Tasmota/tasmota/xdrv_23_zigbee_9_impl.ino

1123 lines
44 KiB
Arduino
Raw Normal View History

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
2019-12-31 13:23:34 +00:00
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#define XDRV_23 23
const uint32_t ZIGBEE_BUFFER_SIZE = 256; // Max ZNP frame is SOF+LEN+CMD1+CMD2+250+FCS = 255
const uint8_t ZIGBEE_SOF = 0xFE;
const uint8_t ZIGBEE_SOF_ALT = 0xFF;
#include <TasmotaSerial.h>
TasmotaSerial *ZigbeeSerial = nullptr;
const char kZbCommands[] PROGMEM = D_PRFX_ZB "|" // prefix
D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN "|"
D_CMND_ZIGBEE_STATUS "|" D_CMND_ZIGBEE_RESET "|" D_CMND_ZIGBEE_SEND "|"
D_CMND_ZIGBEE_PROBE "|" D_CMND_ZIGBEE_READ "|" D_CMND_ZIGBEEZNPRECEIVE "|"
2020-03-01 10:25:59 +00:00
D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|"
2020-03-26 19:58:59 +00:00
D_CMND_ZIGBEE_BIND "|" D_CMND_ZIGBEE_UNBIND "|" D_CMND_ZIGBEE_PING "|" D_CMND_ZIGBEE_MODELID "|"
D_CMND_ZIGBEE_LIGHT "|" D_CMND_ZIGBEE_RESTORE "|" D_CMND_ZIGBEE_BIND_STATE "|"
D_CMND_ZIGBEE_CONFIG
2020-03-01 10:25:59 +00:00
;
void (* const ZigbeeCommand[])(void) PROGMEM = {
&CmndZbZNPSend, &CmndZbPermitJoin,
&CmndZbStatus, &CmndZbReset, &CmndZbSend,
&CmndZbProbe, &CmndZbRead, &CmndZbZNPReceive,
2020-03-01 10:25:59 +00:00
&CmndZbForget, &CmndZbSave, &CmndZbName,
2020-03-26 19:58:59 +00:00
&CmndZbBind, &CmndZbUnbind, &CmndZbPing, &CmndZbModelId,
&CmndZbLight, &CmndZbRestore, &CmndZbBindState,
&CmndZbConfig,
};
//
// Called at event loop, checks for incoming data from the CC2530
//
void ZigbeeInputLoop(void)
{
static uint32_t zigbee_polling_window = 0;
static uint8_t fcs = ZIGBEE_SOF;
static uint32_t zigbee_frame_len = 5; // minimal zigbee frame lenght, will be updated when buf[1] is read
// Receive only valid ZNP frames:
// 00 - SOF = 0xFE
// 01 - Length of Data Field - 0..250
// 02 - CMD1 - first byte of command
// 03 - CMD2 - second byte of command
// 04..FD - Data Field
// FE (or last) - FCS Checksum
while (ZigbeeSerial->available()) {
yield();
uint8_t zigbee_in_byte = ZigbeeSerial->read();
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZbInput byte=%d len=%d"), zigbee_in_byte, zigbee_buffer->len());
if (0 == zigbee_buffer->len()) { // make sure all variables are correctly initialized
zigbee_frame_len = 5;
fcs = ZIGBEE_SOF;
// there is a rare race condition when an interrupt occurs when receiving the first byte
// in this case the first bit (lsb) is missed and Tasmota receives 0xFF instead of 0xFE
// We forgive this mistake, and next bytes are automatically resynchronized
if (ZIGBEE_SOF_ALT == zigbee_in_byte) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbInput forgiven first byte %02X (only for statistics)"), zigbee_in_byte);
zigbee_in_byte = ZIGBEE_SOF;
}
}
if ((0 == zigbee_buffer->len()) && (ZIGBEE_SOF != zigbee_in_byte)) {
// waiting for SOF (Start Of Frame) byte, discard anything else
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbInput discarding byte %02X"), zigbee_in_byte);
continue; // discard
}
if (zigbee_buffer->len() < zigbee_frame_len) {
zigbee_buffer->add8(zigbee_in_byte);
zigbee_polling_window = millis(); // Wait for more data
fcs ^= zigbee_in_byte;
}
if (zigbee_buffer->len() >= zigbee_frame_len) {
zigbee_polling_window = 0; // Publish now
break;
}
// recalculate frame length
if (02 == zigbee_buffer->len()) {
// We just received the Lenght byte
uint8_t len_byte = zigbee_buffer->get8(1);
if (len_byte > 250) len_byte = 250; // ZNP spec says len is 250 max
zigbee_frame_len = len_byte + 5; // SOF + LEN + CMD1 + CMD2 + FCS = 5 bytes overhead
}
}
if (zigbee_buffer->len() && (millis() > (zigbee_polling_window + ZIGBEE_POLLING))) {
