2023-01-21 13:30:35 +00:00
/*
support_switch . ino - switch support for Tasmota
Copyright ( C ) 2021 Theo Arends
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# define SWITCH_V4
# ifdef SWITCH_V4
/*********************************************************************************************\
* Switch support with input filter
*
* Inspired by ( https : //github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c)
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
const uint8_t SWITCH_PROBE_INTERVAL = 10 ; // Time in milliseconds between switch input probe
const uint8_t SWITCH_FAST_PROBE_INTERVAL = 2 ; // Time in milliseconds between switch input probe for AC detection
const uint8_t SWITCH_AC_PERIOD = ( 20 + SWITCH_FAST_PROBE_INTERVAL - 1 ) / SWITCH_FAST_PROBE_INTERVAL ; // Duration of an AC wave in probe intervals
// Switch Mode definietions
# define SM_TIMER_MASK 0x3F
# define SM_NO_TIMER_MASK 0xFF
# define SM_FIRST_PRESS 0x40
# define SM_SECOND_PRESS 0x80
# define POWER_NONE 99
const char kSwitchPressStates [ ] PROGMEM =
" ||||POWER_INCREMENT|POWER_INV|POWER_CLEAR|POWER_RELEASE|POWER_100||POWER_DELAYED " ;
# include <Ticker.h>
Ticker TickerSwitch ;
struct SWITCH {
2023-02-06 10:45:28 +00:00
uint32_t debounce = 0 ; // Switch debounce timer
uint32_t no_pullup_mask = 0 ; // Switch pull-up bitmask flags
uint32_t pulldown_mask = 0 ; // Switch pull-down bitmask flags
uint32_t virtual_pin_used = 0 ; // Switch used bitmask
uint32_t virtual_pin = 0 ; // Switch state bitmask
uint8_t state [ MAX_SWITCHES_SET ] = { 0 } ;
uint8_t last_state [ MAX_SWITCHES_SET ] ; // Last wall switch states
uint8_t hold_timer [ MAX_SWITCHES_SET ] = { 0 } ; // Timer for wallswitch push button hold
uint8_t debounced_state [ MAX_SWITCHES_SET ] ; // Switch debounced states
2023-01-21 13:30:35 +00:00
uint8_t first_change = 0 ;
uint8_t present = 0 ;
bool probe_mutex ;
} Switch ;
/********************************************************************************************/
void SwitchPullupFlag ( uint32 switch_bit ) {
bitSet ( Switch . no_pullup_mask , switch_bit ) ;
}
void SwitchPulldownFlag ( uint32 switch_bit ) {
bitSet ( Switch . pulldown_mask , switch_bit ) ;
}
2023-02-06 10:45:28 +00:00
bool SwitchUsed ( uint32_t index ) {
return ( PinUsed ( GPIO_SWT1 , index ) | | bitRead ( Switch . virtual_pin_used , index ) ) ;
}
2023-01-23 11:51:02 +00:00
// Preffered virtual switch support since v12.3.1.4
2023-01-21 13:30:35 +00:00
void SwitchSetVirtualPinState ( uint32_t index , uint32_t state ) {
2023-01-23 11:51:02 +00:00
bitWrite ( Switch . virtual_pin , index , state ) ;
2023-01-21 13:30:35 +00:00
}
2023-01-23 11:51:02 +00:00
// Legacy virtual switch support
2023-01-21 13:30:35 +00:00
void SwitchSetVirtual ( uint32_t index , uint32_t state ) {
2023-01-23 11:51:02 +00:00
// bitSet(Switch.virtual_pin_used, index);
2023-01-21 13:30:35 +00:00
Switch . debounced_state [ index ] = state ;
}
2023-01-23 11:51:02 +00:00
// Legacy virtual switch support
2023-01-21 13:30:35 +00:00
uint8_t SwitchGetVirtual ( uint32_t index ) {
