Tasmota/lib/IRremoteESP8266-2.6.3.10/src/IRac.cpp

1962 lines
62 KiB
C++
Raw Normal View History

// Copyright 2019 David Conran
// Provide a universal/standard interface for sending A/C nessages.
// It does not provide complete and maximum granular control but tries
// to off most common functionallity across all supported devices.
#include "IRac.h"
#ifndef UNIT_TEST
#include <Arduino.h>
#endif
#include <string.h>
#ifndef ARDUINO
#include <string>
#endif
#include "IRsend.h"
#include "IRremoteESP8266.h"
#include "IRutils.h"
#include "ir_Argo.h"
#include "ir_Coolix.h"
#include "ir_Daikin.h"
#include "ir_Electra.h"
#include "ir_Fujitsu.h"
#include "ir_Haier.h"
#include "ir_Hitachi.h"
#include "ir_Kelvinator.h"
#include "ir_Midea.h"
#include "ir_Mitsubishi.h"
#include "ir_MitsubishiHeavy.h"
#include "ir_Neoclima.h"
#include "ir_Panasonic.h"
#include "ir_Samsung.h"
#include "ir_Sharp.h"
#include "ir_Tcl.h"
#include "ir_Teco.h"
#include "ir_Toshiba.h"
#include "ir_Trotec.h"
#include "ir_Vestel.h"
#include "ir_Whirlpool.h"
IRac::IRac(const uint16_t pin, const bool inverted, const bool use_modulation) {
_pin = pin;
_inverted = inverted;
_modulation = use_modulation;
}
// Is the given protocol supported by the IRac class?
bool IRac::isProtocolSupported(const decode_type_t protocol) {
switch (protocol) {
#if SEND_ARGO
case decode_type_t::ARGO:
#endif
#if SEND_COOLIX
case decode_type_t::COOLIX:
#endif
#if SEND_DAIKIN
case decode_type_t::DAIKIN:
#endif
#if SEND_DAIKIN160
case decode_type_t::DAIKIN160:
#endif
#if SEND_DAIKIN176
case decode_type_t::DAIKIN176:
#endif
#if SEND_DAIKIN2
case decode_type_t::DAIKIN2:
#endif
#if SEND_DAIKIN216
case decode_type_t::DAIKIN216:
#endif
#if SEND_ELECTRA_AC
case decode_type_t::ELECTRA_AC:
#endif
#if SEND_FUJITSU_AC
case decode_type_t::FUJITSU_AC:
#endif
#if SEND_GOODWEATHER
case decode_type_t::GOODWEATHER:
#endif
#if SEND_GREE
case decode_type_t::GREE:
#endif
#if SEND_HAIER_AC
case decode_type_t::HAIER_AC:
#endif
#if SEND_HAIER_AC_YRW02
case decode_type_t::HAIER_AC_YRW02:
#endif
#if SEND_HITACHI_AC
case decode_type_t::HITACHI_AC:
#endif
#if SEND_KELVINATOR
case decode_type_t::KELVINATOR:
#endif
#if SEND_MIDEA
case decode_type_t::MIDEA:
#endif
#if SEND_MITSUBISHI_AC
case decode_type_t::MITSUBISHI_AC:
#endif
#if SEND_MITSUBISHIHEAVY
case decode_type_t::MITSUBISHI_HEAVY_88:
case decode_type_t::MITSUBISHI_HEAVY_152:
#endif
#if SEND_NEOCLIMA
case decode_type_t::NEOCLIMA:
#endif
#if SEND_PANASONIC_AC
case decode_type_t::PANASONIC_AC:
#endif
#if SEND_SAMSUNG_AC
case decode_type_t::SAMSUNG_AC:
#endif
#if SEND_SHARP_AC
case decode_type_t::SHARP_AC:
#endif
#if SEND_TCL112AC
case decode_type_t::TCL112AC:
#endif
#if SEND_TECO
case decode_type_t::TECO:
#endif
#if SEND_TOSHIBA_AC
case decode_type_t::TOSHIBA_AC:
#endif
#if SEND_TROTEC
case decode_type_t::TROTEC:
#endif
#if SEND_VESTEL_AC
case decode_type_t::VESTEL_AC:
#endif
#if SEND_WHIRLPOOL_AC
case decode_type_t::WHIRLPOOL_AC:
#endif
return true;
default:
return false;
}
}
#if SEND_ARGO
void IRac::argo(IRArgoAC *ac,
const bool on, const stdAc::opmode_t mode, const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool turbo, const int16_t sleep) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setFlap(ac->convertSwingV(swingv));
// No Quiet setting available.
// No Light setting available.
// No Filter setting available.
ac->setMax(turbo);
// No Economy setting available.
// No Clean setting available.
// No Beep setting available.
ac->setNight(sleep >= 0); // Convert to a boolean.
ac->send();
}
#endif // SEND_ARGO
#if SEND_COOLIX
void IRac::coolix(IRCoolixAC *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool turbo, const bool light, const bool clean,
const int16_t sleep) {
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
// No Filter setting available.
// No Beep setting available.
// No Clock setting available.
// No Econo setting available.
// No Quiet setting available.
if (swingv != stdAc::swingv_t::kOff || swingh != stdAc::swingh_t::kOff) {
// Swing has a special command that needs to be sent independently.
ac->setSwing();
ac->send();
}
if (turbo) {
// Turbo has a special command that needs to be sent independently.
ac->setTurbo();
ac->send();
}
if (sleep > 0) {
// Sleep has a special command that needs to be sent independently.
ac->setSleep();
ac->send();
}
if (light) {
// Light has a special command that needs to be sent independently.
ac->setLed();
ac->send();
}
if (clean) {
// Clean has a special command that needs to be sent independently.
ac->setClean();
ac->send();
}
// Power gets done last, as off has a special command.
ac->setPower(on);
ac->send();
}
#endif // SEND_COOLIX
#if SEND_DAIKIN
void IRac::daikin(IRDaikinESP *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool quiet, const bool turbo, const bool econo,
const bool clean) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical((int8_t)swingv >= 0);
ac->setSwingHorizontal((int8_t)swingh >= 0);
ac->setQuiet(quiet);
// No Light setting available.