char hex_char[(zigbee_buffer->len() * 2) + 2];
ToHex_P((unsigned char*)zigbee_buffer->getBuffer(), zigbee_buffer->len(), hex_char, sizeof(hex_char));
2019-11-17 11:51:27 +00:00
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Bytes follow_read_metric = %0d"), ZigbeeSerial->getLoopReadMetric());
// buffer received, now check integrity
if (zigbee_buffer->len() != zigbee_frame_len) {
// Len is not correct, log and reject frame
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received frame of wrong size %s, len %d, expected %d"), hex_char, zigbee_buffer->len(), zigbee_frame_len);
} else if (0x00 != fcs) {
// FCS is wrong, packet is corrupt, log and reject frame
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received bad FCS frame %s, %d"), hex_char, fcs);
} else {
// frame is correct
2019-11-17 11:51:27 +00:00
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received correct frame %s"), hex_char);
SBuffer znp_buffer = zigbee_buffer->subBuffer(2, zigbee_frame_len - 3); // remove SOF, LEN and FCS
ToHex_P((unsigned char*)znp_buffer.getBuffer(), znp_buffer.len(), hex_char, sizeof(hex_char));
Response_P(PSTR("{\"" D_JSON_ZIGBEEZNPRECEIVED "\":\"%s\"}"), hex_char);
if (Settings.flag3.tuya_serial_mqtt_publish) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
} else {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), mqtt_data);
}
// now process the message
ZigbeeProcessInput(znp_buffer);
}
zigbee_buffer->setLen(0); // empty buffer
}
}
/********************************************************************************************/
// Initialize internal structures
void ZigbeeInit(void)
{
2020-05-17 17:33:42 +01:00
// Check if settings in Flash are set
if (0 == Settings.zb_channel) {
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Initializing Zigbee parameters from defaults"));
Settings.zb_ext_panid = USE_ZIGBEE_EXTPANID;
Settings.zb_precfgkey_l = USE_ZIGBEE_PRECFGKEY_L;
Settings.zb_precfgkey_h = USE_ZIGBEE_PRECFGKEY_H;
Settings.zb_pan_id = USE_ZIGBEE_PANID;
Settings.zb_channel = USE_ZIGBEE_CHANNEL;
Settings.zb_free_byte = 0;
}
// update commands with the current settings
Z_UpdateConfig(Settings.zb_channel, Settings.zb_pan_id, Settings.zb_ext_panid, Settings.zb_precfgkey_l, Settings.zb_precfgkey_h);
2020-04-22 15:07:52 +01:00
// AddLog_P2(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem1 = %d"), ESP_getFreeHeap());
zigbee.active = false;
2020-04-27 11:54:07 +01:00
if (PinUsed(GPIO_ZIGBEE_RX) && PinUsed(GPIO_ZIGBEE_TX)) {
2020-04-26 16:33:27 +01:00
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "GPIOs Rx:%d Tx:%d"), Pin(GPIO_ZIGBEE_RX), Pin(GPIO_ZIGBEE_TX));
// if seriallog_level is 0, we allow GPIO 13/15 to switch to Hardware Serial
2020-04-26 16:33:27 +01:00
ZigbeeSerial = new TasmotaSerial(Pin(GPIO_ZIGBEE_RX), Pin(GPIO_ZIGBEE_TX), seriallog_level ? 1 : 2, 0, 256); // set a receive buffer of 256 bytes
ZigbeeSerial->begin(115200);
if (ZigbeeSerial->hardwareSerial()) {
ClaimSerial();
uint32_t aligned_buffer = ((uint32_t)serial_in_buffer + 3) & ~3;
zigbee_buffer = new PreAllocatedSBuffer(sizeof(serial_in_buffer) - 3, (char*) aligned_buffer);
} else {
2020-04-22 15:07:52 +01:00
// AddLog_P2(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem2 = %d"), ESP_getFreeHeap());
zigbee_buffer = new SBuffer(ZIGBEE_BUFFER_SIZE);
2020-04-22 15:07:52 +01:00
// AddLog_P2(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem3 = %d"), ESP_getFreeHeap());
}
zigbee.active = true;
zigbee.init_phase = true; // start the state machine
zigbee.state_machine = true; // start the state machine
ZigbeeSerial->flush();
}
