Tasmota/tasmota/xdrv_23_zigbee_2a_devices_i...

899 lines
31 KiB
Arduino
Raw Normal View History

/*
xdrv_23_zigbee_2a_devices_impl.ino - zigbee support for Tasmota
2021-01-01 12:44:04 +00:00
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* Implementation
\*********************************************************************************************/
2020-11-01 18:00:07 +00:00
Z_Device & Z_Devices::devicesAt(size_t i) const {
Z_Device * devp = (Z_Device*) _devices.at(i);
if (devp) {
return *devp;
} else {
return device_unk;
}
}
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
2020-11-01 18:00:07 +00:00
if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return device_unk; } // it is not legal to create this entry
2020-10-28 09:08:15 +00:00
Z_Device & device = _devices.addToLast();
device.shortaddr = shortaddr;
device.longaddr = longaddr;
dirty();
2020-10-28 09:08:15 +00:00
return device;
}
void Z_Devices::freeDeviceEntry(Z_Device *device) {
if (device->manufacturerId) { free(device->manufacturerId); }
if (device->modelId) { free(device->modelId); }
if (device->friendlyName) { free(device->friendlyName); }
free(device);
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (not BAD_SHORTADDR)
// Out:
// reference to device, or to device_unk if not found
// (use foundDevice() to check if found)
Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) {
for (auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
2020-11-01 18:00:07 +00:00
return device_unk;
}
const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const {
for (const auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) {
2020-11-01 18:00:07 +00:00
if (!longaddr) { return device_unk; }
for (auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
2020-11-01 18:00:07 +00:00
return device_unk;
}
const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const {
if (!longaddr) { return device_unk; }
for (const auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findFriendlyName(const char * name) const {
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem.friendlyName) {
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
}
found++;
}
}
return -1;
}
2020-11-01 18:00:07 +00:00
Z_Device & Z_Devices::isKnownLongAddrDevice(uint64_t longaddr) const {
return (Z_Device &) findLongAddr(longaddr);
}
2020-11-01 18:00:07 +00:00
Z_Device & Z_Devices::isKnownIndexDevice(uint32_t index) const {
if (index < devicesSize()) {
2020-11-01 18:00:07 +00:00
return devicesAt(index);
} else {
2020-11-01 18:00:07 +00:00
return device_unk;
}
}
2020-11-01 18:00:07 +00:00
Z_Device & Z_Devices::isKnownFriendlyNameDevice(const char * name) const {
if ((!name) || (0 == strlen(name))) { return device_unk; } // Error
int32_t found = findFriendlyName(name);
if (found >= 0) {
2020-11-01 18:00:07 +00:00
return devicesAt(found);
} else {
2020-11-01 18:00:07 +00:00
return device_unk;
}
}
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00
}
//
// We have a seen a shortaddr on the network, get the corresponding device object
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
2020-11-01 18:00:07 +00:00
if (BAD_SHORTADDR == shortaddr) { return device_unk; } // this is not legal
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(shortaddr, 0);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
2020-11-01 18:00:07 +00:00
if (!longaddr) { return device_unk; }
Z_Device & device = findLongAddr(longaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(0, longaddr);
}
// Remove device from list, return true if it was known, false if it was not recorded
bool Z_Devices::removeDevice(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
_devices.remove(&device);
dirty();
return true;
}
return false;
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
2020-10-28 09:08:15 +00:00
Z_Device & Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry
Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry
if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
} else { // they don't match
// the device with longaddr got a new shortaddr
l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
freeDeviceEntry(s_found);
_devices.remove(s_found);
dirty();
2020-10-28 09:08:15 +00:00
return *l_found;
}
} else if (foundDevice(*s_found)) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
s_found->longaddr = longaddr;
dirty();
2020-10-28 09:08:15 +00:00
return *s_found;
} else if (foundDevice(*l_found)) {
// longaddr entry exists, update shortaddr
l_found->shortaddr = shortaddr;
dirty();
2020-10-28 09:08:15 +00:00
return *l_found;
} else {
// neither short/lonf addr are found.
if ((BAD_SHORTADDR != shortaddr) || longaddr) {
2020-10-28 09:08:15 +00:00
return createDeviceEntry(shortaddr, longaddr);
}
2020-11-01 18:00:07 +00:00
return device_unk;
}
2020-11-12 18:38:21 +00:00
return device_unk;
}
//
// Clear all endpoints
//
2020-10-31 18:51:17 +00:00
void Z_Device::clearEndpoints(void) {
for (uint32_t i = 0; i < endpoints_max; i++) {
2020-10-31 18:51:17 +00:00
endpoints[i] = 0;
// no dirty here because it doesn't make sense to store it, does it?
