2018-11-06 16:33:51 +00:00
/*
2019-10-27 10:13:24 +00:00
xsns_02_analog . ino - ESP8266 ADC support for Tasmota
2018-11-06 16:33:51 +00:00
2019-12-31 13:23:34 +00:00
Copyright ( C ) 2020 Theo Arends
2018-11-06 16:33:51 +00:00
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2019-05-16 17:43:23 +01:00
# define XSNS_02 2
2019-04-11 15:59:48 +01:00
# define TO_CELSIUS(x) ((x) - 273.15)
# define TO_KELVIN(x) ((x) + 273.15)
2019-05-16 17:43:23 +01:00
// Parameters for equation
# define ANALOG_V33 3.3 // ESP8266 Analog voltage
# define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
// Shelly 2.5 NTC Thermistor
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
// |
// ADC0
2019-05-24 11:28:09 +01:00
# define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
# define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
# define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
2019-05-16 17:43:23 +01:00
// LDR parameters
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
// |
// ADC0
2019-05-24 11:28:09 +01:00
# define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
2019-05-16 17:43:23 +01:00
# define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
2019-05-24 11:28:09 +01:00
# define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
2018-11-06 16:33:51 +00:00
2019-12-30 15:42:53 +00:00
// CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd
// |
// CT+ CT-
// |
// ADC0
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
# define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
# define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1
# define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
# define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
struct {
float temperature = 0 ;
float current = 0 ;
float energy = 0 ;
uint32_t previous_millis = 0 ;
uint16_t last_value = 0 ;
} Adc ;
2018-11-06 16:33:51 +00:00
2019-05-24 11:28:09 +01:00
void AdcInit ( void )
{
if ( ( Settings . adc_param_type ! = my_adc0 ) | | ( Settings . adc_param1 > 1000000 ) | | ( Settings . adc_param1 < 100 ) ) {
if ( ADC0_TEMP = = my_adc0 ) {
// Default Shelly 2.5 and 1PM parameters
Settings . adc_param_type = ADC0_TEMP ;
Settings . adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE ;
Settings . adc_param2 = ANALOG_NTC_RESISTANCE ;
Settings . adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000 ;
}
else if ( ADC0_LIGHT = = my_adc0 ) {
Settings . adc_param_type = ADC0_LIGHT ;
Settings . adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE ;
Settings . adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR ;
Settings . adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000 ;
}
2019-12-24 01:22:29 +00:00
else if ( ADC0_MOIST = = my_adc0 ) {
Settings . adc_param_type = ADC0_MOIST ;
Settings . adc_param1 = 0 ;
Settings . adc_param2 = 1023 ;
Settings . adc_param3 = 0 ;
}
2019-12-30 15:42:53 +00:00
else if ( ADC0_CT_POWER = = my_adc0 ) {
Settings . adc_param_type = ADC0_CT_POWER ;
Settings . adc_param1 = ANALOG_CT_FLAGS ; //(uint32_t) 0
Settings . adc_param2 = ANALOG_CT_MULTIPLIER ; //(uint32_t) 100000
Settings . adc_param3 = ANALOG_CT_VOLTAGE ; //(int) 10
}
2019-05-24 11:28:09 +01:00
}
}
2019-04-12 10:01:37 +01:00