2020-04-22 15:07:52 +01:00
// AddLog_P2(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem9 = %d"), ESP_getFreeHeap());
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
2019-12-12 21:22:34 +00:00
uint32_t strToUInt(const JsonVariant &val) {
// if the string starts with 0x, it is considered Hex, otherwise it is an int
if (val.is<unsigned int>()) {
return val.as<unsigned int>();
} else {
2019-12-12 21:22:34 +00:00
if (val.is<const char*>()) {
String sval = val.as<String>();
return strtoull(sval.c_str(), nullptr, 0);
}
}
return 0; // couldn't parse anything
}
// Do a factory reset of the CC2530
const unsigned char ZIGBEE_FACTORY_RESET[] PROGMEM =
{ Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 /* len */, 0x01 /* STARTOPT_CLEAR_CONFIG */};
//"2605030101"; // Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 len, 0x01 STARTOPT_CLEAR_CONFIG
void CmndZbReset(void) {
if (ZigbeeSerial) {
switch (XdrvMailbox.payload) {
case 1:
ZigbeeZNPSend(ZIGBEE_FACTORY_RESET, sizeof(ZIGBEE_FACTORY_RESET));
eraseZigbeeDevices();
restart_flag = 2;
2020-03-16 17:55:58 +00:00
ResponseCmndChar_P(PSTR(D_JSON_ZIGBEE_CC2530 " " D_JSON_RESET_AND_RESTARTING));
break;
default:
2020-03-16 17:55:58 +00:00
ResponseCmndChar_P(PSTR(D_JSON_ONE_TO_RESET));
}
}
}
//
// Same code for `ZbZNPSend` and `ZbZNPReceive`
// building the complete message (intro, length)
//
void CmndZbZNPSendOrReceive(bool send)
{
if (ZigbeeSerial && (XdrvMailbox.data_len > 0)) {
uint8_t code;
char *codes = RemoveSpace(XdrvMailbox.data);
int32_t size = strlen(XdrvMailbox.data);
SBuffer buf((size+1)/2);
2019-10-15 07:27:32 +01:00
while (size > 1) {
char stemp[3];
strlcpy(stemp, codes, sizeof(stemp));
code = strtol(stemp, nullptr, 16);
buf.add8(code);
size -= 2;
codes += 2;
}
if (send) {
// Command was `ZbZNPSend`
ZigbeeZNPSend(buf.getBuffer(), buf.len());
} else {
// Command was `ZbZNPReceive`
ZigbeeProcessInput(buf);
}
}
ResponseCmndDone();
}
// For debug purposes only, simulates a message received
void CmndZbZNPReceive(void)
{
CmndZbZNPSendOrReceive(false);
}
void CmndZbZNPSend(void)
{
CmndZbZNPSendOrReceive(true);
}
void ZigbeeZNPSend(const uint8_t *msg, size_t len) {
if ((len < 2) || (len > 252)) {
// abort, message cannot be less than 2 bytes for CMD1 and CMD2
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_JSON_ZIGBEEZNPSENT ": bad message len %d"), len);
return;
}
uint8_t data_len = len - 2; // removing CMD1 and CMD2
if (ZigbeeSerial) {
uint8_t fcs = data_len;
ZigbeeSerial->write(ZIGBEE_SOF); // 0xFE
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend SOF %02X"), ZIGBEE_SOF);
ZigbeeSerial->write(data_len);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend LEN %02X"), data_len);
for (uint32_t i = 0; i < len; i++) {
uint8_t b = pgm_read_byte(msg + i);
ZigbeeSerial->write(b);
fcs ^= b;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend byt %02X"), b);
}
ZigbeeSerial->write(fcs); // finally send fcs checksum byte
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend FCS %02X"), fcs);
}
// Now send a MQTT message to report the sent message
char hex_char[(len * 2) + 2];
2019-11-17 11:51:27 +00:00
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZNPSENT " %s"),
ToHex_P(msg, len, hex_char, sizeof(hex_char)));
}
//
// Internal function, send the low-level frame
// Input:
// - shortaddr: 16-bits short address, or 0x0000 if group address
// - groupaddr: 16-bits group address, or 0x0000 if unicast using shortaddr
// - clusterIf: 16-bits cluster number
// - endpoint: 8-bits target endpoint (source is always 0x01), unused for group addresses. Should not be 0x00 except when sending to group address.