}
}
//
// Add an endpoint to a shortaddr
// return true if a change was made
//
bool Z_Device::addEndpoint(uint8_t endpoint) {
if ((0x00 == endpoint) || (endpoint > 240)) { return false; }
for (uint32_t i = 0; i < endpoints_max; i++) {
if (endpoint == endpoints[i]) {
return false; // endpoint already there
}
if (0 == endpoints[i]) {
endpoints[i] = endpoint;
return true;
}
}
return false;
}
//
// Count the number of known endpoints
//
2020-10-31 18:51:17 +00:00
uint32_t Z_Device::countEndpoints(void) const {
uint32_t count_ep = 0;
for (uint32_t i = 0; i < endpoints_max; i++) {
2020-10-31 18:51:17 +00:00
if (0 != endpoints[i]) {
count_ep++;
}
}
return count_ep;
}
// Find the first endpoint of the device
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
// When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1
if (0x0000 == shortaddr) { return 1; }
return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint
}
2020-10-31 18:51:17 +00:00
void Z_Device::setStringAttribute(char*& attr, const char * str) {
if (nullptr == str) { return; } // ignore a null parameter
size_t str_len = strlen(str);
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
if (attr) {
// we already have a value
if (strcmp(attr, str) != 0) {
// new value
free(attr); // free previous value
attr = nullptr;
} else {
return; // same value, don't change anything
}
}
if (str_len) {
2020-10-28 09:08:15 +00:00
if (str_len > 31) { str_len = 31; }
attr = (char*) malloc(str_len + 1);
strlcpy(attr, str, str_len + 1);
}
2020-10-31 18:51:17 +00:00
zigbee_devices.dirty();
}
//
// Sets the ManufId for a device.
// No action taken if the device does not exist.
// Inputs:
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
// - str: string pointer, if nullptr it is considered as empty string
// Impact:
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
//
2020-10-31 18:51:17 +00:00
void Z_Device::setManufId(const char * str) {
setStringAttribute(manufacturerId, str);
}
2020-10-31 18:51:17 +00:00
void Z_Device::setModelId(const char * str) {
setStringAttribute(modelId, str);
}
2020-10-31 18:51:17 +00:00
void Z_Device::setFriendlyName(const char * str) {
setStringAttribute(friendlyName, str);
}
2020-11-01 18:00:07 +00:00
void Z_Device::setLastSeenNow(void) {
// Only update time if after 2020-01-01 0000.
// Fixes issue where zigbee device pings before WiFi/NTP has set utc_time
// to the correct time, and "last seen" calculations are based on the
// pre-corrected last_seen time and the since-corrected utc_time.
