Tasmota/sonoff/xsns_17_senseair.ino

362 lines
12 KiB
Arduino
Raw Normal View History

/*
xsns_17_senseair_s8.ino - SenseAir S8 CO2 sensor support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SENSEAIR
/*********************************************************************************************\
* SenseAir S8 - CO2 sensor
*
* Adapted from EspEasy plugin P052 by Mikael Trieb (mikael__AT__triebconsulting.se)
**********************************************************************************************
* Filter usage
*
* Select filter usage on low stability readings
\*********************************************************************************************/
#define SENSEAIR_BAUDRATE 9600
const char kSenseairTypes[] PROGMEM = "Kx0|S8";
uint8_t senseair_type = 1;
char senseair_types[7];
uint16_t senseair_co2 = 0;
float senseair_temperature = 0;
float senseair_humidity = 0;
Ticker senseair_ticker;
/*********************************************************************************************\
* Subset SoftwareSerial
\*********************************************************************************************/
#define SENSEAIR_SERIAL_BUFFER_SIZE 20
#define SENSEAIR_SERIAL_WAIT { while (ESP.getCycleCount() -start < wait) optimistic_yield(1); wait += senseair_serial_bit_time; }
uint8_t senseair_serial_rx_pin;
uint8_t senseair_serial_tx_pin;
uint8_t senseair_serial_in_pos = 0;
uint8_t senseair_serial_out_pos = 0;
uint8_t senseair_serial_buffer[SENSEAIR_SERIAL_BUFFER_SIZE];
unsigned long senseair_serial_bit_time;
unsigned long senseair_serial_bit_time_start;
bool SenseairSerialValidGpioPin(uint8_t pin) {
return (pin >= 0 && pin <= 5) || (pin >= 9 && pin <= 10) || (pin >= 12 && pin <= 15);
}
bool SenseairSerial(uint8_t receive_pin, uint8_t transmit_pin)
{
if (!((SenseairSerialValidGpioPin(receive_pin)) && (SenseairSerialValidGpioPin(transmit_pin) || transmit_pin == 16))) {
return false;
}
senseair_serial_rx_pin = receive_pin;
pinMode(senseair_serial_rx_pin, INPUT);
attachInterrupt(senseair_serial_rx_pin, SenseairSerialRxRead, FALLING);
senseair_serial_tx_pin = transmit_pin;
pinMode(senseair_serial_tx_pin, OUTPUT);
digitalWrite(senseair_serial_tx_pin, 1);
senseair_serial_bit_time = ESP.getCpuFreqMHz() *1000000 /SENSEAIR_BAUDRATE; // 8333
senseair_serial_bit_time_start = senseair_serial_bit_time + senseair_serial_bit_time /3 -500; // 10610 ICACHE_RAM_ATTR start delay
// senseair_serial_bit_time_start = senseair_serial_bit_time; // Non ICACHE_RAM_ATTR start delay (experimental)
return true;
}
int SenseairSerialRead() {
if (senseair_serial_in_pos == senseair_serial_out_pos) {
return -1;
}
int ch = senseair_serial_buffer[senseair_serial_out_pos];
senseair_serial_out_pos = (senseair_serial_out_pos +1) % SENSEAIR_SERIAL_BUFFER_SIZE;
return ch;
}
int SenseairSerialAvailable() {
int avail = senseair_serial_in_pos - senseair_serial_out_pos;
if (avail < 0) {
avail += SENSEAIR_SERIAL_BUFFER_SIZE;
}
return avail;
}
void SenseairSerialFlush()
{
senseair_serial_in_pos = 0;
senseair_serial_out_pos = 0;
}
size_t SenseairSerialTxWrite(uint8_t b)
{
unsigned long wait = senseair_serial_bit_time;
digitalWrite(senseair_serial_tx_pin, HIGH);
unsigned long start = ESP.getCycleCount();
// Start bit;
digitalWrite(senseair_serial_tx_pin, LOW);
SENSEAIR_SERIAL_WAIT;
for (int i = 0; i < 8; i++) {
digitalWrite(senseair_serial_tx_pin, (b & 1) ? HIGH : LOW);