// No Filter setting available.
ac->setPowerful(turbo);
ac->setEcono(econo);
ac->setMold(clean);
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_DAIKIN
#if SEND_DAIKIN160
void IRac::daikin160(IRDaikin160 *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(ac->convertSwingV(swingv));
ac->send();
}
#endif // SEND_DAIKIN160
#if SEND_DAIKIN176
void IRac::daikin176(IRDaikin176 *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingh_t swingh) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingHorizontal(ac->convertSwingH(swingh));
ac->send();
}
#endif // SEND_DAIKIN176
#if SEND_DAIKIN2
void IRac::daikin2(IRDaikin2 *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool quiet, const bool turbo, const bool light,
const bool econo, const bool filter, const bool clean,
const bool beep, const int16_t sleep, const int16_t clock) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(ac->convertSwingV(swingv));
ac->setSwingHorizontal((int8_t)swingh >= 0);
ac->setQuiet(quiet);
ac->setLight(light);
ac->setPowerful(turbo);
ac->setEcono(econo);
ac->setPurify(filter);
ac->setMold(clean);
ac->setBeep(beep);
if (sleep > 0) ac->enableSleepTimer(sleep);
if (clock >= 0) ac->setCurrentTime(clock);
ac->send();
}
#endif // SEND_DAIKIN2
#if SEND_DAIKIN216
void IRac::daikin216(IRDaikin216 *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool quiet, const bool turbo) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical((int8_t)swingv >= 0);
ac->setSwingHorizontal((int8_t)swingh >= 0);
ac->setQuiet(quiet);
ac->setPowerful(turbo);
ac->send();
}
#endif // SEND_DAIKIN216
#if SEND_ELECTRA_AC
void IRac::electra(IRElectraAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv,
const stdAc::swingh_t swingh) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingV(swingv != stdAc::swingv_t::kOff);
ac->setSwingH(swingh != stdAc::swingh_t::kOff);
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Econo setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_ELECTRA_AC
#if SEND_FUJITSU_AC
void IRac::fujitsu(IRFujitsuAC *ac, const fujitsu_ac_remote_model_t model,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool quiet, const bool turbo, const bool econo) {
ac->setModel(model);
if (on) {
// Do all special messages (except "Off") first,
// These need to be sent separately.
switch (ac->getModel()) {
// Some functions are only available on some models.
case fujitsu_ac_remote_model_t::ARREB1E:
if (turbo) {
ac->setCmd(kFujitsuAcCmdPowerful);
// Powerful is a separate command.
ac->send();
}
if (econo) {
ac->setCmd(kFujitsuAcCmdEcono);
// Econo is a separate command.
ac->send();
}
break;
default:
{};
}
// Normal operation.
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFanSpeed(ac->convertFan(fan));
uint8_t swing = kFujitsuAcSwingOff;
if (swingv > stdAc::swingv_t::kOff) swing |= kFujitsuAcSwingVert;
if (swingh > stdAc::swingh_t::kOff) swing |= kFujitsuAcSwingHoriz;
ac->setSwing(swing);
if (quiet) ac->setFanSpeed(kFujitsuAcFanQuiet);
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
} else {
// Off is special case/message. We don't need to send other messages.
ac->off();
}
ac->send();
}
#endif // SEND_FUJITSU_AC
#if SEND_GOODWEATHER
void IRac::goodweather(IRGoodweatherAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv,
const bool turbo, const bool light,
const int16_t sleep) {
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(swingv == stdAc::swingv_t::kOff ? kGoodweatherSwingOff
: kGoodweatherSwingSlow);
ac->setTurbo(turbo);
ac->setLight(light);
// No Clean setting available.
ac->setSleep(sleep >= 0); // Sleep on this A/C is either on or off.
// No Horizontal Swing setting available.
// No Econo setting available.
// No Filter setting available.
// No Beep setting available.
// No Quiet setting available.
// No Clock setting available.
ac->setPower(on);
ac->send();
}
#endif // SEND_GOODWEATHER
#if SEND_GREE
void IRac::gree(IRGreeAC *ac,
const bool on, const stdAc::opmode_t mode, const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool turbo, const bool light, const bool clean,
const int16_t sleep) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(swingv == stdAc::swingv_t::kAuto, // Set auto flag.
ac->convertSwingV(swingv));
ac->setLight(light);
ac->setTurbo(turbo);
ac->setXFan(clean);
ac->setSleep(sleep >= 0); // Sleep on this A/C is either on or off.
// No Horizontal Swing setting available.
// No Econo setting available.
// No Filter setting available.
// No Beep setting available.
// No Quiet setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_GREE
#if SEND_HAIER_AC
void IRac::haier(IRHaierAC *ac,
const bool on, const stdAc::opmode_t mode, const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool filter, const int16_t sleep, const int16_t clock) {
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(ac->convertSwingV(swingv));
// No Horizontal Swing setting available.
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
ac->setHealth(filter);
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep on this A/C is either on or off.
if (clock >=0) ac->setCurrTime(clock);
if (on)
ac->setCommand(kHaierAcCmdOn);
else
ac->setCommand(kHaierAcCmdOff);
ac->send();
}
#endif // SEND_HAIER_AC
#if SEND_HAIER_AC_YRW02
void IRac::haierYrwo2(IRHaierACYRW02 *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const bool turbo,
const bool filter, const int16_t sleep) {
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(ac->convertSwingV(swingv));
// No Horizontal Swing setting available.
// No Quiet setting available.
ac->setTurbo(turbo);
// No Light setting available.
ac->setHealth(filter);
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep on this A/C is either on or off.
ac->setPower(on);
ac->send();
}
#endif // SEND_HAIER_AC_YRW02
#if SEND_HITACHI_AC
void IRac::hitachi(IRHitachiAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(swingv != stdAc::swingv_t::kOff);
ac->setSwingHorizontal(swingh != stdAc::swingh_t::kOff);
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_HITACHI_AC
#if SEND_KELVINATOR
void IRac::kelvinator(IRKelvinatorAC *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv,
const stdAc::swingh_t swingh,
const bool quiet, const bool turbo, const bool light,
const bool filter, const bool clean) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan((uint8_t)fan); // No conversion needed.
ac->setSwingVertical((int8_t)swingv >= 0);
ac->setSwingHorizontal((int8_t)swingh >= 0);
ac->setQuiet(quiet);
ac->setTurbo(turbo);
ac->setLight(light);
ac->setIonFilter(filter);
ac->setXFan(clean);
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_KELVINATOR
#if SEND_MIDEA
void IRac::midea(IRMideaAC *ac,
const bool on, const stdAc::opmode_t mode, const float degrees,
const stdAc::fanspeed_t fan, const int16_t sleep) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees, true); // true means use Celsius.
ac->setFan(ac->convertFan(fan));
// No Vertical swing setting available.
// No Horizontal swing setting available.
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep on this A/C is either on or off.
// No Clock setting available.
ac->send();
}
#endif // SEND_MIDEA
#if SEND_MITSUBISHI_AC
void IRac::mitsubishi(IRMitsubishiAC *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool quiet, const int16_t clock) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setVane(ac->convertSwingV(swingv));
// No Horizontal swing setting available.
if (quiet) ac->setFan(kMitsubishiAcFanSilent);
// No Turbo setting available.