2020-11-08 08:38:34 +00:00
if (Rtc.utc_time < START_VALID_TIME) { return; }
2020-11-01 18:00:07 +00:00
last_seen = Rtc.utc_time;
}
void Z_Devices::deviceWasReached(uint16_t shortaddr) {
// since we just receveived data from the device, it is reachable
zigbee_devices.resetTimersForDevice(shortaddr, 0 /* groupaddr */, Z_CAT_REACHABILITY); // remove any reachability timer already there
Z_Device & device = findShortAddr(shortaddr);
if (device.valid()) {
device.setReachable(true); // mark device as reachable
}
}
// get the next sequance number for the device, or use the global seq number if device is unknown
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
device.seqNumber += 1;
return device.seqNumber;
} else {
_seqNumber += 1;
return _seqNumber;
}
}
2020-11-01 18:00:07 +00:00
// returns: dirty flag, did we change the value of the object
void Z_Device::setLightChannels(int8_t channels) {
if (channels >= 0) {
// retrieve of create light object
Z_Data_Light & light = data.get<Z_Data_Light>(0);
if (channels != light.getConfig()) {
light.setConfig(channels);
zigbee_devices.dirty();
}
Z_Data_OnOff & onoff = data.get<Z_Data_OnOff>(0);
2020-11-12 18:38:21 +00:00
(void)onoff;
2020-11-01 18:00:07 +00:00
} else {
// remove light / onoff object if any
for (auto & data_elt : data) {
if ((data_elt.getType() == Z_Data_Type::Z_Light) ||
(data_elt.getType() == Z_Data_Type::Z_OnOff)) {
// remove light object
data.remove(&data_elt);
zigbee_devices.dirty();
}
}
}
}
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const {
2020-11-01 18:00:07 +00:00
const Z_Device &device = findShortAddr(shortaddr);
int8_t light_profile = device.getLightChannels();
if (0x00 == (light_profile & 0xF0)) {
return (light_profile & 0x07);
} else {
// not a bulb
return -1;
}
}
void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) {
Z_Device &device = getShortAddr(shortaddr);
if (device.hidden != hidden) {
device.hidden = hidden;
dirty();
}
}
// true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb
bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const {
const Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device.hidden;
}
return true; // Fallback - Device is considered as hidden
}
// Deferred actions
// Parse for a specific category, of all deferred for a device if category == 0xFF
// Only with specific cluster number or for all clusters if cluster == 0xFFFF
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) {
// iterate the list of deferred, and remove any linked to the shortaddr
for (auto & defer : _deferred) {
if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) {
if ((0xFF == category) || (defer.category == category)) {
if ((0xFFFF == cluster) || (defer.cluster == cluster)) {
if ((0xFF == endpoint) || (defer.endpoint == endpoint)) {
_deferred.remove(&defer);
}
}
}
}
}
}
// Set timer for a specific device
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers
resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster
}
// Now create the new timer
Z_Deferred & deferred = _deferred.addHead();
deferred = { wait_ms + millis(), // timer
shortaddr,
groupaddr,
cluster,
endpoint,
category,
value,
func };
}
// Set timer after the already queued events
// I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future
void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
Z_Device & device = getShortAddr(shortaddr);
uint32_t now_millis = millis();
if (TimeReached(device.defer_last_message_sent)) {
device.defer_last_message_sent = now_millis;
}
// defer_last_message_sent equals now or a value in the future
device.defer_last_message_sent += wait_ms;
// for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS
setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func);
}
// Run timer at each tick
// WARNING: don't set a new timer within a running timer, this causes memory corruption
void Z_Devices::runTimer(void) {
// visit all timers
for (auto & defer : _deferred) {
uint32_t timer = defer.timer;
if (TimeReached(timer)) {
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
_deferred.remove(&defer);
}
}
// check if we need to save to Flash
if ((_saveTimer) && TimeReached(_saveTimer)) {
saveZigbeeDevices();
_saveTimer = 0;
}
}
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
// false - new attributes can be safely added
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const {
const Z_Device & device = findShortAddr(shortaddr);
if (!foundDevice(device)) { return false; }
if (attr_list.isEmpty()) {
return false; // if no previous value, no conflict
}
// compare groups
if (device.attr_list.isValidGroupId() && attr_list.isValidGroupId()) {
if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict
}
// compare src_ep
if (device.attr_list.isValidSrcEp() && attr_list.isValidSrcEp()) {
if (device.attr_list.src_ep != attr_list.src_ep) { return true; }
}
2020-10-30 11:29:48 +00:00
// LQI does not count as conflicting
// parse all other parameters
for (const auto & attr : attr_list) {
const Z_attribute * curr_attr = device.attr_list.findAttribute(attr);
if (nullptr != curr_attr) {
if (!curr_attr->equalsVal(attr)) {
return true; // the value already exists and is different - conflict!