return Switch . debounced_state [ index ] ;
}
2023-01-23 11:51:02 +00:00
// Legacy virtual switch support
2023-01-21 13:30:35 +00:00
uint8_t SwitchLastState ( uint32_t index ) {
return Switch . last_state [ index ] ;
}
bool SwitchState ( uint32_t index ) {
uint32_t switchmode = Settings - > switchmode [ index ] ;
return ( ( FOLLOW_INV = = switchmode ) | |
( PUSHBUTTON_INV = = switchmode ) | |
( PUSHBUTTONHOLD_INV = = switchmode ) | |
( FOLLOWMULTI_INV = = switchmode ) | |
( PUSHHOLDMULTI_INV = = switchmode ) | |
( PUSHON_INV = = switchmode ) | |
( PUSH_IGNORE_INV = = switchmode )
) ^ Switch . last_state [ index ] ;
}
/*********************************************************************************************/
void SwitchProbe ( void ) {
if ( Switch . probe_mutex | | ( TasmotaGlobal . uptime < 4 ) ) { return ; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
Switch . probe_mutex = true ;
uint32_t state_filter ;
uint32_t first_change = Switch . first_change ;
uint32_t debounce_flags = Settings - > switch_debounce % 10 ;
bool force_high = ( debounce_flags & 1 ) ; // 51, 101, 151 etc
bool force_low = ( debounce_flags & 2 ) ; // 52, 102, 152 etc
bool ac_detect = ( debounce_flags = = 9 ) ;
if ( ac_detect ) {
if ( Settings - > switch_debounce < 2 * SWITCH_AC_PERIOD * SWITCH_FAST_PROBE_INTERVAL + 9 ) {
state_filter = 2 * SWITCH_AC_PERIOD ;
} else if ( Settings - > switch_debounce > ( 0x7f - 2 * SWITCH_AC_PERIOD ) * SWITCH_FAST_PROBE_INTERVAL ) {
state_filter = 0x7f ;
} else {
state_filter = ( Settings - > switch_debounce - 9 ) / SWITCH_FAST_PROBE_INTERVAL ;
}
} else {
state_filter = Settings - > switch_debounce / SWITCH_PROBE_INTERVAL ; // 5, 10, 15
}
uint32_t not_activated ;
2023-02-06 10:45:28 +00:00
for ( uint32_t i = 0 ; i < MAX_SWITCHES_SET ; i + + ) {
2023-01-21 13:30:35 +00:00
if ( PinUsed ( GPIO_SWT1 , i ) ) {
not_activated = digitalRead ( Pin ( GPIO_SWT1 , i ) ) ;
}
else if ( bitRead ( Switch . virtual_pin_used , i ) ) {
not_activated = bitRead ( Switch . virtual_pin , i ) ;
}
else { continue ; }
// Olimex user_switch2.c code to fix 50Hz induced pulses
if ( not_activated ) {
if ( ac_detect ) { // Enabled with SwitchDebounce x9
Switch . state [ i ] | = 0x80 ;
if ( Switch . state [ i ] > 0x80 ) {
Switch . state [ i ] - - ;
if ( 0x80 = = Switch . state [ i ] ) {
Switch . debounced_state [ i ] = 0 ;
Switch . first_change = false ;
}
}
} else {
if ( force_high ) { // Enabled with SwitchDebounce x1
if ( 1 = = Switch . debounced_state [ i ] ) {
Switch . state [ i ] = state_filter ; // With noisy input keep current state 1 unless constant 0
}
}
if ( Switch . state [ i ] < state_filter ) {
Switch . state [ i ] + + ;
if ( state_filter = = Switch . state [ i ] ) {
Switch . debounced_state [ i ] = 1 ;
}
}
}
} else {
if ( ac_detect ) { // Enabled with SwitchDebounce x9
/*
* Moes MS - 104 B and similar devices using an AC detection circuitry
* on their switch inputs generating an ~ 4 ms long low pulse every
* AC wave . We start the time measurement on the falling edge .