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
if (clock >= 0) ac->setClock(clock / 10); // Clock is in 10 min increments.
ac->send();
}
#endif // SEND_MITSUBISHI_AC
#if SEND_MITSUBISHIHEAVY
void IRac::mitsubishiHeavy88(IRMitsubishiHeavy88Ac *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv,
const stdAc::swingh_t swingh,
const bool turbo, const bool econo,
const bool clean) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(ac->convertSwingV(swingv));
ac->setSwingHorizontal(ac->convertSwingH(swingh));
// No Quiet setting available.
ac->setTurbo(turbo);
// No Light setting available.
ac->setEcono(econo);
// No Filter setting available.
ac->setClean(clean);
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
void IRac::mitsubishiHeavy152(IRMitsubishiHeavy152Ac *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv,
const stdAc::swingh_t swingh,
const bool quiet, const bool turbo,
const bool econo, const bool filter,
const bool clean, const int16_t sleep) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(ac->convertSwingV(swingv));
ac->setSwingHorizontal(ac->convertSwingH(swingh));
ac->setSilent(quiet);
ac->setTurbo(turbo);
// No Light setting available.
ac->setEcono(econo);
ac->setClean(clean);
ac->setFilter(filter);
// No Beep setting available.
ac->setNight(sleep >= 0); // Sleep is either on/off, so convert to boolean.
// No Clock setting available.
ac->send();
}
#endif // SEND_MITSUBISHIHEAVY
#if SEND_NEOCLIMA
void IRac::neoclima(IRNeoclimaAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool turbo, const bool light, const bool filter,
const int16_t sleep) {
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingV(swingv != stdAc::swingv_t::kOff);
ac->setSwingH(swingh != stdAc::swingh_t::kOff);
// No Quiet setting available.
ac->setTurbo(turbo);
ac->setLight(light);
// No Econo setting available.
ac->setIon(filter);
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep is either on/off, so convert to boolean.
// No Clock setting available.
ac->setPower(on);
ac->send();
}
#endif // SEND_NEOCLIMA
#if SEND_PANASONIC_AC
void IRac::panasonic(IRPanasonicAc *ac, const panasonic_ac_remote_model_t model,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool quiet, const bool turbo, const int16_t clock) {
ac->setModel(model);
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(ac->convertSwingV(swingv));
ac->setSwingHorizontal(ac->convertSwingH(swingh));
ac->setQuiet(quiet);
ac->setPowerful(turbo);
// No Light setting available.
// No Econo setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
if (clock >= 0) ac->setClock(clock);
ac->send();
}
#endif // SEND_PANASONIC_AC
#if SEND_SAMSUNG_AC
void IRac::samsung(IRSamsungAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool quiet, const bool turbo, const bool clean,
const bool beep, const bool dopower) {
// dopower is for unit testing only. It should only ever be false in tests.
if (dopower) ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(swingv != stdAc::swingv_t::kOff);
// No Horizontal swing setting available.
ac->setQuiet(quiet);
ac->setPowerful(turbo);
// No Light setting available.
// No Econo setting available.
// No Filter setting available.
ac->setClean(clean);
ac->setBeep(beep);
// No Sleep setting available.
// No Clock setting available.
// Do setMode() again as it can affect fan speed.
ac->setMode(ac->convertMode(mode));
ac->send();
}
#endif // SEND_SAMSUNG_AC
#if SEND_SHARP_AC
void IRac::sharp(IRSharpAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
// No Vertical swing setting available.
// No Horizontal swing setting available.
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Econo setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
// Do setMode() again as it can affect fan speed and temp.
ac->setMode(ac->convertMode(mode));
ac->send();
}
#endif // SEND_SHARP_AC
#if SEND_TCL112AC
void IRac::tcl112(IRTcl112Ac *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool turbo, const bool light, const bool econo,
const bool filter) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwingVertical(swingv != stdAc::swingv_t::kOff);
ac->setSwingHorizontal(swingh != stdAc::swingh_t::kOff);
// No Quiet setting available.
ac->setTurbo(turbo);
ac->setLight(light);
ac->setEcono(econo);
ac->setHealth(filter);
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_TCL112AC
#if SEND_TECO
void IRac::teco(IRTecoAc *ac,
const bool on, const stdAc::opmode_t mode, const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const int16_t sleep) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(swingv != stdAc::swingv_t::kOff);
// No Horizontal swing setting available.
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep is either on/off, so convert to boolean.
// No Clock setting available.
ac->send();
}
#endif // SEND_TECO
#if SEND_TOSHIBA_AC
void IRac::toshiba(IRToshibaAC *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
// No Vertical swing setting available.
// No Horizontal swing setting available.
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
// No Sleep setting available.
// No Clock setting available.
ac->send();
}
#endif // SEND_TOSHIBA_AC
#if SEND_TROTEC
void IRac::trotec(IRTrotecESP *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees, const stdAc::fanspeed_t fan,
const int16_t sleep) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setSpeed(ac->convertFan(fan));
// No Vertical swing setting available.
// No Horizontal swing setting available.
// No Quiet setting available.
// No Turbo setting available.
// No Light setting available.
// No Filter setting available.
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep is either on/off, so convert to boolean.
// No Clock setting available.
ac->send();
}
#endif // SEND_TROTEC
#if SEND_VESTEL_AC
void IRac::vestel(IRVestelAc *ac,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool turbo, const bool filter, const int16_t sleep,
const int16_t clock, const bool sendNormal) {
ac->setPower(on);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(swingv != stdAc::swingv_t::kOff);
// No Horizontal swing setting available.
// No Quiet setting available.
ac->setTurbo(turbo);
// No Light setting available.
ac->setIon(filter);
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep is either on/off, so convert to boolean.
if (sendNormal) ac->send(); // Send the normal message.
if (clock >= 0) {
ac->setTime(clock);
ac->send(); // Setting the clock requires a different "timer" message.
}
}
#endif // SEND_VESTEL_AC
#if SEND_WHIRLPOOL_AC
void IRac::whirlpool(IRWhirlpoolAc *ac, const whirlpool_ac_remote_model_t model,
const bool on, const stdAc::opmode_t mode,
const float degrees,
const stdAc::fanspeed_t fan, const stdAc::swingv_t swingv,
const bool turbo, const bool light,
const int16_t sleep, const int16_t clock) {
ac->setModel(model);
ac->setMode(ac->convertMode(mode));
ac->setTemp(degrees);
ac->setFan(ac->convertFan(fan));
ac->setSwing(swingv != stdAc::swingv_t::kOff);
// No Horizontal swing setting available.
// No Quiet setting available.
ac->setSuper(turbo);
ac->setLight(light);
// No Filter setting available
// No Clean setting available.
// No Beep setting available.
ac->setSleep(sleep >= 0); // Sleep is either on/off, so convert to boolean.
if (clock >= 0) ac->setClock(clock);
ac->setPowerToggle(on);
ac->send();
}
#endif // SEND_WHIRLPOOL_AC
// Create a new state base on desired & previous states but handle
// any state changes for options that need to be toggled.
// Args:
// desired: The state_t structure describing the desired a/c state.