// - cmdId: 8-bits ZCL command number
// - clusterSpecific: boolean, is the message general cluster or cluster specific, used to create the FC byte of ZCL
// - msg: pointer to byte array, payload of ZCL message (len is following), ignored if nullptr
// - len: length of the 'msg' payload
// - needResponse: boolean, true = we ask the target to respond, false = the target should not respond
// - transacId: 8-bits, transation id of message (should be incremented at each message), used both for Zigbee message number and ZCL message number
// Returns: None
//
void ZigbeeZCLSend_Raw(uint16_t shortaddr, uint16_t groupaddr, uint16_t clusterId, uint8_t endpoint, uint8_t cmdId, bool clusterSpecific, uint16_t manuf, const uint8_t *msg, size_t len, bool needResponse, uint8_t transacId) {
2020-04-22 15:07:52 +01:00
2020-03-14 13:17:30 +00:00
SBuffer buf(32+len);
buf.add8(Z_SREQ | Z_AF); // 24
buf.add8(AF_DATA_REQUEST_EXT); // 02
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { // if no shortaddr we assume group address
2020-03-14 13:17:30 +00:00
buf.add8(Z_Addr_Group); // 01
buf.add64(groupaddr); // group address, only 2 LSB, upper 6 MSB are discarded
buf.add8(0xFF); // dest endpoint is not used for group addresses
} else {
buf.add8(Z_Addr_ShortAddress); // 02
buf.add64(shortaddr); // dest address, only 2 LSB, upper 6 MSB are discarded
buf.add8(endpoint); // dest endpoint
}
buf.add16(0x0000); // dest Pan ID, 0x0000 = intra-pan
buf.add8(0x01); // source endpoint
buf.add16(clusterId);
2020-03-14 13:17:30 +00:00
buf.add8(transacId); // transacId
buf.add8(0x30); // 30 options
buf.add8(0x1E); // 1E radius
buf.add16(3 + len + (manuf ? 2 : 0));
buf.add8((needResponse ? 0x00 : 0x10) | (clusterSpecific ? 0x01 : 0x00) | (manuf ? 0x04 : 0x00)); // Frame Control Field
if (manuf) {
buf.add16(manuf); // add Manuf Id if not null
}
2020-03-14 13:17:30 +00:00
buf.add8(transacId); // Transaction Sequance Number
buf.add8(cmdId);
if (len > 0) {
2020-03-14 13:17:30 +00:00
buf.addBuffer(msg, len); // add the payload
}
ZigbeeZNPSend(buf.getBuffer(), buf.len());
}
/********************************************************************************************/
2020-04-22 15:07:52 +01:00
//
// High-level function
// Send a command specified as an HEX string for the workload.
// The target endpoint is computed if zero, i.e. sent to the first known endpoint of the device.