*
* state : bit7 : previous state , bit6 . .0 : counter
*/
if ( Switch . state [ i ] & 0x80 ) {
Switch . state [ i ] & = 0x7f ;
if ( Switch . state [ i ] < state_filter - 2 * SWITCH_AC_PERIOD ) {
Switch . state [ i ] + = 2 * SWITCH_AC_PERIOD ;
} else {
Switch . state [ i ] = state_filter ;
Switch . debounced_state [ i ] = 1 ;
if ( first_change ) {
Switch . last_state [ i ] = 1 ;
Switch . first_change = false ;
}
}
} else {
if ( Switch . state [ i ] > 0x00 ) {
Switch . state [ i ] - - ;
if ( 0x00 = = Switch . state [ i ] ) {
Switch . debounced_state [ i ] = 0 ;
Switch . first_change = false ;
}
}
}
} else {
if ( force_low ) { // Enabled with SwitchDebounce x2
if ( 0 = = Switch . debounced_state [ i ] ) {
Switch . state [ i ] = 0 ; // With noisy input keep current state 0 unless constant 1
}
}
if ( Switch . state [ i ] > 0 ) {
Switch . state [ i ] - - ;
if ( 0 = = Switch . state [ i ] ) {
Switch . debounced_state [ i ] = 0 ;
}
}
}
}
}
Switch . probe_mutex = false ;
}
void SwitchInit ( void ) {
bool ac_detect = ( Settings - > switch_debounce % 10 = = 9 ) ;
Switch . present = 0 ;
Switch . virtual_pin_used = 0 ;
2023-02-06 10:45:28 +00:00
for ( uint32_t i = 0 ; i < MAX_SWITCHES_SET ; i + + ) {
2023-01-21 13:30:35 +00:00
Switch . last_state [ i ] = NOT_PRESSED ; // Init global to virtual switch state;
bool used = false ;
if ( PinUsed ( GPIO_SWT1 , i ) ) {
Switch . present + + ;
# ifdef ESP8266
pinMode ( Pin ( GPIO_SWT1 , i ) , bitRead ( Switch . no_pullup_mask , i ) ? INPUT : ( ( 16 = = Pin ( GPIO_SWT1 , i ) ) ? INPUT_PULLDOWN_16 : INPUT_PULLUP ) ) ;
# endif // ESP8266
# ifdef ESP32
pinMode ( Pin ( GPIO_SWT1 , i ) , bitRead ( Switch . pulldown_mask , i ) ? INPUT_PULLDOWN : bitRead ( Switch . no_pullup_mask , i ) ? INPUT : INPUT_PULLUP ) ;
# endif // ESP32
Switch . last_state [ i ] = digitalRead ( Pin ( GPIO_SWT1 , i ) ) ; // Set global now so doesn't change the saved power state on first switch check
used = true ;
}
else {
XdrvMailbox . index = i ;
if ( XdrvCall ( FUNC_ADD_SWITCH ) ) {
2023-01-22 15:41:25 +00:00
/*
At entry :
XdrvMailbox . index = switch index
At exit :
XdrvMailbox . index bit 0 = current state
*/
Switch . present + + ;
bitSet ( Switch . virtual_pin_used , i ) ; // This pin is used
bool state = ( XdrvMailbox . index & 1 ) ;
SwitchSetVirtualPinState ( i , state ) ; // Virtual hardware pin state
Switch . last_state [ i ] = bitRead ( Switch . virtual_pin , i ) ;
2023-01-21 13:30:35 +00:00
2023-02-09 13:46:54 +00:00
AddLog ( LOG_LEVEL_DEBUG , PSTR ( " SWT: Add vSwitch%d, State %d " ) , Switch . present , Switch . last_state [ i ] ) ;
2023-01-21 13:30:35 +00:00
used = true ;
}
}
if ( used & & ac_detect ) {
Switch . state [ i ] = 0x80 + 2 * SWITCH_AC_PERIOD ;
Switch . last_state [ i ] = 0 ; // Will set later in the debouncing code
}
Switch . debounced_state [ i ] = Switch . last_state [ i ] ;
}
2023-01-22 15:41:25 +00:00
// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: vPinUsed %08X, State %08X"), Switch.virtual_pin_used, Switch.virtual_pin);
2023-01-21 13:30:35 +00:00
if ( Switch . present ) {