// prev: Ptr to the previous state_t structure.
//
// Returns:
// A stdAc::state_t with the needed settings.
stdAc::state_t IRac::handleToggles(const stdAc::state_t desired,
const stdAc::state_t *prev) {
stdAc::state_t result = desired;
// If we've been given a previous state AND the it's the same A/C basically.
if (prev != NULL && desired.protocol == prev->protocol &&
desired.model == prev->model) {
// Check if we have to handle toggle settings for specific A/C protocols.
switch (desired.protocol) {
case decode_type_t::COOLIX:
if ((desired.swingv == stdAc::swingv_t::kOff) ^
(prev->swingv == stdAc::swingv_t::kOff)) // It changed, so toggle.
result.swingv = stdAc::swingv_t::kAuto;
else
result.swingv = stdAc::swingv_t::kOff; // No change, so no toggle.
result.turbo = desired.turbo ^ prev->turbo;
result.light = desired.light ^ prev->light;
result.clean = desired.clean ^ prev->clean;
result.sleep = (desired.sleep ^ prev->sleep) ? 0 : -1;
break;
case decode_type_t::WHIRLPOOL_AC:
result.power = desired.power ^ prev->power;
break;
case decode_type_t::PANASONIC_AC:
// CKP models use a power mode toggle.
if (desired.model == panasonic_ac_remote_model_t::kPanasonicCkp)
result.power = desired.power ^ prev->power;
break;
default:
{};
}
}
return result;
}
// Send A/C message for a given device using common A/C settings.
// Args:
// vendor: The type of A/C protocol to use.
// model: The specific model of A/C if supported/applicable.
// on: Should the unit be powered on? (or in some cases, toggled)
// mode: What operating mode should the unit perform? e.g. Cool, Heat etc.
// degrees: What temperature should the unit be set to?
// celsius: Use degrees Celsius, otherwise Fahrenheit.
// fan: Fan speed.
// The following args are all "if supported" by the underlying A/C classes.
// swingv: Control the vertical swing of the vanes.
// swingh: Control the horizontal swing of the vanes.
// quiet: Set the unit to quiet (fan) operation mode.
// turbo: Set the unit to turbo operating mode. e.g. Max fan & cooling etc.
// econo: Set the unit to economical operating mode.
// light: Turn on the display/LEDs etc.
// filter: Turn on any particle/ion/allergy filter etc.
// clean: Turn on any settings to reduce mold etc. (Not self-clean mode.)
// beep: Control if the unit beeps upon receiving commands.
// sleep: Nr. of mins of sleep mode, or use sleep mode. (< 0 means off.)
// clock: Nr. of mins past midnight to set the clock to. (< 0 means off.)
// Returns:
// boolean: True, if accepted/converted/attempted. False, if unsupported.
bool IRac::sendAc(const decode_type_t vendor, const int16_t model,
const bool power, const stdAc::opmode_t mode,
const float degrees, const bool celsius,
const stdAc::fanspeed_t fan,
const stdAc::swingv_t swingv, const stdAc::swingh_t swingh,
const bool quiet, const bool turbo, const bool econo,
const bool light, const bool filter, const bool clean,
const bool beep, const int16_t sleep, const int16_t clock) {
// Convert the temperature to Celsius.
float degC;
if (celsius)
degC = degrees;
else
degC = fahrenheitToCelsius(degrees);
bool on = power;
// A hack for Home Assistant, it appears to need/want an Off opmode.
if (mode == stdAc::opmode_t::kOff) on = false;
// Per vendor settings & setup.
switch (vendor) {
#if SEND_ARGO
case ARGO:
{
IRArgoAC ac(_pin, _inverted, _modulation);
argo(&ac, on, mode, degC, fan, swingv, turbo, sleep);
break;
}
#endif // SEND_DAIKIN
#if SEND_COOLIX
case COOLIX:
{
IRCoolixAC ac(_pin, _inverted, _modulation);
coolix(&ac, on, mode, degC, fan, swingv, swingh,
quiet, turbo, econo, clean);
break;
}
#endif // SEND_DAIKIN
#if SEND_DAIKIN
case DAIKIN:
{
IRDaikinESP ac(_pin, _inverted, _modulation);
daikin(&ac, on, mode, degC, fan, swingv, swingh,
quiet, turbo, econo, clean);
break;
}
#endif // SEND_DAIKIN
#if SEND_DAIKIN160
case DAIKIN160:
{
IRDaikin160 ac(_pin, _inverted, _modulation);
daikin160(&ac, on, mode, degC, fan, swingv);
break;
}
#endif // SEND_DAIKIN160
#if SEND_DAIKIN176
case DAIKIN176:
{
IRDaikin176 ac(_pin);
daikin176(&ac, on, mode, degC, fan, swingh);
break;
}
#endif // SEND_DAIKIN176
#if SEND_DAIKIN2
case DAIKIN2:
{
IRDaikin2 ac(_pin, _inverted, _modulation);
daikin2(&ac, on, mode, degC, fan, swingv, swingh, quiet, turbo,
light, econo, filter, clean, beep, sleep, clock);
break;
}
#endif // SEND_DAIKIN216
#if SEND_DAIKIN216
case DAIKIN216:
{
IRDaikin216 ac(_pin, _inverted, _modulation);
daikin216(&ac, on, mode, degC, fan, swingv, swingh, quiet, turbo);
break;
}
#endif // SEND_DAIKIN216
#if SEND_ELECTRA_AC
case ELECTRA_AC:
{
IRElectraAc ac(_pin, _inverted, _modulation);
ac.begin();
electra(&ac, on, mode, degC, fan, swingv, swingh);
break;
}
#endif // SEND_ELECTRA_AC
#if SEND_FUJITSU_AC
case FUJITSU_AC:
{
IRFujitsuAC ac(_pin, (fujitsu_ac_remote_model_t)model, _inverted,
_modulation);
ac.begin();
fujitsu(&ac, (fujitsu_ac_remote_model_t)model, on, mode, degC, fan,
