strlen_s(d);
ptr = s_len ? buf_d.charptr(d) : empty;
zigbee_devices.setManufId(shortaddr, ptr);
d += s_len + 1;
// FriendlyName
s_len = buf_d.strlen_s(d);
ptr = s_len ? buf_d.charptr(d) : empty;
zigbee_devices.setFriendlyName(shortaddr, ptr);
d += s_len + 1;
// next iteration
k += dev_record_len;
}
}
void loadZigbeeDevices(void) {
z_flashdata_t flashdata;
memcpy_P(&flashdata, z_dev_start, sizeof(z_flashdata_t));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
// Check the signature
if ((flashdata.name == ZIGB_NAME) && (flashdata.len > 0)) {
uint16_t buf_len = flashdata.len;
// parse what seems to be a valid entry
SBuffer buf(buf_len);
buf.addBuffer(z_dev_start + sizeof(z_flashdata_t), buf_len);
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee devices data in Flash (%d bytes)"), buf_len);
hidrateDevices(buf);
} else {
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No zigbee devices data in Flash"));
}
}
void saveZigbeeDevices(void) {
SBuffer buf = hibernateDevices();
size_t buf_len = buf.len();
if (buf_len > Z_MAX_FLASH) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Buffer too big to fit in Flash (%d bytes)"), buf_len);
return;
}
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
z_flashdata_t *flashdata = (z_flashdata_t*)(spi_buffer + z_block_offset);
flashdata->name = ZIGB_NAME;
flashdata->len = buf_len;
flashdata->reserved = 0;
memcpy(spi_buffer + z_block_offset + sizeof(z_flashdata_t), buf.getBuffer(), buf_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
free(spi_buffer);
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
}
// Erase the flash area containing the ZigbeeData
void eraseZigbeeDevices(void) {
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
// Fill the Zigbee area with 0xFF
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
free(spi_buffer);
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (0x%08X - %d bytes)"), z_dev_start, z_block_len);
}
#endif // USE_ZIGBEE