}
}
}
return false;
}
void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) {
Z_Device & device = getShortAddr(shortaddr);
device.attr_list.mergeList(attr_list);
}
//
// internal function to publish device information with respect to all `SetOption`s
//
void Z_Device::jsonPublishAttrList(const char * json_prefix, const Z_attribute_list &attr_list) const {
bool use_fname = (Settings.flag4.zigbee_use_names) && (friendlyName); // should we replace shortaddr with friendlyname?
TasmotaGlobal.mqtt_data[0] = 0; // clear string
// Do we prefix with `ZbReceived`?
if (!Settings.flag4.remove_zbreceived && !Settings.flag5.zb_received_as_subtopic) {
Response_P(PSTR("{\"%s\":"), json_prefix);
}
// What key do we use, shortaddr or name?
if (!Settings.flag5.zb_omit_json_addr) {
if (use_fname) {
Response_P(PSTR("%s{\"%s\":"), TasmotaGlobal.mqtt_data, friendlyName);
} else {
Response_P(PSTR("%s{\"0x%04X\":"), TasmotaGlobal.mqtt_data, shortaddr);
}
}
ResponseAppend_P(PSTR("{"));
// Add "Device":"0x...."
ResponseAppend_P(PSTR("\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), shortaddr);
// Add "Name":"xxx" if name is present
if (friendlyName) {
ResponseAppend_P(PSTR("\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), EscapeJSONString(friendlyName).c_str());
}
// Add all other attributes
ResponseAppend_P(PSTR("%s}"), attr_list.toString(false).c_str());
if (!Settings.flag5.zb_omit_json_addr) {
ResponseAppend_P(PSTR("}"));
}
if (!Settings.flag4.remove_zbreceived && !Settings.flag5.zb_received_as_subtopic) {
ResponseAppend_P(PSTR("}"));
}
if (Settings.flag4.zigbee_distinct_topics) {
char subtopic[TOPSZ];
2020-12-23 13:30:09 +00:00
if (Settings.flag4.zb_topic_fname && friendlyName && strlen(friendlyName)) {
// Clean special characters
char stemp[TOPSZ];
2020-12-23 13:30:09 +00:00
strlcpy(stemp, friendlyName, sizeof(stemp));
MakeValidMqtt(0, stemp);
snprintf_P(subtopic, sizeof(subtopic), PSTR("%s/%s"), TasmotaGlobal.mqtt_topic, stemp);
} else {
snprintf_P(subtopic, sizeof(subtopic), PSTR("%s/%04X"), TasmotaGlobal.mqtt_topic, shortaddr);
}
char stopic[TOPSZ];
if (Settings.flag5.zb_received_as_subtopic)
GetTopic_P(stopic, TELE, subtopic, json_prefix);
else
GetTopic_P(stopic, TELE, subtopic, D_RSLT_SENSOR);
MqttPublish(stopic, Settings.flag.mqtt_sensor_retain);
} else {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
}
XdrvRulesProcess(); // apply rules
}
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (!device.valid()) { return; } // safeguard
Z_attribute_list &attr_list = device.attr_list;
if (!attr_list.isEmpty()) {
// save parameters is global variables to be used by Rules
gZbLastMessage.device = shortaddr; // %zbdevice%
gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup%
gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint%
device.jsonPublishAttrList(PSTR(D_JSON_ZIGBEE_RECEIVED), attr_list);
attr_list.reset(); // clear the attributes
}
}
void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) {
jsonPublishFlush(shortaddr); // flush any previous buffer
jsonAppend(shortaddr, attr_list);
jsonPublishFlush(shortaddr); // publish now
}
void Z_Devices::dirty(void) {
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
}
void Z_Devices::clean(void) {
_saveTimer = 0;
}
// Parse the command parameters for either:
// - a short address starting with "0x", example: 0x1234
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