swingv, swingh, quiet, turbo, econo);
break;
}
#endif // SEND_FUJITSU_AC
#if SEND_GOODWEATHER
case GOODWEATHER:
{
IRGoodweatherAc ac(_pin, _inverted, _modulation);
ac.begin();
goodweather(&ac, on, mode, degC, fan, swingv, turbo, light, sleep);
break;
}
#endif // SEND_GOODWEATHER
#if SEND_GREE
case GREE:
{
IRGreeAC ac(_pin, _inverted, _modulation);
ac.begin();
gree(&ac, on, mode, degC, fan, swingv, light, turbo, clean, sleep);
break;
}
#endif // SEND_GREE
#if SEND_HAIER_AC
case HAIER_AC:
{
IRHaierAC ac(_pin, _inverted, _modulation);
ac.begin();
haier(&ac, on, mode, degC, fan, swingv, filter, sleep, clock);
break;
}
#endif // SEND_HAIER_AC
#if SEND_HAIER_AC_YRW02
case HAIER_AC_YRW02:
{
IRHaierACYRW02 ac(_pin, _inverted, _modulation);
ac.begin();
haierYrwo2(&ac, on, mode, degC, fan, swingv, turbo, filter, sleep);
break;
}
#endif // SEND_HAIER_AC_YRW02
#if SEND_HITACHI_AC
case HITACHI_AC:
{
IRHitachiAc ac(_pin, _inverted, _modulation);
ac.begin();
hitachi(&ac, on, mode, degC, fan, swingv, swingh);
break;
}
#endif // SEND_HITACHI_AC
#if SEND_KELVINATOR
case KELVINATOR:
{
IRKelvinatorAC ac(_pin, _inverted, _modulation);
ac.begin();
kelvinator(&ac, on, mode, degC, fan, swingv, swingh, quiet, turbo,
light, filter, clean);
break;
}
#endif // SEND_KELVINATOR
#if SEND_MIDEA
case MIDEA:
{
IRMideaAC ac(_pin, _inverted, _modulation);
ac.begin();
midea(&ac, on, mode, degC, fan, sleep);
break;
}
#endif // SEND_MIDEA
#if SEND_MITSUBISHI_AC
case MITSUBISHI_AC:
{
IRMitsubishiAC ac(_pin, _inverted, _modulation);
ac.begin();
mitsubishi(&ac, on, mode, degC, fan, swingv, quiet, clock);
break;
}
#endif // SEND_MITSUBISHI_AC
#if SEND_MITSUBISHIHEAVY
case MITSUBISHI_HEAVY_88:
{
IRMitsubishiHeavy88Ac ac(_pin, _inverted, _modulation);
ac.begin();
mitsubishiHeavy88(&ac, on, mode, degC, fan, swingv, swingh,
turbo, econo, clean);
break;
}
case MITSUBISHI_HEAVY_152:
{
IRMitsubishiHeavy152Ac ac(_pin, _inverted, _modulation);
ac.begin();
mitsubishiHeavy152(&ac, on, mode, degC, fan, swingv, swingh,
quiet, turbo, econo, filter, clean, sleep);
break;
}
#endif // SEND_MITSUBISHIHEAVY
#if SEND_NEOCLIMA
case NEOCLIMA:
{
IRNeoclimaAc ac(_pin, _inverted, _modulation);
ac.begin();
neoclima(&ac, on, mode, degC, fan, swingv, swingh, turbo, light, filter,
sleep);
break;
}
#endif // SEND_NEOCLIMA
#if SEND_PANASONIC_AC
case PANASONIC_AC:
{
IRPanasonicAc ac(_pin, _inverted, _modulation);
ac.begin();
panasonic(&ac, (panasonic_ac_remote_model_t)model, on, mode, degC, fan,
swingv, swingh, quiet, turbo, clock);
break;
}
#endif // SEND_PANASONIC_AC
#if SEND_SAMSUNG_AC
case SAMSUNG_AC:
{
IRSamsungAc ac(_pin, _inverted, _modulation);
ac.begin();
samsung(&ac, on, mode, degC, fan, swingv, quiet, turbo, clean, beep);
break;
}
#endif // SEND_SAMSUNG_AC
#if SEND_SHARP_AC
case SHARP_AC:
{
IRSharpAc ac(_pin, _inverted, _modulation);
ac.begin();
sharp(&ac, on, mode, degC, fan);
break;
}
#endif // SEND_SHARP_AC
#if SEND_TCL112AC
case TCL112AC:
{
IRTcl112Ac ac(_pin, _inverted, _modulation);
ac.begin();
tcl112(&ac, on, mode, degC, fan, swingv, swingh, turbo, light, econo,
filter);
break;
}
#endif // SEND_TCL112AC
#if SEND_TECO
case TECO:
{
IRTecoAc ac(_pin, _inverted, _modulation);
ac.begin();
teco(&ac, on, mode, degC, fan, swingv, sleep);
break;
}
#endif // SEND_TECO
#if SEND_TOSHIBA_AC
case TOSHIBA_AC:
{
IRToshibaAC ac(_pin, _inverted, _modulation);
ac.begin();
toshiba(&ac, on, mode, degC, fan);
break;
}
#endif // SEND_TOSHIBA_AC
#if SEND_TROTEC
case TROTEC:
{
IRTrotecESP ac(_pin, _inverted, _modulation);
ac.begin();
trotec(&ac, on, mode, degC, fan, sleep);
break;
}
#endif // SEND_TROTEC
#if SEND_VESTEL_AC
case VESTEL_AC:
{
IRVestelAc ac(_pin, _inverted, _modulation);
ac.begin();
vestel(&ac, on, mode, degC, fan, swingv, turbo, filter, sleep, clock);
break;
}
#endif // SEND_VESTEL_AC
#if SEND_WHIRLPOOL_AC
case WHIRLPOOL_AC:
{
IRWhirlpoolAc ac(_pin, _inverted, _modulation);
ac.begin();
whirlpool(&ac, (whirlpool_ac_remote_model_t)model, on, mode, degC, fan,
swingv, turbo, light, sleep, clock);
break;
}
#endif // SEND_WHIRLPOOL_AC
default:
return false; // Fail, didn't match anything.
}
return true; // Success.
}
// Send A/C message for a given device using state_t structures.
// Args:
// desired: The state_t structure describing the desired new a/c state.
// prev: Ptr to the previous state_t structure.
//
// Returns:
// boolean: True, if accepted/converted/attempted. False, if unsupported.
bool IRac::sendAc(const stdAc::state_t desired, const stdAc::state_t *prev) {
stdAc::state_t final = this->handleToggles(desired, prev);
return this->sendAc(final.protocol, final.model, final.power, final.mode,
final.degrees, final.celsius, final.fanspeed,
final.swingv, final.swingh, final.quiet, final.turbo,
final.econo, final.light, final.filter, final.clean,
final.beep, final.sleep, final.clock);
}
// Compare two AirCon states.
// Returns: True if they differ, False if they don't.