// If cluster-specific, a timer may be set calling `zigbeeSetCommandTimer()`, for ex to coalesce attributes or Aqara presence sensor
//
// Inputs:
// - shortaddr: 16-bits short address, or 0x0000 if group address
// - groupaddr: 16-bits group address, or 0x0000 if unicast using shortaddr
// - endpoint: 8-bits target endpoint (source is always 0x01), if 0x00, it will be guessed from ZbStatus information (basically the first endpoint of the device)
// - clusterSpecific: boolean, is the message general cluster or cluster specific, used to create the FC byte of ZCL
// - clusterIf: 16-bits cluster number
// - param: pointer to HEX string for payload, should not be nullptr
// Returns: None
//
void zigbeeZCLSendStr(uint16_t shortaddr, uint16_t groupaddr, uint8_t endpoint, bool clusterSpecific, uint16_t manuf,
uint16_t cluster, uint8_t cmd, const char *param) {
size_t size = param ? strlen(param) : 0;
SBuffer buf((size+2)/2); // actual bytes buffer for data
if (param) {
while (*param) {
uint8_t code = parseHex_P(&param, 2);
buf.add8(code);
}
}
2020-05-17 17:33:42 +01:00
if ((0 == endpoint) && (BAD_SHORTADDR != shortaddr)) {
2020-03-14 13:17:30 +00:00
// endpoint is not specified, let's try to find it from shortAddr, unless it's a group address
endpoint = zigbee_devices.findFirstEndpoint(shortaddr);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: guessing endpoint 0x%02X"), endpoint);
}
2020-03-14 13:17:30 +00:00
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: shortaddr 0x%04X, groupaddr 0x%04X, cluster 0x%04X, endpoint 0x%02X, cmd 0x%02X, data %s"),
shortaddr, groupaddr, cluster, endpoint, cmd, param);
2020-05-17 17:33:42 +01:00
if ((0 == endpoint) && (BAD_SHORTADDR != shortaddr)) { // endpoint null is ok for group address
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbSend: unspecified endpoint"));
return;
}
// everything is good, we can send the command
ZigbeeZCLSend_Raw(shortaddr, groupaddr, cluster, endpoint, cmd, clusterSpecific, manuf, buf.getBuffer(), buf.len(), true, zigbee_devices.getNextSeqNumber(shortaddr));
// now set the timer, if any, to read back the state later
if (clusterSpecific) {
2020-03-14 13:17:30 +00:00
zigbeeSetCommandTimer(shortaddr, groupaddr, cluster, endpoint);
}
}
//
// Command `ZbSend`
//
void CmndZbSend(void) {
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":1} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"3"} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"0xFF"} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":null} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":false} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":true} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"true"} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"ShutterClose":null} }
// ZbSend { "devicse":"0x1234", "endpoint":"0x03", "send":{"Power":1} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Color":"1,2"} }
// ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Color":"0x1122,0xFFEE"} }
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
DynamicJsonBuffer jsonBuf;
const JsonObject &json = jsonBuf.parseObject((const char*) XdrvMailbox.data);
2020-03-16 17:55:58 +00:00
if (!json.success()) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; }
// params
static char delim[] = ", "; // delimiters for parameters
2020-05-17 17:33:42 +01:00
uint16_t device = BAD_SHORTADDR; // 0x0000 is local, so considered invalid
uint16_t groupaddr = 0x0000; // group address
uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint
uint16_t manuf = 0x0000; // Manuf Id in ZCL frame
// Command elements
uint16_t cluster = 0;
uint8_t cmd = 0;
String cmd_str = ""; // the actual low-level command, either specified or computed
2020-03-14 13:17:30 +00:00