Switch . first_change = true ;
TickerSwitch . attach_ms ( ( ac_detect ) ? SWITCH_FAST_PROBE_INTERVAL : SWITCH_PROBE_INTERVAL , SwitchProbe ) ;
}
}
/*********************************************************************************************\
* Switch handler
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void SwitchHandler ( uint32_t mode ) {
if ( TasmotaGlobal . uptime < 4 ) { return ; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint32_t loops_per_second = 1000 / Settings - > switch_debounce ;
2023-02-06 10:45:28 +00:00
for ( uint32_t i = 0 ; i < MAX_SWITCHES_SET ; i + + ) {
// if (PinUsed(GPIO_SWT1, i) || bitRead(Switch.virtual_pin_used, i)) {
if ( SwitchUsed ( i ) ) {
2023-01-21 13:30:35 +00:00
uint32_t button = Switch . debounced_state [ i ] ;
uint32_t switchflag = POWER_TOGGLE + 1 ;
uint32_t mqtt_action = POWER_NONE ;
uint32_t switchmode = Settings - > switchmode [ i ] ;
if ( Switch . hold_timer [ i ] & ( ( ( switchmode = = PUSHHOLDMULTI ) | ( switchmode = = PUSHHOLDMULTI_INV ) ) ? SM_TIMER_MASK : SM_NO_TIMER_MASK ) ) {
Switch . hold_timer [ i ] - - ;
if ( ( Switch . hold_timer [ i ] & SM_TIMER_MASK ) = = loops_per_second * Settings - > param [ P_HOLD_TIME ] / 25 ) {
if ( ( switchmode = = PUSHHOLDMULTI ) | ( switchmode = = PUSHHOLDMULTI_INV ) ) {
if ( ( ( switchmode = = PUSHHOLDMULTI ) & ( NOT_PRESSED = = Switch . last_state [ i ] ) ) | ( ( switchmode = = PUSHHOLDMULTI_INV ) & ( PRESSED = = Switch . last_state [ i ] ) ) ) {
SendKey ( KEY_SWITCH , i + 1 , POWER_INCREMENT ) ; // Execute command via MQTT
}
else if ( ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) = = SM_FIRST_PRESS ) {
SendKey ( KEY_SWITCH , i + 1 , POWER_DELAYED ) ; // Execute command via MQTT
mqtt_action = POWER_DELAYED ;
Switch . hold_timer [ i ] = 0 ;
}
}
}
if ( 0 = = ( Switch . hold_timer [ i ] & ( ( ( switchmode = = PUSHHOLDMULTI ) | ( switchmode = = PUSHHOLDMULTI_INV ) ) ? SM_TIMER_MASK : SM_NO_TIMER_MASK ) ) ) {
switch ( switchmode ) {
case TOGGLEMULTI :
switchflag = POWER_TOGGLE ; // Toggle after hold
break ;
case FOLLOWMULTI :
switchflag = button & 1 ; // Follow wall switch state after hold
break ;
case FOLLOWMULTI_INV :
switchflag = ~ button & 1 ; // Follow inverted wall switch state after hold
break ;
case PUSHHOLDMULTI :
if ( NOT_PRESSED = = button ) {
Switch . hold_timer [ i ] = loops_per_second * Settings - > param [ P_HOLD_TIME ] / 25 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_INCREMENT ) ; // Execute command via MQTT
mqtt_action = POWER_INCREMENT ;
} else {
Switch . hold_timer [ i ] = 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_CLEAR ) ; // Execute command via MQTT
mqtt_action = POWER_CLEAR ;
}
break ;
case PUSHHOLDMULTI_INV :
if ( PRESSED = = button ) {
Switch . hold_timer [ i ] = loops_per_second * Settings - > param [ P_HOLD_TIME ] / 25 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_INCREMENT ) ; // Execute command via MQTT
mqtt_action = POWER_INCREMENT ;
} else {
Switch . hold_timer [ i ] = 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_CLEAR ) ; // Execute command via MQTT