uint16_t AdcRead ( uint8_t factor )
2018-11-06 16:33:51 +00:00
{
2019-04-12 10:01:37 +01:00
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 < < factor ;
2018-11-06 16:33:51 +00:00
uint16_t analog = 0 ;
2019-06-30 15:44:36 +01:00
for ( uint32_t i = 0 ; i < samples ; i + + ) {
2018-11-06 16:33:51 +00:00
analog + = analogRead ( A0 ) ;
delay ( 1 ) ;
}
2019-04-12 10:01:37 +01:00
analog > > = factor ;
2018-11-06 16:33:51 +00:00
return analog ;
}
# ifdef USE_RULES
2018-11-14 13:32:09 +00:00
void AdcEvery250ms ( void )
2018-11-06 16:33:51 +00:00
{
2019-05-13 14:56:01 +01:00
if ( ADC0_INPUT = = my_adc0 ) {
2019-04-12 10:01:37 +01:00
uint16_t new_value = AdcRead ( 5 ) ;
2019-12-30 15:42:53 +00:00
if ( ( new_value < Adc . last_value - 10 ) | | ( new_value > Adc . last_value + 10 ) ) {
Adc . last_value = new_value ;
uint16_t value = Adc . last_value / 10 ;
2019-04-11 15:59:48 +01:00
Response_P ( PSTR ( " { \" ANALOG \" :{ \" A0div10 \" :%d}} " ) , ( value > 99 ) ? 100 : value ) ;
XdrvRulesProcess ( ) ;
}
2018-11-06 16:33:51 +00:00
}
}
# endif // USE_RULES
2019-11-20 19:53:12 +00:00
uint16_t AdcGetLux ( void )
2019-05-16 17:43:23 +01:00
{
int adc = AdcRead ( 2 ) ;
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
double resistorVoltage = ( ( double ) adc / 1023 ) * ANALOG_V33 ;
double ldrVoltage = ANALOG_V33 - resistorVoltage ;
2019-05-24 11:28:09 +01:00
double ldrResistance = ldrVoltage / resistorVoltage * ( double ) Settings . adc_param1 ;
double ldrLux = ( double ) Settings . adc_param2 * FastPrecisePow ( ldrResistance , ( double ) Settings . adc_param3 / 10000 ) ;
2019-05-16 17:43:23 +01:00
return ( uint16_t ) ldrLux ;
}
2019-12-24 01:22:29 +00:00
uint16_t AdcGetMoist ( void )
2019-12-30 15:42:53 +00:00
{
// formula for calibration: value, fromLow, fromHigh, toHigh, toLow
// Example: 632, 0, 1023, 100, 0
// int( ( ( (<param2> - <analogue-value>) / ( <param2> - <param1> ) ) * ( <param3> - <param4> ) ) + <param4> )
// double amoist = ((Settings.adc_param2 - (double)adc) / (Settings.adc_param2 - Settings.adc_param1) * 100;
// int((((1023 - <analog-reading>) / ( 1023 - 0 )) * ( 100 - 0 )) + 0 )
int adc = AdcRead ( 2 ) ;
double amoist = ( ( double ) Settings . adc_param2 - ( double ) adc ) / ( ( double ) Settings . adc_param2 - ( double ) Settings . adc_param1 ) * 100 ;
//double amoist = ((1023 - (double)adc) / 1023) * 100;
return ( uint16_t ) amoist ;
}
2019-12-24 01:22:29 +00:00
2019-12-30 15:42:53 +00:00
void AdcGetCurrentPower ( uint8_t factor )
2019-12-24 01:22:29 +00:00
{
2019-12-30 15:42:53 +00:00
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 < < factor ;
uint16_t analog = 0 ;
uint16_t analog_min = 1023 ;
uint16_t analog_max = 0 ;
for ( uint32_t i = 0 ; i < samples ; i + + ) {
analog = analogRead ( A0 ) ;
if ( analog < analog_min ) {
analog_min = analog ;
}
if ( analog > analog_max ) {
analog_max = analog ;
}
delay ( 1 ) ;
}
Adc . current = ( float ) ( analog_max - analog_min ) * ( ( float ) ( Settings . adc_param2 ) / 100000 ) ;
float power = Adc . current * ( float ) ( Settings . adc_param3 ) / 10 ;
uint32_t current_millis = millis ( ) ;
Adc . energy = Adc . energy + ( ( power * ( current_millis - Adc . previous_millis ) ) / 3600000000 ) ;