const char *cmd_s; // pointer to payload string
bool clusterSpecific = true;
// parse JSON
const JsonVariant &val_device = GetCaseInsensitive(json, PSTR("Device"));
if (nullptr != &val_device) {
device = zigbee_devices.parseDeviceParam(val_device.as<char*>());
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == device) { ResponseCmndChar_P(PSTR("Invalid parameter")); return; }
}
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == device) { // if not found, check if we have a group
const JsonVariant &val_group = GetCaseInsensitive(json, PSTR("Group"));
if (nullptr != &val_group) {
groupaddr = strToUInt(val_group);
} else { // no device nor group
ResponseCmndChar_P(PSTR("Unknown device"));
return;
2020-03-14 13:17:30 +00:00
}
}
const JsonVariant &val_endpoint = GetCaseInsensitive(json, PSTR("Endpoint"));
if (nullptr != &val_endpoint) { endpoint = strToUInt(val_endpoint); }
const JsonVariant &val_manuf = GetCaseInsensitive(json, PSTR("Manuf"));
if (nullptr != &val_manuf) { manuf = strToUInt(val_manuf); }
const JsonVariant &val_cmd = GetCaseInsensitive(json, PSTR("Send"));
if (nullptr != &val_cmd) {
// probe the type of the argument
// If JSON object, it's high level commands
// If String, it's a low level command
if (val_cmd.is<JsonObject>()) {
// we have a high-level command
const JsonObject &cmd_obj = val_cmd.as<const JsonObject&>();
int32_t cmd_size = cmd_obj.size();
if (cmd_size > 1) {
Response_P(PSTR("Only 1 command allowed (%d)"), cmd_size);
return;
} else if (1 == cmd_size) {
// We have exactly 1 command, parse it
JsonObject::const_iterator it = cmd_obj.begin(); // just get the first key/value
String key = it->key;
const JsonVariant& value = it->value;
uint32_t x = 0, y = 0, z = 0;
uint16_t cmd_var;
const __FlashStringHelper* tasmota_cmd = zigbeeFindCommand(key.c_str(), &cluster, &cmd_var);
if (tasmota_cmd) {
cmd_str = tasmota_cmd;
} else {
Response_P(PSTR("Unrecognized zigbee command: %s"), key.c_str());
return;
}
// parse the JSON value, depending on its type fill in x,y,z
if (value.is<bool>()) {
x = value.as<bool>() ? 1 : 0;
} else if (value.is<unsigned int>()) {
x = value.as<unsigned int>();
} else {
// if non-bool or non-int, trying char*
const char *s_const = value.as<const char*>();
if (s_const != nullptr) {
char s[strlen(s_const)+1];
strcpy(s, s_const);
if ((nullptr != s) && (0x00 != *s)) { // ignore any null or empty string, could represent 'null' json value
char *sval = strtok(s, delim);
if (sval) {
x = ZigbeeAliasOrNumber(sval);
sval = strtok(nullptr, delim);
if (sval) {
y = ZigbeeAliasOrNumber(sval);
sval = strtok(nullptr, delim);
if (sval) {
z = ZigbeeAliasOrNumber(sval);
}
}
}
}
}
}
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_template = %s"), cmd_str.c_str());
if (0xFF == cmd_var) { // if command number is a variable, replace it with x
cmd = x;
x = y; // and shift other variables
y = z;
} else {
cmd = cmd_var; // or simply copy the cmd number
}
cmd_str = zigbeeCmdAddParams(cmd_str.c_str(), x, y, z); // fill in parameters
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_final = %s"), cmd_str.c_str());
2020-03-14 13:17:30 +00:00
cmd_s = cmd_str.c_str();
} else {
// we have zero command, pass through until last error for missing command
}
} else if (val_cmd.is<const char*>()) {
// low-level command
cmd_str = val_cmd.as<String>();
2020-03-14 13:17:30 +00:00
// Now parse the string to extract cluster, command, and payload
// Parse 'cmd' in the form "AAAA_BB/CCCCCCCC" or "AAAA!BB/CCCCCCCC"
// where AA is the cluster number, BBBB the command number, CCCC... the payload
// First delimiter is '_' for a global command, or '!' for a cluster specific command
const char * data = cmd_str.c_str();
cluster = parseHex(&data, 4);
// delimiter
if (('_' == *data) || ('!' == *data)) {