mqtt_action = POWER_CLEAR ;
}
break ;
default :
SendKey ( KEY_SWITCH , i + 1 , POWER_HOLD ) ; // Execute command via MQTT
mqtt_action = POWER_HOLD ;
break ;
}
}
}
if ( button ! = Switch . last_state [ i ] ) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i]))
switch ( switchmode ) {
case TOGGLE :
case PUSHBUTTON_TOGGLE :
switchflag = POWER_TOGGLE ; // Toggle
break ;
case FOLLOW :
switchflag = button & 1 ; // Follow wall switch state
break ;
case FOLLOW_INV :
switchflag = ~ button & 1 ; // Follow inverted wall switch state
break ;
case PUSHBUTTON :
if ( PRESSED = = button ) {
switchflag = POWER_TOGGLE ; // Toggle with pushbutton to Gnd
}
break ;
case PUSHBUTTON_INV :
if ( NOT_PRESSED = = button ) {
switchflag = POWER_TOGGLE ; // Toggle with releasing pushbutton from Gnd
}
break ;
case PUSHBUTTONHOLD :
if ( PRESSED = = button ) {
Switch . hold_timer [ i ] = loops_per_second * Settings - > param [ P_HOLD_TIME ] / 10 ; // Start timer on button press
}
if ( ( NOT_PRESSED = = button ) & & ( Switch . hold_timer [ i ] ) ) {
Switch . hold_timer [ i ] = 0 ; // Button released and hold timer not expired : stop timer...
switchflag = POWER_TOGGLE ; // ...and Toggle
}
break ;
case PUSHBUTTONHOLD_INV :
if ( NOT_PRESSED = = button ) {
Switch . hold_timer [ i ] = loops_per_second * Settings - > param [ P_HOLD_TIME ] / 10 ; // Start timer on button press...
}
if ( ( PRESSED = = button ) & & ( Switch . hold_timer [ i ] ) ) {
Switch . hold_timer [ i ] = 0 ; // Button released and hold timer not expired : stop timer.
switchflag = POWER_TOGGLE ; // ...and Toggle
}
break ;
case TOGGLEMULTI :
case FOLLOWMULTI :
case FOLLOWMULTI_INV :
if ( Switch . hold_timer [ i ] ) {
Switch . hold_timer [ i ] = 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_HOLD ) ; // Execute command via MQTT
mqtt_action = POWER_HOLD ;
} else {
Switch . hold_timer [ i ] = loops_per_second / 2 ; // 0.5 second multi press window
}
break ;
case PUSHHOLDMULTI :
if ( NOT_PRESSED = = button ) {
if ( ( Switch . hold_timer [ i ] & SM_TIMER_MASK ) ! = 0 ) {
Switch . hold_timer [ i ] = ( ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) = = SM_FIRST_PRESS ) ? SM_SECOND_PRESS : 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_INV ) ; // Execute command via MQTT
mqtt_action = POWER_INV ;
}
} else {
if ( ( Switch . hold_timer [ i ] & SM_TIMER_MASK ) > loops_per_second * Settings - > param [ P_HOLD_TIME ] / 25 ) {
if ( ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) ! = SM_SECOND_PRESS ) {
Switch . hold_timer [ i ] = SM_FIRST_PRESS ;
switchflag = POWER_TOGGLE ; // Toggle with pushbutton
}
else {
SendKey ( KEY_SWITCH , i + 1 , POWER_100 ) ; // Execute command via MQTT
mqtt_action = POWER_100 ;
Switch . hold_timer [ i ] = 0 ;
}
} else {
Switch . hold_timer [ i ] = 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_RELEASE ) ; // Execute command via MQTT
mqtt_action = POWER_RELEASE ;
}
}
Switch . hold_timer [ i ] = ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) | loops_per_second * Settings - > param [ P_HOLD_TIME ] / 10 ;