Adc . previous_millis = current_millis ;
2019-12-24 01:22:29 +00:00
}
2019-04-18 10:07:38 +01:00
void AdcEverySecond ( void )
{
2019-05-13 14:56:01 +01:00
if ( ADC0_TEMP = = my_adc0 ) {
2019-04-18 10:07:38 +01:00
int adc = AdcRead ( 2 ) ;
// Steinhart-Hart equation for thermistor as temperature sensor
2019-05-24 11:28:09 +01:00
double Rt = ( adc * Settings . adc_param1 ) / ( 1024.0 * ANALOG_V33 - ( double ) adc ) ;
double BC = ( double ) Settings . adc_param3 / 10000 ;
double T = BC / ( BC / ANALOG_T0 + TaylorLog ( Rt / ( double ) Settings . adc_param2 ) ) ;
2019-12-30 15:42:53 +00:00
Adc . temperature = ConvertTemp ( TO_CELSIUS ( T ) ) ;
}
else if ( ADC0_CT_POWER = = my_adc0 ) {
AdcGetCurrentPower ( 5 ) ;
2019-04-18 10:07:38 +01:00
}
}
2019-01-28 13:08:33 +00:00
void AdcShow ( bool json )
2019-12-24 11:20:04 +00:00
{
2019-05-13 14:56:01 +01:00
if ( ADC0_INPUT = = my_adc0 ) {
2019-04-12 10:01:37 +01:00
uint16_t analog = AdcRead ( 5 ) ;
2018-11-06 16:33:51 +00:00
2019-04-11 15:59:48 +01:00
if ( json ) {
ResponseAppend_P ( PSTR ( " , \" ANALOG \" :{ \" A0 \" :%d} " ) , analog ) ;
2018-11-06 16:33:51 +00:00
# ifdef USE_WEBSERVER
2019-04-11 15:59:48 +01:00
} else {
WSContentSend_PD ( HTTP_SNS_ANALOG , " " , 0 , analog ) ;
2018-11-06 16:33:51 +00:00
# endif // USE_WEBSERVER
2019-04-11 15:59:48 +01:00
}
}
2019-12-30 15:42:53 +00:00
2019-05-14 16:46:40 +01:00
else if ( ADC0_TEMP = = my_adc0 ) {
2019-04-11 15:59:48 +01:00
char temperature [ 33 ] ;
2019-12-30 15:42:53 +00:00
dtostrfd ( Adc . temperature , Settings . flag2 . temperature_resolution , temperature ) ;
2019-04-11 15:59:48 +01:00
if ( json ) {
ResponseAppend_P ( JSON_SNS_TEMP , " ANALOG " , temperature ) ;
# ifdef USE_DOMOTICZ
if ( 0 = = tele_period ) {
DomoticzSensor ( DZ_TEMP , temperature ) ;
}
# endif // USE_DOMOTICZ
# ifdef USE_KNX
if ( 0 = = tele_period ) {
2019-12-30 15:42:53 +00:00
KnxSensor ( KNX_TEMPERATURE , Adc . temperature ) ;
2019-04-11 15:59:48 +01:00
}
# endif // USE_KNX
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_TEMP , " " , temperature , TempUnit ( ) ) ;
2019-05-16 17:43:23 +01:00
# endif // USE_WEBSERVER
}
}
2019-12-30 15:42:53 +00:00
2019-05-16 17:43:23 +01:00
else if ( ADC0_LIGHT = = my_adc0 ) {
uint16_t adc_light = AdcGetLux ( ) ;
if ( json ) {
ResponseAppend_P ( JSON_SNS_ILLUMINANCE , " ANALOG " , adc_light ) ;
# ifdef USE_DOMOTICZ
if ( 0 = = tele_period ) {
DomoticzSensor ( DZ_ILLUMINANCE , adc_light ) ;
}
# endif // USE_DOMOTICZ
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_ILLUMINANCE , " " , adc_light ) ;
2019-04-11 15:59:48 +01:00
# endif // USE_WEBSERVER
}
2018-11-06 16:33:51 +00:00
}
2019-12-30 15:42:53 +00:00
2019-12-24 01:22:29 +00:00
else if ( ADC0_MOIST = = my_adc0 ) {
uint16_t adc_moist = AdcGetMoist ( ) ;
2019-12-24 11:20:04 +00:00
2019-12-24 01:22:29 +00:00
if ( json ) {
ResponseAppend_P ( JSON_SNS_MOISTURE , " ANALOG " , adc_moist ) ;
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_MOISTURE , " " , adc_moist ) ;
# endif // USE_WEBSERVER
}
2019-12-24 11:20:04 +00:00
}
2019-12-30 15:42:53 +00:00
else if ( ADC0_CT_POWER = = my_adc0 ) {
AdcGetCurrentPower ( 5 ) ;
float voltage = ( float ) ( Settings . adc_param3 ) / 10 ;
