Tasmota/sonoff/xsns_ds18x20.ino

234 lines
7.4 KiB
Arduino
Raw Normal View History

2017-01-28 13:41:01 +00:00
/*
Copyright (c) 2017 Theo Arends. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef USE_DS18x20
/*********************************************************************************************\
* DS18B20 - Temperature
\*********************************************************************************************/
#define DS18S20_CHIPID 0x10
#define DS18B20_CHIPID 0x28
#define MAX31850_CHIPID 0x3B
2017-01-28 13:41:01 +00:00
#define W1_SKIP_ROM 0xCC
#define W1_CONVERT_TEMP 0x44
#define W1_READ_SCRATCHPAD 0xBE
#define DS18X20_MAX_SENSORS 8
2017-01-28 13:41:01 +00:00
#include <OneWire.h>
OneWire *ds = NULL;
2017-01-28 13:41:01 +00:00
uint8_t ds18x20_addr[DS18X20_MAX_SENSORS][8];
uint8_t ds18x20_idx[DS18X20_MAX_SENSORS];
uint8_t ds18x20_snsrs = 0;
char dsbstype[9];
2017-01-28 13:41:01 +00:00
void ds18x20_init()
{
ds = new OneWire(pin[GPIO_DSB]);
}
2017-01-28 13:41:01 +00:00
void ds18x20_search()
{
uint8_t num_sensors=0;
uint8_t sensor = 0;
uint8_t i;
ds->reset_search();
2017-01-28 13:41:01 +00:00
for (num_sensors = 0; num_sensors < DS18X20_MAX_SENSORS; num_sensors)
{
if (!ds->search(ds18x20_addr[num_sensors])) {
ds->reset_search();
2017-01-28 13:41:01 +00:00
break;
}
// If CRC Ok and Type DS18S20, DS18B20 or MAX31850
2017-01-28 13:41:01 +00:00
if ((OneWire::crc8(ds18x20_addr[num_sensors], 7) == ds18x20_addr[num_sensors][7]) &&
((ds18x20_addr[num_sensors][0]==DS18S20_CHIPID) || (ds18x20_addr[num_sensors][0]==DS18B20_CHIPID) || (ds18x20_addr[num_sensors][0]==MAX31850_CHIPID)))
2017-01-28 13:41:01 +00:00
num_sensors++;
}
for (int i = 0; i < num_sensors; i++) ds18x20_idx[i] = i;
for (int i = 0; i < num_sensors; i++) {
for (int j = i + 1; j < num_sensors; j++) {
if (uint32_t(ds18x20_addr[ds18x20_idx[i]]) > uint32_t(ds18x20_addr[ds18x20_idx[j]])) {
std::swap(ds18x20_idx[i], ds18x20_idx[j]);
}
}
}
ds18x20_snsrs = num_sensors;
}
uint8_t ds18x20_sensors()
{
return ds18x20_snsrs;
}
String ds18x20_address(uint8_t sensor)
{
char addrStr[20];
uint8_t i;
for (i = 0; i < 8; i++) sprintf(addrStr+2*i, "%02X", ds18x20_addr[ds18x20_idx[sensor]][i]);
return String(addrStr);
}
void ds18x20_convert()
{
ds->reset();
ds->write(W1_SKIP_ROM); // Address all Sensors on Bus
ds->write(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end
2017-01-28 13:41:01 +00:00
// delay(750); // 750ms should be enough for 12bit conv
}
float ds18x20_convertCtoF(float c)
{
return c * 1.8 + 32;
}
boolean ds18x20_read(uint8_t sensor, bool S, float &t)
{
byte data[12];
int8_t sign = 1;
2017-01-28 13:41:01 +00:00
uint8_t i = 0;
float temp9 = 0.0;
uint8_t present = 0;
t = NAN;
ds->reset();
ds->select(ds18x20_addr[ds18x20_idx[sensor]]);
ds->write(W1_READ_SCRATCHPAD); // Read Scratchpad
2017-01-28 13:41:01 +00:00
for (i = 0; i < 9; i++) data[i] = ds->read();
2017-01-28 13:41:01 +00:00
if (OneWire::crc8(data, 8) == data[8]) {
switch(ds18x20_addr[ds18x20_idx[sensor]][0]) {
case DS18S20_CHIPID: // DS18S20
/*