// - a number 0..99, the index number in ZigbeeStatus
// - a friendly name, between quotes, example: "Room_Temp"
2020-12-08 18:21:32 +00:00
//
// In case the device is not found, the parsed 0x.... short address is passed to *parsed_shortaddr
Z_Device & Z_Devices::parseDeviceFromName(const char * param, uint16_t * parsed_shortaddr) {
2020-11-01 18:00:07 +00:00
if (nullptr == param) { return device_unk; }
size_t param_len = strlen(param);
char dataBuf[param_len + 1];
strcpy(dataBuf, param);
RemoveSpace(dataBuf);
2020-12-08 18:21:32 +00:00
if (parsed_shortaddr != nullptr) { *parsed_shortaddr = BAD_SHORTADDR; } // if it goes wrong, mark as bad
2020-11-01 18:00:07 +00:00
if ((dataBuf[0] >= '0') && (dataBuf[0] <= '9') && (strlen(dataBuf) < 4)) {
// simple number 0..99
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
2020-11-01 18:00:07 +00:00
return isKnownIndexDevice(XdrvMailbox.payload - 1);
} else {
return device_unk;
}
} else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) {
// starts with 0x
if (strlen(dataBuf) < 18) {
// expect a short address
2020-11-01 18:00:07 +00:00
uint16_t shortaddr = strtoull(dataBuf, nullptr, 0);
2020-12-08 18:21:32 +00:00
if (parsed_shortaddr != nullptr) { *parsed_shortaddr = shortaddr; } // return the parsed shortaddr even if the device doesn't exist
return (Z_Device&) findShortAddr(shortaddr); // if not found, it reverts to the unknown_device with address BAD_SHORTADDR
} else {
// expect a long address
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
2020-11-01 18:00:07 +00:00
return isKnownLongAddrDevice(longaddr);
}
} else {
// expect a Friendly Name
2020-11-01 18:00:07 +00:00
return isKnownFriendlyNameDevice(dataBuf);
}
}
/*********************************************************************************************\
*
* Methods below build a JSON representation of device data
* Used by: ZbLight, ZbStatus, ZbInfo
*
\*********************************************************************************************/
// Add "Device":"0x1234","Name":"FrienflyName"
void Z_Device::jsonAddDeviceNamme(Z_attribute_list & attr_list) const {
const char * fname = friendlyName;
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
2020-12-08 18:21:32 +00:00
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_DEVICE)).setHex32(shortaddr);
if (fname) {
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_NAME)).setStr(fname);
}
}
2020-11-30 18:25:05 +00:00
// Add "IEEEAddr":"0x1234567812345678"
void Z_Device::jsonAddIEEE(Z_attribute_list & attr_list) const {
2020-12-08 18:21:32 +00:00
attr_list.addAttributePMEM(PSTR("IEEEAddr")).setHex64(longaddr);
}
// Add "ModelId":"","Manufacturer":""
void Z_Device::jsonAddModelManuf(Z_attribute_list & attr_list) const {
if (modelId) {
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR(D_JSON_MODEL D_JSON_ID)).setStr(modelId);
}
if (manufacturerId) {
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("Manufacturer")).setStr(manufacturerId);
}
}
2020-11-30 18:25:05 +00:00
// Add "Endpoints":[...]
void Z_Device::jsonAddEndpoints(Z_attribute_list & attr_list) const {
JsonGeneratorArray arr_ep;
for (uint32_t i = 0; i < endpoints_max; i++) {
uint8_t endpoint = endpoints[i];
if (0x00 == endpoint) { break; }
arr_ep.add(endpoint);
}
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("Endpoints")).setStrRaw(arr_ep.toString().c_str());
}
// Add "Config":["",""...]