char voltage_chr [ FLOATSZ ] ;
dtostrfd ( voltage , Settings . flag2 . voltage_resolution , voltage_chr ) ;
char current_chr [ FLOATSZ ] ;
dtostrfd ( Adc . current , Settings . flag2 . current_resolution , current_chr ) ;
char power_chr [ FLOATSZ ] ;
dtostrfd ( voltage * Adc . current , Settings . flag2 . wattage_resolution , power_chr ) ;
char energy_chr [ FLOATSZ ] ;
dtostrfd ( Adc . energy , Settings . flag2 . energy_resolution , energy_chr ) ;
if ( json ) {
ResponseAppend_P ( PSTR ( " , \" ANALOG \" :{ \" " D_JSON_ENERGY " \" :%s, \" " D_JSON_POWERUSAGE " \" :%s, \" " D_JSON_VOLTAGE " \" :%s, \" " D_JSON_CURRENT " \" :%s} " ) ,
energy_chr , power_chr , voltage_chr , current_chr ) ;
# ifdef USE_DOMOTICZ
if ( 0 = = tele_period ) {
DomoticzSensor ( DZ_POWER_ENERGY , power_chr ) ;
DomoticzSensor ( DZ_VOLTAGE , voltage_chr ) ;
DomoticzSensor ( DZ_CURRENT , current_chr ) ;
}
# endif // USE_DOMOTICZ
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_VOLTAGE , voltage_chr ) ;
WSContentSend_PD ( HTTP_SNS_CURRENT , current_chr ) ;
WSContentSend_PD ( HTTP_SNS_POWER , power_chr ) ;
WSContentSend_PD ( HTTP_SNS_ENERGY_TOTAL , energy_chr ) ;
# endif // USE_WEBSERVER
}
}
2018-11-06 16:33:51 +00:00
}
2019-07-26 09:43:30 +01:00
/*********************************************************************************************\
* Commands
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2019-08-11 17:12:18 +01:00
const char kAdcCommands [ ] PROGMEM = " | " // No prefix
D_CMND_ADC " | " D_CMND_ADCS " | " D_CMND_ADCPARAM ;
2019-07-26 09:43:30 +01:00
2019-11-24 11:24:35 +00:00
void ( * const AdcCommand [ ] ) ( void ) PROGMEM = {
& CmndAdc , & CmndAdcs , & CmndAdcParam } ;
2019-08-11 14:18:11 +01:00
void CmndAdc ( void )
2019-07-26 09:43:30 +01:00
{
2019-08-11 14:18:11 +01:00
if ( ValidAdc ( ) & & ( XdrvMailbox . payload > = 0 ) & & ( XdrvMailbox . payload < ADC0_END ) ) {
Settings . my_adc0 = XdrvMailbox . payload ;
restart_flag = 2 ;
2019-07-26 09:43:30 +01:00
}
2019-08-11 14:18:11 +01:00
char stemp1 [ TOPSZ ] ;
2019-09-12 13:19:44 +01:00
Response_P ( PSTR ( " { \" " D_CMND_ADC " 0 \" :{ \" %d \" : \" %s \" }} " ) , Settings . my_adc0 , GetTextIndexed ( stemp1 , sizeof ( stemp1 ) , Settings . my_adc0 , kAdc0Names ) ) ;
2019-08-11 14:18:11 +01:00
}
void CmndAdcs ( void )
{
2019-09-12 13:19:44 +01:00
Response_P ( PSTR ( " { \" " D_CMND_ADCS " \" :{ " ) ) ;
2019-08-11 14:18:11 +01:00
bool jsflg = false ;
char stemp1 [ TOPSZ ] ;
for ( uint32_t i = 0 ; i < ADC0_END ; i + + ) {
if ( jsflg ) {
ResponseAppend_P ( PSTR ( " , " ) ) ;
2019-07-26 09:43:30 +01:00
}
2019-08-11 14:18:11 +01:00
jsflg = true ;
2019-09-12 13:19:44 +01:00
ResponseAppend_P ( PSTR ( " \" %d \" : \" %s \" " ) , i , GetTextIndexed ( stemp1 , sizeof ( stemp1 ) , i , kAdc0Names ) ) ;
2019-07-26 09:43:30 +01:00
}
2019-09-12 13:19:44 +01:00
ResponseJsonEndEnd ( ) ;
2019-08-11 14:18:11 +01:00
}
void CmndAdcParam ( void )
{
if ( XdrvMailbox . data_len ) {
2019-12-30 15:42:53 +00:00
if ( ( ADC0_TEMP = = XdrvMailbox . payload ) | |
( ADC0_LIGHT = = XdrvMailbox . payload ) | |
( ADC0_MOIST = = XdrvMailbox . payload ) | |
( ADC0_CT_POWER = = XdrvMailbox . payload ) ) {
2019-08-11 14:18:11 +01:00