SENSEAIR_SERIAL_WAIT;
b >>= 1;
}
// Stop bit
digitalWrite(senseair_serial_tx_pin, HIGH);
SENSEAIR_SERIAL_WAIT;
return 1;
}
size_t SenseairSerialWrite(const uint8_t *buffer, size_t size = 1) {
size_t n = 0;
while(size--) {
n += SenseairSerialTxWrite(*buffer++);
}
return n;
}
//void SenseairSerialRxRead() ICACHE_RAM_ATTR; // Add 215 bytes to iram usage
void SenseairSerialRxRead() {
// Advance the starting point for the samples but compensate for the
// initial delay which occurs before the interrupt is delivered
unsigned long wait = senseair_serial_bit_time_start;
unsigned long start = ESP.getCycleCount();
uint8_t rec = 0;
for (int i = 0; i < 8; i++) {
SENSEAIR_SERIAL_WAIT;
rec >>= 1;
if (digitalRead(senseair_serial_rx_pin)) {
rec |= 0x80;
}
}
// Stop bit
SENSEAIR_SERIAL_WAIT;
// Store the received value in the buffer unless we have an overflow
int next = (senseair_serial_in_pos +1) % SENSEAIR_SERIAL_BUFFER_SIZE;
if (next != senseair_serial_out_pos) {
senseair_serial_buffer[senseair_serial_in_pos] = rec;
senseair_serial_in_pos = next;
}
// Must clear this bit in the interrupt register,
// it gets set even when interrupts are disabled
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << senseair_serial_rx_pin);
}
/*********************************************************************************************/
void ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count)
{
uint8_t frame[8];
frame[0] = 0xFE; // Any Address
frame[1] = function_code;
frame[2] = (uint8_t)(start_address >> 8);
frame[3] = (uint8_t)(start_address);
frame[4] = (uint8_t)(register_count >> 8);
frame[5] = (uint8_t)(register_count);
uint16_t crc = 0xFFFF;
for (uint8_t pos = 0; pos < sizeof(frame) -2; pos++) {
crc ^= (uint16_t)frame[pos]; // XOR byte into least sig. byte of crc
for (uint8_t i = 8; i != 0; i--) { // Loop over each bit
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
}
else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
frame[7] = (uint8_t)((crc >> 8) & 0xFF);
frame[6] = (uint8_t)(crc & 0xFF);
SenseairSerialFlush();
SenseairSerialWrite(frame, sizeof(frame));
}
bool ModbusReceiveReady()
{
return (SenseairSerialAvailable() >= 5); // 5 - Error frame, 7 - Ok frame
}
uint8_t ModbusReceive(uint16_t *value)
{
uint8_t buffer[7];
uint8_t len = 0;
while (SenseairSerialAvailable() > 0) {
buffer[len++] = (uint8_t)SenseairSerialRead();
if (3 == len) {
if (buffer[1] & 0x80) { // fe 84 02 f2 f1
return buffer[2]; // 1 = Illegal Function, 2 = Illegal Data Address, 3 = Illegal Data Value
}
}
}
if (len != sizeof(buffer)) {
return 9; // 9 = Unexpected result
}
*value = (buffer[3] << 8) | buffer[4];
return 0; // 0 = No error
}
/*********************************************************************************************/
const uint8_t start_addresses[] { 0x1A, 0x00, 0x03, 0x04, 0x05, 0x1C, 0x0A };
uint8_t senseair_read_state = 0;
uint8_t senseair_send_retry = 0;
void SenseairTicker()
{
uint16_t value = 0;
bool data_ready = ModbusReceiveReady();
if (data_ready) {
uint8_t error = ModbusReceive(&value);
if (error) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir response error %d"), error);
AddLog(LOG_LEVEL_DEBUG);
} else {
switch(senseair_read_state) {
case 0: // 0x1A (26) READ_TYPE_LOW - S8: fe 04 02 01 77 ec 92
senseair_type = 2;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir type id low %04X"), value);