void Z_Device::jsonAddConfig(Z_attribute_list & attr_list) const {
JsonGeneratorArray arr_data;
for (auto & data_elt : data) {
char key[8];
if (data_elt.validConfig()) {
snprintf_P(key, sizeof(key), "?%02X.%1X", data_elt.getEndpoint(), data_elt.getConfig());
} else {
snprintf_P(key, sizeof(key), "?%02X", data_elt.getEndpoint());
}
key[0] = Z_Data::DataTypeToChar(data_elt.getType());
arr_data.addStr(key);
}
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("Config")).setStrRaw(arr_data.toString().c_str());
}
// Add All data attributes
void Z_Device::jsonAddDataAttributes(Z_attribute_list & attr_list) const {
// show internal data - mostly last known values
for (auto & data_elt : data) {
data_elt.toAttributes(attr_list);
}
}
// Add "BatteryPercentage", "LastSeen", "LastSeenEpoch", "LinkQuality"
void Z_Device::jsonAddDeviceAttributes(Z_attribute_list & attr_list) const {
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("Reachable")).setBool(getReachable());
if (validBatteryPercent()) { attr_list.addAttributePMEM(PSTR("BatteryPercentage")).setUInt(batterypercent); }
if (validLastSeen()) {
if (Rtc.utc_time >= last_seen) {
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("LastSeen")).setUInt(Rtc.utc_time - last_seen);
}
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("LastSeenEpoch")).setUInt(last_seen);
}
2020-11-30 18:25:05 +00:00
if (validLqi()) { attr_list.addAttributePMEM(PSTR(D_CMND_ZIGBEE_LINKQUALITY)).setUInt(lqi); }
}
// Display the tracked status for a light
void Z_Device::jsonLightState(Z_attribute_list & attr_list) const {
if (valid()) {
// dump all known values
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("Reachable")).setBool(getReachable());
if (validPower()) { attr_list.addAttributePMEM(PSTR("Power")).setUInt(getPower()); }
int32_t light_mode = -1;
const Z_Data_Light & light = data.find<Z_Data_Light>(0);
2020-10-09 18:10:36 +01:00
if (&light != nullptr) {
if (light.validConfig()) {
light_mode = light.getConfig();
}
light.toAttributes(attr_list);
2020-10-09 18:10:36 +01:00
// Exception, we need to convert Hue to 0..360 instead of 0..254
if (light.validHue()) {
attr_list.findOrCreateAttribute(PSTR("Hue")).setUInt(light.getHue());
}
}
2020-11-30 18:25:05 +00:00
attr_list.addAttributePMEM(PSTR("Light")).setInt(light_mode);
}
}
// Dump the internal memory of Zigbee devices - does not include "Device" and "Name"
// Mode = 1: simple dump of devices addresses
// Mode = 2: simple dump of devices addresses and names, endpoints, light
// Mode = 3: dump last known data attributes
// String Z_Device::dumpSingleDevice(uint32_t dump_mode, bool add_device_name, bool add_brackets) const {
void Z_Device::jsonDumpSingleDevice(Z_attribute_list & attr_list, uint32_t dump_mode, bool add_name) const {
if (add_name) {
jsonAddDeviceNamme(attr_list);
2020-11-01 18:00:07 +00:00
}
if (dump_mode >= 2) {
jsonAddIEEE(attr_list);
jsonAddModelManuf(attr_list);
jsonAddEndpoints(attr_list);
jsonAddConfig(attr_list);
2020-11-01 18:00:07 +00:00
}
if (dump_mode >= 3) {
jsonAddDataAttributes(attr_list);
// add device wide attributes
jsonAddDeviceAttributes(attr_list);
}
2020-11-01 18:00:07 +00:00
}
2020-10-28 09:08:15 +00:00
2020-12-08 18:21:32 +00:00
// Dump coordinator specific data
String Z_Devices::dumpCoordinator(void) const {
Z_attribute_list attr_list;
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_DEVICE)).setHex32(localShortAddr);
attr_list.addAttributePMEM(PSTR("IEEEAddr")).setHex64(localIEEEAddr);
attr_list.addAttributePMEM(PSTR("TotalDevices")).setUInt(zigbee_devices.devicesSize());
return attr_list.toString();
}
2020-11-01 18:00:07 +00:00
// If &device == nullptr, then dump all
String Z_Devices::dumpDevice(uint32_t dump_mode, const Z_Device & device) const {
JsonGeneratorArray json_arr;
if (&device == nullptr) {
if (dump_mode < 2) {
// dump light mode for all devices
for (const auto & device2 : _devices) {
Z_attribute_list attr_list;