if ('_' == *data) { clusterSpecific = false; }
data++;
} else {
2020-03-16 17:55:58 +00:00
ResponseCmndChar_P(PSTR("Wrong delimiter for payload"));
2020-03-14 13:17:30 +00:00
return;
}
// parse cmd number
cmd = parseHex(&data, 2);
// move to end of payload
// delimiter is optional
if ('/' == *data) { data++; } // skip delimiter
cmd_s = data;
} else {
// we have an unsupported command type, just ignore it and fallback to missing command
}
2020-03-14 13:17:30 +00:00
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZigbeeZCLSend device: 0x%04X, group: 0x%04X, endpoint:%d, cluster:0x%04X, cmd:0x%02X, send:\"%s\""),
device, groupaddr, endpoint, cluster, cmd, cmd_s);
zigbeeZCLSendStr(device, groupaddr, endpoint, clusterSpecific, manuf, cluster, cmd, cmd_s);
2020-03-14 13:17:30 +00:00
ResponseCmndDone();
} else {
Response_P(PSTR("Missing zigbee 'Send'"));
return;
}
}
//
// Command `ZbBind`
//
2020-03-26 19:58:59 +00:00
void ZbBindUnbind(bool unbind) { // false = bind, true = unbind
// ZbBind {"Device":"<device>", "Endpoint":<endpoint>, "Cluster":<cluster>, "ToDevice":"<to_device>", "ToEndpoint":<to_endpoint>, "ToGroup":<to_group> }
2020-03-26 19:58:59 +00:00
// ZbUnbind {"Device":"<device>", "Endpoint":<endpoint>, "Cluster":<cluster>, "ToDevice":"<to_device>", "ToEndpoint":<to_endpoint>, "ToGroup":<to_group> }
// local endpoint is always 1, IEEE addresses are calculated
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
DynamicJsonBuffer jsonBuf;
const JsonObject &json = jsonBuf.parseObject((const char*) XdrvMailbox.data);
2020-03-16 17:55:58 +00:00
if (!json.success()) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; }
// params
// static char delim[] = ", "; // delimiters for parameters
2020-05-17 17:33:42 +01:00
uint16_t srcDevice = BAD_SHORTADDR; // BAD_SHORTADDR is broadcast, so considered invalid
uint16_t dstDevice = BAD_SHORTADDR; // BAD_SHORTADDR is broadcast, so considered invalid
2020-03-01 10:25:59 +00:00
uint64_t dstLongAddr = 0;
uint8_t endpoint = 0x00; // 0x00 is invalid for the src endpoint
uint8_t toendpoint = 0x00; // 0x00 is invalid for the dst endpoint
uint16_t toGroup = 0x0000; // group address
uint16_t cluster = 0; // 0xFFFF is invalid
uint32_t group = 0xFFFFFFFF; // 16 bits values, otherwise 0xFFFFFFFF is unspecified
2020-03-01 10:25:59 +00:00
// Information about source device: "Device", "Endpoint", "Cluster"
// - the source endpoint must have a known IEEE address
const JsonVariant &val_device = GetCaseInsensitive(json, PSTR("Device"));
if (nullptr != &val_device) {
2020-03-01 10:25:59 +00:00
srcDevice = zigbee_devices.parseDeviceParam(val_device.as<char*>());
}
2020-05-17 17:33:42 +01:00
if ((nullptr == &val_device) || (BAD_SHORTADDR == srcDevice)) { ResponseCmndChar_P(PSTR("Unknown source device")); return; }
2020-03-01 10:25:59 +00:00
// check if IEEE address is known
uint64_t srcLongAddr = zigbee_devices.getDeviceLongAddr(srcDevice);
2020-03-16 17:55:58 +00:00
if (0 == srcLongAddr) { ResponseCmndChar_P(PSTR("Unknown source IEEE address")); return; }
2020-03-01 10:25:59 +00:00
// look for source endpoint
const JsonVariant &val_endpoint = GetCaseInsensitive(json, PSTR("Endpoint"));
if (nullptr != &val_endpoint) { endpoint = strToUInt(val_endpoint); }
2020-03-01 10:25:59 +00:00
// look for source cluster
const JsonVariant &val_cluster = GetCaseInsensitive(json, PSTR("Cluster"));
if (nullptr != &val_cluster) { cluster = strToUInt(val_cluster); }
2020-03-01 10:25:59 +00:00
// Either Device address
// In this case the following parameters are mandatory
// - "ToDevice" and the device must have a known IEEE address
// - "ToEndpoint"
const JsonVariant &dst_device = GetCaseInsensitive(json, PSTR("ToDevice"));
2020-03-01 10:25:59 +00:00
if (nullptr != &dst_device) {