break ;
case PUSHHOLDMULTI_INV :
if ( PRESSED = = button ) {
if ( ( Switch . hold_timer [ i ] & SM_TIMER_MASK ) ! = 0 ) {
Switch . hold_timer [ i ] = ( ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) = = SM_FIRST_PRESS ) ? SM_SECOND_PRESS : 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_INV ) ; // Execute command via MQTT
mqtt_action = POWER_INV ;
}
} else {
if ( ( Switch . hold_timer [ i ] & SM_TIMER_MASK ) > loops_per_second * Settings - > param [ P_HOLD_TIME ] / 25 ) {
if ( ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) ! = SM_SECOND_PRESS ) {
Switch . hold_timer [ i ] = SM_FIRST_PRESS ;
switchflag = POWER_TOGGLE ; // Toggle with pushbutton
}
else {
SendKey ( KEY_SWITCH , i + 1 , POWER_100 ) ; // Execute command via MQTT
mqtt_action = POWER_100 ;
Switch . hold_timer [ i ] = 0 ;
}
} else {
Switch . hold_timer [ i ] = 0 ;
SendKey ( KEY_SWITCH , i + 1 , POWER_RELEASE ) ; // Execute command via MQTT
mqtt_action = POWER_RELEASE ;
}
}
Switch . hold_timer [ i ] = ( Switch . hold_timer [ i ] & ~ SM_TIMER_MASK ) | loops_per_second * Settings - > param [ P_HOLD_TIME ] / 10 ;
break ;
case PUSHON :
if ( PRESSED = = button ) {
switchflag = POWER_ON ; // Power ON with pushbutton to Gnd
}
break ;
case PUSHON_INV :
if ( NOT_PRESSED = = button ) {
switchflag = POWER_ON ; // Power ON with releasing pushbutton from Gnd
}
break ;
case PUSH_IGNORE :
case PUSH_IGNORE_INV :
Switch . last_state [ i ] = button ; // Update switch state before publishing
MqttPublishSensor ( ) ;
break ;
}
Switch . last_state [ i ] = button ;
}
if ( switchflag < = POWER_TOGGLE ) {
if ( ! Settings - > flag5 . mqtt_switches ) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if ( ! SendKey ( KEY_SWITCH , i + 1 , switchflag ) ) { // Execute command via MQTT
ExecuteCommandPower ( i + 1 , switchflag , SRC_SWITCH ) ; // Execute command internally (if i < TasmotaGlobal.devices_present)
}
} else { mqtt_action = switchflag ; }
}
if ( ( mqtt_action ! = POWER_NONE ) & & Settings - > flag5 . mqtt_switches ) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if ( ! Settings - > flag . hass_discovery ) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59)
char mqtt_state_str [ 16 ] ;
char * mqtt_state = mqtt_state_str ;
if ( mqtt_action < = 3 ) {
if ( mqtt_action ! = 3 ) { SendKey ( KEY_SWITCH , i + 1 , mqtt_action ) ; }
mqtt_state = SettingsText ( SET_STATE_TXT1 + mqtt_action ) ;
} else {
GetTextIndexed ( mqtt_state_str , sizeof ( mqtt_state_str ) , mqtt_action , kSwitchPressStates ) ;
}
Response_P ( S_JSON_SVALUE_ACTION_SVALUE , GetSwitchText ( i ) . c_str ( ) , mqtt_state ) ;
char scommand [ 10 ] ;
snprintf_P ( scommand , sizeof ( scommand ) , PSTR ( D_JSON_SWITCH " %d " ) , i + 1 ) ;
MqttPublishPrefixTopicRulesProcess_P ( RESULT_OR_STAT , scommand ) ;
}
mqtt_action = POWER_NONE ;
}
}
}
}
void SwitchLoop ( void ) {
if ( Switch . present ) {
if ( TimeReached ( Switch . debounce ) ) {
SetNextTimeInterval ( Switch . debounce , Settings - > switch_debounce ) ;
SwitchHandler ( 0 ) ;
}
}
}
# endif // SWITCH_V3