// Note: Excludes clock.
bool IRac::cmpStates(const stdAc::state_t a, const stdAc::state_t b) {
return a.protocol != b.protocol || a.model != b.model || a.power != b.power ||
a.mode != b.mode || a.degrees != b.degrees || a.celsius != b.celsius ||
a.fanspeed != b.fanspeed || a.swingv != b.swingv ||
a.swingh != b.swingh || a.quiet != b.quiet || a.turbo != b.turbo ||
a.econo != b.econo || a.light != b.light || a.filter != b.filter ||
a.clean != b.clean || a.beep != b.beep || a.sleep != b.sleep;
}
stdAc::opmode_t IRac::strToOpmode(const char *str,
const stdAc::opmode_t def) {
if (!strcasecmp(str, "AUTO") || !strcasecmp(str, "AUTOMATIC"))
return stdAc::opmode_t::kAuto;
else if (!strcasecmp(str, "OFF") || !strcasecmp(str, "STOP"))
return stdAc::opmode_t::kOff;
else if (!strcasecmp(str, "COOL") || !strcasecmp(str, "COOLING"))
return stdAc::opmode_t::kCool;
else if (!strcasecmp(str, "HEAT") || !strcasecmp(str, "HEATING"))
return stdAc::opmode_t::kHeat;
else if (!strcasecmp(str, "DRY") || !strcasecmp(str, "DRYING") ||
!strcasecmp(str, "DEHUMIDIFY"))
return stdAc::opmode_t::kDry;
else if (!strcasecmp(str, "FAN") || !strcasecmp(str, "FANONLY") ||
!strcasecmp(str, "FAN_ONLY"))
return stdAc::opmode_t::kFan;
else
return def;
}
stdAc::fanspeed_t IRac::strToFanspeed(const char *str,
const stdAc::fanspeed_t def) {
if (!strcasecmp(str, "AUTO") || !strcasecmp(str, "AUTOMATIC"))
return stdAc::fanspeed_t::kAuto;
else if (!strcasecmp(str, "MIN") || !strcasecmp(str, "MINIMUM") ||
!strcasecmp(str, "LOWEST"))
return stdAc::fanspeed_t::kMin;
else if (!strcasecmp(str, "LOW"))
return stdAc::fanspeed_t::kLow;
else if (!strcasecmp(str, "MED") || !strcasecmp(str, "MEDIUM") ||
!strcasecmp(str, "MID"))
return stdAc::fanspeed_t::kMedium;
else if (!strcasecmp(str, "HIGH") || !strcasecmp(str, "HI"))
return stdAc::fanspeed_t::kHigh;
else if (!strcasecmp(str, "MAX") || !strcasecmp(str, "MAXIMUM") ||
!strcasecmp(str, "HIGHEST"))
return stdAc::fanspeed_t::kMax;
else
return def;
}
stdAc::swingv_t IRac::strToSwingV(const char *str,
const stdAc::swingv_t def) {
if (!strcasecmp(str, "AUTO") || !strcasecmp(str, "AUTOMATIC") ||
!strcasecmp(str, "ON") || !strcasecmp(str, "SWING"))
return stdAc::swingv_t::kAuto;
else if (!strcasecmp(str, "OFF") || !strcasecmp(str, "STOP"))
return stdAc::swingv_t::kOff;
else if (!strcasecmp(str, "MIN") || !strcasecmp(str, "MINIMUM") ||
!strcasecmp(str, "LOWEST") || !strcasecmp(str, "BOTTOM") ||
!strcasecmp(str, "DOWN"))
return stdAc::swingv_t::kLowest;
else if (!strcasecmp(str, "LOW"))
return stdAc::swingv_t::kLow;
else if (!strcasecmp(str, "MID") || !strcasecmp(str, "MIDDLE") ||
!strcasecmp(str, "MED") || !strcasecmp(str, "MEDIUM") ||
!strcasecmp(str, "CENTRE") || !strcasecmp(str, "CENTER"))
return stdAc::swingv_t::kMiddle;
else if (!strcasecmp(str, "HIGH") || !strcasecmp(str, "HI"))
return stdAc::swingv_t::kHigh;
else if (!strcasecmp(str, "HIGHEST") || !strcasecmp(str, "MAX") ||
!strcasecmp(str, "MAXIMUM") || !strcasecmp(str, "TOP") ||
!strcasecmp(str, "UP"))
return stdAc::swingv_t::kHighest;
else
return def;
}
stdAc::swingh_t IRac::strToSwingH(const char *str,
const stdAc::swingh_t def) {
if (!strcasecmp(str, "AUTO") || !strcasecmp(str, "AUTOMATIC") ||
!strcasecmp(str, "ON") || !strcasecmp(str, "SWING"))
return stdAc::swingh_t::kAuto;
else if (!strcasecmp(str, "OFF") || !strcasecmp(str, "STOP"))
return stdAc::swingh_t::kOff;
else if (!strcasecmp(str, "LEFTMAX") || !strcasecmp(str, "LEFT MAX") ||
!strcasecmp(str, "MAXLEFT") || !strcasecmp(str, "MAX LEFT") ||
!strcasecmp(str, "FARLEFT") || !strcasecmp(str, "FAR LEFT"))
return stdAc::swingh_t::kLeftMax;
else if (!strcasecmp(str, "LEFT"))
return stdAc::swingh_t::kLeft;
else if (!strcasecmp(str, "MID") || !strcasecmp(str, "MIDDLE") ||
!strcasecmp(str, "MED") || !strcasecmp(str, "MEDIUM") ||
!strcasecmp(str, "CENTRE") || !strcasecmp(str, "CENTER"))
return stdAc::swingh_t::kMiddle;
else if (!strcasecmp(str, "RIGHT"))
return stdAc::swingh_t::kRight;
else if (!strcasecmp(str, "RIGHTMAX") || !strcasecmp(str, "RIGHT MAX") ||
!strcasecmp(str, "MAXRIGHT") || !strcasecmp(str, "MAX RIGHT") ||
!strcasecmp(str, "FARRIGHT") || !strcasecmp(str, "FAR RIGHT"))
return stdAc::swingh_t::kRightMax;
else
return def;
}
// Assumes str is the model or an integer >= 1.