if ( strstr ( XdrvMailbox . data , " , " ) ! = nullptr ) { // Process parameter entry
char sub_string [ XdrvMailbox . data_len + 1 ] ;
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
Settings . adc_param_type = XdrvMailbox . payload ;
Settings . adc_param1 = strtol ( subStr ( sub_string , XdrvMailbox . data , " , " , 2 ) , nullptr , 10 ) ;
Settings . adc_param2 = strtol ( subStr ( sub_string , XdrvMailbox . data , " , " , 3 ) , nullptr , 10 ) ;
2019-12-24 01:22:29 +00:00
if ( ! ADC0_MOIST = = XdrvMailbox . payload ) {
Settings . adc_param3 = ( int ) ( CharToFloat ( subStr ( sub_string , XdrvMailbox . data , " , " , 4 ) ) * 10000 ) ;
}
2019-12-30 15:42:53 +00:00
if ( ADC0_CT_POWER = = XdrvMailbox . payload ) {
if ( ( Settings . adc_param1 & CT_FLAG_ENERGY_RESET ) > 0 ) {
Adc . energy = 0 ;
Settings . adc_param1 ^ = CT_FLAG_ENERGY_RESET ; // Cancel energy reset flag
}
}
2019-08-11 14:18:11 +01:00
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
2019-12-24 01:22:29 +00:00
// AdcParam 6
2019-12-30 15:42:53 +00:00
// AdcParam 7
2019-08-11 14:18:11 +01:00
Settings . adc_param_type = 0 ;
AdcInit ( ) ;
2019-07-26 09:43:30 +01:00
}
}
}
2019-08-11 14:18:11 +01:00
// AdcParam
2019-12-30 15:42:53 +00:00
Response_P ( PSTR ( " { \" " D_CMND_ADCPARAM " \" :[%d,%d,%d " ) , Settings . adc_param_type , Settings . adc_param1 , Settings . adc_param2 ) ;
if ( ADC0_MOIST ! = my_adc0 ) {
int value = Settings . adc_param3 ;
uint8_t precision ;
for ( precision = 4 ; precision > 0 ; precision - - ) {
if ( value % 10 ) { break ; }
value / = 10 ;
}
char param3 [ 33 ] ;
dtostrfd ( ( ( double ) Settings . adc_param3 ) / 10000 , precision , param3 ) ;
ResponseAppend_P ( PSTR ( " ,%s " ) , param3 ) ;
2019-12-24 11:20:04 +00:00
}
2019-12-30 15:42:53 +00:00
ResponseAppend_P ( PSTR ( " ]} " ) ) ;
2019-07-26 09:43:30 +01:00
}
2018-11-06 16:33:51 +00:00
/*********************************************************************************************\
* Interface
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2019-01-28 13:08:33 +00:00
bool Xsns02 ( uint8_t function )
2018-11-06 16:33:51 +00:00
{
2019-01-28 13:08:33 +00:00
bool result = false ;
2018-11-06 16:33:51 +00:00
2019-07-26 09:43:30 +01:00
switch ( function ) {
case FUNC_COMMAND :
2019-08-11 14:18:11 +01:00
result = DecodeCommand ( kAdcCommands , AdcCommand ) ;
2019-07-26 09:43:30 +01:00
break ;
default :
2019-12-30 15:42:53 +00:00
if ( ( ADC0_INPUT = = my_adc0 ) | |
( ADC0_TEMP = = my_adc0 ) | |
( ADC0_LIGHT = = my_adc0 ) | |
( ADC0_MOIST = = my_adc0 ) | |
( ADC0_CT_POWER = = my_adc0 ) ) {
2019-07-26 09:43:30 +01:00
switch ( function ) {
2018-11-06 16:33:51 +00:00
# ifdef USE_RULES
2019-07-26 09:43:30 +01:00
case FUNC_EVERY_250_MSECOND :
AdcEvery250ms ( ) ;
break ;
2018-11-06 16:33:51 +00:00
# endif // USE_RULES
2019-07-26 09:43:30 +01:00
case FUNC_EVERY_SECOND :
AdcEverySecond ( ) ;
break ;
case FUNC_INIT :
AdcInit ( ) ;
break ;
case FUNC_JSON_APPEND :
AdcShow ( 1 ) ;
break ;
2018-11-06 16:33:51 +00:00
# ifdef USE_WEBSERVER
2019-07-26 09:43:30 +01:00
case FUNC_WEB_SENSOR :
AdcShow ( 0 ) ;
break ;
2018-11-06 16:33:51 +00:00
# endif // USE_WEBSERVER
2019-07-26 09:43:30 +01:00
}
}
2018-11-06 16:33:51 +00:00
}
return result ;
}
# endif // USE_ADC_VCC