AddLog(LOG_LEVEL_DEBUG);
break;
case 1: // 0x00 (0) READ_ERRORLOG - fe 04 02 00 00 ad 24
if (value) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir error %04X"), value);
AddLog(LOG_LEVEL_DEBUG);
}
break;
case 2: // 0x03 (3) READ_CO2 - fe 04 02 06 2c af 59
senseair_co2 = value;
break;
case 3: // 0x04 (4) READ_TEMPERATURE - S8: fe 84 02 f2 f1 - Illegal Data Address
senseair_temperature = ConvertTemp((float)value / 100);
break;
case 4: // 0x05 (5) READ_HUMIDITY - S8: fe 84 02 f2 f1 - Illegal Data Address
senseair_humidity = (float)value / 100;
break;
case 5: // 0x1C (28) READ_RELAY_STATE - S8: fe 04 02 01 54 ad 4b - firmware version
{
bool relay_state = value >> 8 & 1;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir relay state %d"), relay_state);
AddLog(LOG_LEVEL_DEBUG);
break;
}
case 6: // 0x0A (10) READ_TEMP_ADJUSTMENT - S8: fe 84 02 f2 f1 - Illegal Data Address
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir temp adjustment %d"), value);
AddLog(LOG_LEVEL_DEBUG);
break;
}
}
senseair_read_state++;
if (2 == senseair_type) { // S8
if (3 == senseair_read_state) {
senseair_read_state = 1;
}
} else { // K30, K70
if (sizeof(start_addresses) == senseair_read_state) {
senseair_read_state = 1;
}
}
}
if (0 == senseair_send_retry || data_ready) {
senseair_send_retry = 5;
ModbusSend(0x04, (uint16_t)start_addresses[senseair_read_state], 1);
} else {
senseair_send_retry--;
}
}
/*********************************************************************************************/
void SenseairInit()
{
senseair_type = 0;
if ((pin[GPIO_SAIR_RX] < 99) && (pin[GPIO_SAIR_TX] < 99)) {
if (SenseairSerial(pin[GPIO_SAIR_RX], pin[GPIO_SAIR_TX])) {
senseair_type = 1;
senseair_ticker.attach_ms(510, SenseairTicker);
}
}
}
void SenseairShow(boolean json)
{
char temperature[10];
char humidity[10];
dtostrfd(senseair_temperature, Settings.flag2.temperature_resolution, temperature);
dtostrfd(senseair_humidity, Settings.flag2.temperature_resolution, humidity);
GetTextIndexed(senseair_types, sizeof(senseair_types), senseair_type -1, kSenseairTypes);
// uint8_t co2_limit = (senseair_co2 > 1200) ? 3 : (senseair_co2 > 800) ? 2 : 1;
// uint16_t co2_limit = senseair_co2 / 400; // <800 = 1(Green), <1200 = 2(Orange), >1200 = 3(Red)
if (json) {
// snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_LIMIT "\":%d"), mqtt_data, senseair_types, senseair_co2, co2_limit);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d"), mqtt_data, senseair_types, senseair_co2);
if (senseair_type != 2) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_TEMPERATURE "\":%s,\"" D_HUMIDITY "\":%s"), mqtt_data, temperature, humidity);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_AIRQUALITY, senseair_co2);
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, senseair_types, senseair_co2);
if (senseair_type != 2) {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, senseair_types, temperature, TempUnit());
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, senseair_types, humidity);
}
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_17
boolean Xsns17(byte function)
{
boolean result = false;
if (senseair_type) {
switch (function) {
case FUNC_XSNS_INIT:
SenseairInit();
break;
case FUNC_XSNS_JSON_APPEND:
SenseairShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_XSNS_WEB_APPEND:
SenseairShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_SENSEAIR