// App_note AN162.pdf page 9
int temp_lsb, temp_msb;
temp_msb = data[1]; // Sign byte + lsbit
temp_lsb = data[0]; // Temp data plus lsb
if (temp_msb <= 0x80) temp_lsb = (temp_lsb/2); // Shift to get whole degree
temp_msb = temp_msb & 0x80; // Mask all but the sign bit
if (temp_msb >= 0x80) { // Negative temperature
temp_lsb = (~temp_lsb)+1; // Twos complement
temp_lsb = (temp_lsb/2); // Shift to get whole degree
temp_lsb = ((-1)*temp_lsb); // Add sign bit
}
t = (int)temp_lsb; // Temperature in whole degree
*/
if (data[1] > 0x80) {
data[0] = (~data[0]) +1;
sign = -1; // App-Note fix possible sign error
}
2017-01-28 13:41:01 +00:00
if (data[0] & 1) {
temp9 = ((data[0] >> 1) + 0.5) * sign;
} else {
temp9 = (data[0] >> 1) * sign;
}
t = (temp9 - 0.25) + ((16.0 - data[6]) / 16.0);
if(S) t = ds18x20_convertCtoF(t);
break;
case DS18B20_CHIPID: // DS18B20
case MAX31850_CHIPID: // MAX31850
2017-01-28 13:41:01 +00:00
t = ((data[1] << 8) + data[0]) * 0.0625;
if(S) t = ds18x20_convertCtoF(t);
break;
}
}
return (!isnan(t));
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
void ds18x20_type(uint8_t sensor)
{
strcpy_P(dsbstype, PSTR("DS18x20"));
switch(ds18x20_addr[ds18x20_idx[sensor]][0]) {
case DS18S20_CHIPID:
strcpy_P(dsbstype, PSTR("DS18S20"));
break;
case DS18B20_CHIPID:
strcpy_P(dsbstype, PSTR("DS18B20"));
break;
case MAX31850_CHIPID:
strcpy_P(dsbstype, PSTR("MAX31850"));
break;
}
}
void ds18x20_mqttPresent(char* svalue, uint16_t ssvalue, uint8_t* djson)
2017-01-28 13:41:01 +00:00
{
char stemp1[10], stemp2[10];
float t;
byte dsxflg = 0;
for (byte i = 0; i < ds18x20_sensors(); i++) {
if (ds18x20_read(i, TEMP_CONVERSION, t)) { // Check if read failed
ds18x20_type(i);
2017-01-28 13:41:01 +00:00
dtostrf(t, 1, TEMP_RESOLUTION &3, stemp2);
if (!dsxflg) {
snprintf_P(svalue, ssvalue, PSTR("%s, \"DS18x20\":{"), svalue);
*djson = 1;
stemp1[0] = '\0';
}
dsxflg++;
snprintf_P(svalue, ssvalue, PSTR("%s%s\"DS%d\":{\"Type\":\"%s\", \"Address\":\"%s\", \"Temperature\":%s}"),
svalue, stemp1, i +1, dsbstype, ds18x20_address(i).c_str(), stemp2);
2017-01-28 13:41:01 +00:00
strcpy(stemp1, ", ");
#ifdef USE_DOMOTICZ
if (dsxflg == 1) domoticz_sensor1(stemp2);
#endif // USE_DOMOTICZ
}
}
if (dsxflg) snprintf_P(svalue, ssvalue, PSTR("%s}"), svalue);
}
#ifdef USE_WEBSERVER
String ds18x20_webPresent()
{
String page = "";
char stemp[10], stemp2[16], sensor[80];
float t;
2017-01-28 13:41:01 +00:00
for (byte i = 0; i < ds18x20_sensors(); i++) {
if (ds18x20_read(i, TEMP_CONVERSION, t)) { // Check if read failed
ds18x20_type(i);
2017-01-28 13:41:01 +00:00
dtostrf(t, 1, TEMP_RESOLUTION &3, stemp);
snprintf_P(stemp2, sizeof(stemp2), PSTR("%s-%d"), dsbstype, i +1);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_TEMP, stemp2, stemp, (TEMP_CONVERSION) ? 'F' : 'C');
page += sensor;
2017-01-28 13:41:01 +00:00
}
}
ds18x20_search(); // Check for changes in sensors number
ds18x20_convert(); // Start Conversion, takes up to one second
2017-01-28 13:41:01 +00:00
return page;
}
#endif // USE_WEBSERVER
#endif // USE_DS18x20