int16_t IRac::strToModel(const char *str, const int16_t def) {
// Fujitsu A/C models
if (!strcasecmp(str, "ARRAH2E")) {
return fujitsu_ac_remote_model_t::ARRAH2E;
} else if (!strcasecmp(str, "ARDB1")) {
return fujitsu_ac_remote_model_t::ARDB1;
// Panasonic A/C families
} else if (!strcasecmp(str, "LKE") || !strcasecmp(str, "PANASONICLKE")) {
return panasonic_ac_remote_model_t::kPanasonicLke;
} else if (!strcasecmp(str, "NKE") || !strcasecmp(str, "PANASONICNKE")) {
return panasonic_ac_remote_model_t::kPanasonicNke;
} else if (!strcasecmp(str, "DKE") || !strcasecmp(str, "PANASONICDKE")) {
return panasonic_ac_remote_model_t::kPanasonicDke;
} else if (!strcasecmp(str, "JKE") || !strcasecmp(str, "PANASONICJKE")) {
return panasonic_ac_remote_model_t::kPanasonicJke;
} else if (!strcasecmp(str, "CKP") || !strcasecmp(str, "PANASONICCKP")) {
return panasonic_ac_remote_model_t::kPanasonicCkp;
} else if (!strcasecmp(str, "RKR") || !strcasecmp(str, "PANASONICRKR")) {
return panasonic_ac_remote_model_t::kPanasonicRkr;
// Whirlpool A/C models
} else if (!strcasecmp(str, "DG11J13A") || !strcasecmp(str, "DG11J104") ||
!strcasecmp(str, "DG11J1-04")) {
return whirlpool_ac_remote_model_t::DG11J13A;
} else if (!strcasecmp(str, "DG11J191")) {
return whirlpool_ac_remote_model_t::DG11J191;
} else {
int16_t number = atoi(str);
if (number > 0)
return number;
else
return def;
}
}
bool IRac::strToBool(const char *str, const bool def) {
if (!strcasecmp(str, "ON") || !strcasecmp(str, "1") ||
!strcasecmp(str, "YES") || !strcasecmp(str, "TRUE"))
return true;
else if (!strcasecmp(str, "OFF") || !strcasecmp(str, "0") ||
!strcasecmp(str, "NO") || !strcasecmp(str, "FALSE"))
return false;
else
return def;
}
String IRac::boolToString(const bool value) {
return value ? F("on") : F("off");
}
String IRac::opmodeToString(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kOff:
return F("off");
case stdAc::opmode_t::kAuto:
return F("auto");
case stdAc::opmode_t::kCool:
return F("cool");
case stdAc::opmode_t::kHeat:
return F("heat");
case stdAc::opmode_t::kDry:
return F("dry");
case stdAc::opmode_t::kFan:
return F("fan_only");
default:
return F("unknown");
}
}
String IRac::fanspeedToString(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kAuto:
return F("auto");
case stdAc::fanspeed_t::kMax:
return F("max");
case stdAc::fanspeed_t::kHigh:
return F("high");
case stdAc::fanspeed_t::kMedium:
return F("medium");
case stdAc::fanspeed_t::kLow:
return F("low");
case stdAc::fanspeed_t::kMin:
return F("min");
default:
return F("unknown");
}
}
String IRac::swingvToString(const stdAc::swingv_t swingv) {
switch (swingv) {
case stdAc::swingv_t::kOff:
return F("off");
case stdAc::swingv_t::kAuto:
return F("auto");
case stdAc::swingv_t::kHighest:
return F("highest");
case stdAc::swingv_t::kHigh:
return F("high");
case stdAc::swingv_t::kMiddle:
return F("middle");
case stdAc::swingv_t::kLow:
return F("low");
case stdAc::swingv_t::kLowest:
return F("lowest");
default:
return F("unknown");
}
}
String IRac::swinghToString(const stdAc::swingh_t swingh) {
switch (swingh) {
case stdAc::swingh_t::kOff:
return F("off");
case stdAc::swingh_t::kAuto:
return F("auto");
case stdAc::swingh_t::kLeftMax:
return F("leftmax");
case stdAc::swingh_t::kLeft:
return F("left");
case stdAc::swingh_t::kMiddle:
return F("middle");
case stdAc::swingh_t::kRight:
return F("right");
case stdAc::swingh_t::kRightMax:
return F("rightmax");
default:
return F("unknown");
}
}
namespace IRAcUtils {
// Display the human readable state of an A/C message if we can.
// Args:
// result: A Ptr to the captured `decode_results` that contains an A/C mesg.
// Returns:
// A string with the human description of the A/C message. "" if we can't.
String resultAcToString(const decode_results * const result) {
switch (result->decode_type) {
#if DECODE_ARGO
case decode_type_t::ARGO: {
IRArgoAC ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_ARGO
#if DECODE_DAIKIN
case decode_type_t::DAIKIN: {
IRDaikinESP ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_DAIKIN
#if DECODE_DAIKIN160
case decode_type_t::DAIKIN160: {
IRDaikin160 ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_DAIKIN160
#if DECODE_DAIKIN176
case decode_type_t::DAIKIN176: {
IRDaikin176 ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_DAIKIN160
#if DECODE_DAIKIN2
case decode_type_t::DAIKIN2: {
IRDaikin2 ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_DAIKIN2
#if DECODE_DAIKIN216
case decode_type_t::DAIKIN216: {
IRDaikin216 ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_DAIKIN216
#if DECODE_ELECTRA_AC
case decode_type_t::ELECTRA_AC: {
IRElectraAc ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_ELECTRA_AC
#if DECODE_FUJITSU_AC
case decode_type_t::FUJITSU_AC: {
IRFujitsuAC ac(0);
ac.setRaw(result->state, result->bits / 8);
return ac.toString();
}
#endif // DECODE_FUJITSU_AC
#if DECODE_KELVINATOR
case decode_type_t::KELVINATOR: {
IRKelvinatorAC ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_KELVINATOR
#if DECODE_MITSUBISHI_AC
case decode_type_t::MITSUBISHI_AC: {
IRMitsubishiAC ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_MITSUBISHI_AC
#if DECODE_MITSUBISHIHEAVY
case decode_type_t::MITSUBISHI_HEAVY_88: {
IRMitsubishiHeavy88Ac ac(0);
ac.setRaw(result->state);
return ac.toString();
}
case decode_type_t::MITSUBISHI_HEAVY_152: {
IRMitsubishiHeavy152Ac ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_MITSUBISHIHEAVY
#if DECODE_NEOCLIMA
case decode_type_t::NEOCLIMA: {
IRNeoclimaAc ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_NEOCLIMA
#if DECODE_TOSHIBA_AC
case decode_type_t::TOSHIBA_AC: {
IRToshibaAC ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_TOSHIBA_AC
#if DECODE_TROTEC
case decode_type_t::TROTEC: {
IRTrotecESP ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_TROTEC
#if DECODE_GOODWEATHER
case decode_type_t::GOODWEATHER: {
IRGoodweatherAc ac(0);
ac.setRaw(result->value); // Goodweather uses value instead of state.
return ac.toString();
}
#endif // DECODE_GOODWEATHER
#if DECODE_GREE
case decode_type_t::GREE: {
IRGreeAC ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_GREE
#if DECODE_MIDEA
case decode_type_t::MIDEA: {
IRMideaAC ac(0);
ac.setRaw(result->value); // Midea uses value instead of state.
return ac.toString();
}
#endif // DECODE_MIDEA
#if DECODE_HAIER_AC
case decode_type_t::HAIER_AC: {
IRHaierAC ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_HAIER_AC
#if DECODE_HAIER_AC_YRW02
case decode_type_t::HAIER_AC_YRW02: {
IRHaierACYRW02 ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_HAIER_AC_YRW02
#if DECODE_SAMSUNG_AC
case decode_type_t::SAMSUNG_AC: {
IRSamsungAc ac(0);
ac.setRaw(result->state, result->bits / 8);
return ac.toString();
}
#endif // DECODE_SAMSUNG_AC
#if DECODE_SHARP_AC
case decode_type_t::SHARP_AC: {
IRSharpAc ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_SHARP_AC
#if DECODE_COOLIX
case decode_type_t::COOLIX: {
IRCoolixAC ac(0);
ac.setRaw(result->value); // Coolix uses value instead of state.