device2.jsonDumpSingleDevice(attr_list, dump_mode, true);
json_arr.addStrRaw(attr_list.toString(true).c_str());
2020-10-28 09:08:15 +00:00
}
}
2020-11-01 18:00:07 +00:00
} else {
Z_attribute_list attr_list;
device.jsonDumpSingleDevice(attr_list, dump_mode, true);
json_arr.addStrRaw(attr_list.toString(true).c_str());
}
2020-11-01 18:00:07 +00:00
return json_arr.toString();
}
// Restore a single device configuration based on json export
// Input: json element as expported by `ZbStatus2``
// Mandatory attribue: `Device`
//
// Returns:
// 0 : Ok
// <0 : Error
//
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
int32_t Z_Devices::deviceRestore(JsonParserObject json) {
// params
2020-10-28 09:08:15 +00:00
uint16_t shortaddr = 0x0000; // 0x0000 is coordinator so considered invalid
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
const char * modelid = nullptr;
const char * manufid = nullptr;
const char * friendlyname = nullptr;
// read mandatory "Device"
JsonParserToken val_device = json[PSTR("Device")];
if (val_device) {
2020-10-28 09:08:15 +00:00
shortaddr = (uint32_t) val_device.getUInt(shortaddr);
} else {
return -1; // missing "Device" attribute
}
ieeeaddr = json.getULong(PSTR("IEEEAddr"), ieeeaddr); // read "IEEEAddr" 64 bits in format "0x0000000000000000"
friendlyname = json.getStr(PSTR("Name"), nullptr); // read "Name"
modelid = json.getStr(PSTR("ModelId"), nullptr);
manufid = json.getStr(PSTR("Manufacturer"), nullptr);
// update internal device information
2020-10-28 09:08:15 +00:00
updateDevice(shortaddr, ieeeaddr);
2020-10-31 18:51:17 +00:00
Z_Device & device = getShortAddr(shortaddr);
if (modelid) { device.setModelId(modelid); }
if (manufid) { device.setManufId(manufid); }
if (friendlyname) { device.setFriendlyName(friendlyname); }
// read "Endpoints"
JsonParserToken val_endpoints = json[PSTR("Endpoints")];
if (val_endpoints.isArray()) {
JsonParserArray arr_ep = JsonParserArray(val_endpoints);
2020-10-31 18:51:17 +00:00
device.clearEndpoints(); // clear even if array is empty
for (auto ep_elt : arr_ep) {
uint8_t ep = ep_elt.getUInt();
2020-10-31 18:51:17 +00:00
if (ep) { device.addEndpoint(ep); }
2020-10-28 09:08:15 +00:00
}
}
// read "Config"
JsonParserToken val_config = json[PSTR("Config")];
if (val_config.isArray()) {
JsonParserArray arr_config = JsonParserArray(val_config);
device.data.reset(); // remove existing configuration
for (auto config_elt : arr_config) {
const char * conf_str = config_elt.getStr();
Z_Data_Type data_type;
uint8_t ep = 0;
uint8_t config = 0xF; // default = no config
2020-10-28 09:08:15 +00:00
if (Z_Data::ConfigToZData(conf_str, &data_type, &ep, &config)) {
Z_Data & data = device.data.getByType(data_type, ep);
if (&data != nullptr) {
data.setConfig(config);
}
} else {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Ignoring config '%s'"), conf_str);
2020-10-28 09:08:15 +00:00
}
}
}
return 0;
}
Z_Data_Light & Z_Devices::getLight(uint16_t shortaddr) {
return getShortAddr(shortaddr).data.get<Z_Data_Light>();
}
bool Z_Devices::isTuyaProtocol(uint16_t shortaddr, uint8_t ep) const {
const Z_Device & device = findShortAddr(shortaddr);
if (device.valid()) {
const Z_Data_Mode & mode = device.data.getConst<Z_Data_Mode>(ep);
if (&mode != nullptr) {
return mode.isTuyaProtocol();
}
}
return false;
}
/*********************************************************************************************\
* Device specific data handlers
\*********************************************************************************************/
void Z_Device::setPower(bool power_on, uint8_t ep) {
data.get<Z_Data_OnOff>(ep).setPower(power_on);
}
bool Z_Device::validPower(uint8_t ep) const {
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
return (&onoff != nullptr);
}
bool Z_Device::getPower(uint8_t ep) const {
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
if (&onoff != nullptr) return onoff.getPower();
return false;
}
#endif // USE_ZIGBEE