return ac.toString();
}
#endif // DECODE_COOLIX
#if DECODE_PANASONIC_AC
case decode_type_t::PANASONIC_AC: {
if (result->bits > kPanasonicAcShortBits) {
IRPanasonicAc ac(0);
ac.setRaw(result->state);
return ac.toString();
}
return "";
}
#endif // DECODE_PANASONIC_AC
#if DECODE_HITACHI_AC
case decode_type_t::HITACHI_AC: {
IRHitachiAc ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_HITACHI_AC
#if DECODE_WHIRLPOOL_AC
case decode_type_t::WHIRLPOOL_AC: {
IRWhirlpoolAc ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_WHIRLPOOL_AC
#if DECODE_VESTEL_AC
case decode_type_t::VESTEL_AC: {
IRVestelAc ac(0);
ac.setRaw(result->value); // Like Coolix, use value instead of state.
return ac.toString();
}
#endif // DECODE_VESTEL_AC
#if DECODE_TECO
case decode_type_t::TECO: {
IRTecoAc ac(0);
ac.setRaw(result->value); // Like Coolix, use value instead of state.
return ac.toString();
}
#endif // DECODE_TECO
#if DECODE_TCL112AC
case decode_type_t::TCL112AC: {
IRTcl112Ac ac(0);
ac.setRaw(result->state);
return ac.toString();
}
#endif // DECODE_TCL112AC
default:
return "";
}
}
// Convert a valid IR A/C remote message that we understand enough into a
// Common A/C state.
//
// Args:
// decode: A PTR to a successful raw IR decode object.
// result: A PTR to a state structure to store the result in.
// prev: A PTR to a state structure which has the prev. state. (optional)
// Returns:
// A boolean indicating success or failure.
bool decodeToState(const decode_results *decode, stdAc::state_t *result,
const stdAc::state_t *prev) {
if (decode == NULL || result == NULL) return false; // Safety check.
switch (decode->decode_type) {
#if DECODE_ARGO
case decode_type_t::ARGO: {
IRArgoAC ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_ARGO
#if DECODE_COOLIX
case decode_type_t::COOLIX: {
IRCoolixAC ac(kGpioUnused);
ac.setRaw(decode->value); // Uses value instead of state.
*result = ac.toCommon(prev);
break;
}
#endif // DECODE_COOLIX
#if DECODE_DAIKIN
case decode_type_t::DAIKIN: {
IRDaikinESP ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_DAIKIN
#if DECODE_DAIKIN160
case decode_type_t::DAIKIN160: {
IRDaikin160 ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_DAIKIN160
#if DECODE_DAIKIN176
case decode_type_t::DAIKIN176: {
IRDaikin176 ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_DAIKIN160
#if DECODE_DAIKIN2
case decode_type_t::DAIKIN2: {
IRDaikin2 ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_DAIKIN2
#if DECODE_DAIKIN216
case decode_type_t::DAIKIN216: {
IRDaikin216 ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_DAIKIN216
#if DECODE_ELECTRA_AC
case decode_type_t::ELECTRA_AC: {
IRElectraAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_ELECTRA_AC
#if DECODE_FUJITSU_AC
case decode_type_t::FUJITSU_AC: {
IRFujitsuAC ac(kGpioUnused);
ac.setRaw(decode->state, decode->bits / 8);
*result = ac.toCommon();
break;
}
#endif // DECODE_FUJITSU_AC
#if DECODE_GOODWEATHER
case decode_type_t::GOODWEATHER: {
IRGoodweatherAc ac(kGpioUnused);
ac.setRaw(decode->value); // Uses value instead of state.
*result = ac.toCommon();
break;
}
#endif // DECODE_GOODWEATHER
#if DECODE_GREE
case decode_type_t::GREE: {
IRGreeAC ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_GREE
#if DECODE_HAIER_AC
case decode_type_t::HAIER_AC: {
IRHaierAC ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_HAIER_AC
#if DECODE_HAIER_AC_YRW02
case decode_type_t::HAIER_AC_YRW02: {
IRHaierACYRW02 ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_HAIER_AC_YRW02
#if (DECODE_HITACHI_AC || DECODE_HITACHI_AC2)
case decode_type_t::HITACHI_AC: {
IRHitachiAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // (DECODE_HITACHI_AC || DECODE_HITACHI_AC2)
#if DECODE_KELVINATOR
case decode_type_t::KELVINATOR: {
IRKelvinatorAC ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_KELVINATOR
#if DECODE_MIDEA
case decode_type_t::MIDEA: {
IRMideaAC ac(kGpioUnused);
ac.setRaw(decode->value); // Uses value instead of state.
*result = ac.toCommon();
break;
}
#endif // DECODE_MIDEA
#if DECODE_MITSUBISHI_AC
case decode_type_t::MITSUBISHI_AC: {
IRMitsubishiAC ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_MITSUBISHI_AC
#if DECODE_MITSUBISHIHEAVY
case decode_type_t::MITSUBISHI_HEAVY_88: {
IRMitsubishiHeavy88Ac ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
case decode_type_t::MITSUBISHI_HEAVY_152: {
IRMitsubishiHeavy152Ac ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_MITSUBISHIHEAVY
#if DECODE_NEOCLIMA
case decode_type_t::NEOCLIMA: {
IRNeoclimaAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_NEOCLIMA
#if DECODE_PANASONIC_AC
case decode_type_t::PANASONIC_AC: {
IRPanasonicAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_PANASONIC_AC
#if DECODE_SAMSUNG_AC
case decode_type_t::SAMSUNG_AC: {
IRSamsungAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_SAMSUNG_AC
#if DECODE_SHARP_AC
case decode_type_t::SHARP_AC: {
IRSharpAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_SHARP_AC
#if DECODE_TCL112AC
case decode_type_t::TCL112AC: {
IRTcl112Ac ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_TCL112AC
#if DECODE_TECO
case decode_type_t::TECO: {
IRTecoAc ac(kGpioUnused);
ac.setRaw(decode->value); // Uses value instead of state.
*result = ac.toCommon();
break;
}
#endif // DECODE_TECO
#if DECODE_TOSHIBA_AC
case decode_type_t::TOSHIBA_AC: {
IRToshibaAC ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_TOSHIBA_AC
#if DECODE_TROTEC
case decode_type_t::TROTEC: {
IRTrotecESP ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_TROTEC
#if DECODE_VESTEL_AC
case decode_type_t::VESTEL_AC: {
IRVestelAc ac(kGpioUnused);
ac.setRaw(decode->value); // Uses value instead of state.
*result = ac.toCommon();
break;
}
#endif // DECODE_VESTEL_AC
#if DECODE_WHIRLPOOL_AC
case decode_type_t::WHIRLPOOL_AC: {
IRWhirlpoolAc ac(kGpioUnused);
ac.setRaw(decode->state);
*result = ac.toCommon();
break;
}
#endif // DECODE_WHIRLPOOL_AC
default:
return false;
}
return true;
}
} // namespace IRAcUtils