dstDevice = zigbee_devices.parseDeviceParam(dst_device.as<char*>());
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == dstDevice) { ResponseCmndChar_P(PSTR("Invalid parameter")); return; }
2020-03-01 10:25:59 +00:00
if (0x0000 == dstDevice) {
dstLongAddr = localIEEEAddr;
} else {
dstLongAddr = zigbee_devices.getDeviceLongAddr(dstDevice);
}
2020-03-16 17:55:58 +00:00
if (0 == dstLongAddr) { ResponseCmndChar_P(PSTR("Unknown dest IEEE address")); return; }
2020-03-01 10:25:59 +00:00
const JsonVariant &val_toendpoint = GetCaseInsensitive(json, PSTR("ToEndpoint"));
2020-03-01 10:25:59 +00:00
if (nullptr != &val_toendpoint) { toendpoint = strToUInt(val_endpoint); } else { toendpoint = endpoint; }
}
// Or Group Address - we don't need a dstEndpoint in this case
const JsonVariant &to_group = GetCaseInsensitive(json, PSTR("ToGroup"));
2020-03-01 10:25:59 +00:00
if (nullptr != &to_group) { toGroup = strToUInt(to_group); }
// make sure we don't have conflicting parameters
2020-05-17 17:33:42 +01:00
if (&to_group && dstLongAddr) { ResponseCmndChar_P(PSTR("Cannot have both \"ToDevice\" and \"ToGroup\"")); return; }
if (!&to_group && !dstLongAddr) { ResponseCmndChar_P(PSTR("Missing \"ToDevice\" or \"ToGroup\"")); return; }
2020-03-14 13:17:30 +00:00
SBuffer buf(34);
buf.add8(Z_SREQ | Z_ZDO);
2020-03-26 19:58:59 +00:00
if (unbind) {
buf.add8(ZDO_UNBIND_REQ);
} else {
buf.add8(ZDO_BIND_REQ);
}
2020-03-01 10:25:59 +00:00
buf.add16(srcDevice);
buf.add64(srcLongAddr);
buf.add8(endpoint);
buf.add16(cluster);
2020-03-01 10:25:59 +00:00
if (dstLongAddr) {
buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT
buf.add64(dstLongAddr);
buf.add8(toendpoint);
} else {
buf.add8(Z_Addr_Group); // DstAddrMode - 0x01 = GROUP_ADDRESS
buf.add16(toGroup);
}
ZigbeeZNPSend(buf.getBuffer(), buf.len());
ResponseCmndDone();
}
2020-03-26 19:58:59 +00:00
//
// Command ZbBind
//
void CmndZbBind(void) {
ZbBindUnbind(false);
}
//
// Command ZbBind
//
void CmndZbUnbind(void) {
ZbBindUnbind(true);
}
//
// Command `ZbBindState`
//
void CmndZbBindState(void) {
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
SBuffer buf(10);
buf.add8(Z_SREQ | Z_ZDO); // 25
buf.add8(ZDO_MGMT_BIND_REQ); // 33
buf.add16(shortaddr); // shortaddr
buf.add8(0); // StartIndex = 0
ZigbeeZNPSend(buf.getBuffer(), buf.len());
ResponseCmndDone();
}
// Probe a specific device to get its endpoints and supported clusters
void CmndZbProbe(void) {
CmndZbProbeOrPing(true);
}
//
// Common code for `ZbProbe` and `ZbPing`
//
void CmndZbProbeOrPing(boolean probe) {
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
// everything is good, we can send the command
Z_SendIEEEAddrReq(shortaddr);
if (probe) {
Z_SendActiveEpReq(shortaddr);
}
ResponseCmndDone();
}
// Ping a device, actually a simplified version of ZbProbe
void CmndZbPing(void) {
CmndZbProbeOrPing(false);
}
//
// Command `ZbName`
// Specify, read or erase a Friendly Name
//
void CmndZbName(void) {
// Syntax is:
// ZbName <device_id>,<friendlyname> - assign a friendly name
// ZbName <device_id> - display the current friendly name
// ZbName <device_id>, - remove friendly name
//
// Where <device_id> can be: short_addr, long_addr, device_index, friendly_name
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
// check if parameters contain a comma ','
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
// parse first part, <device_id>
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data, true); // in case of short_addr, it must be already registered
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
if (p == nullptr) {
2020-03-14 13:17:30 +00:00
const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr);
Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), shortaddr, friendlyName ? friendlyName : "");
} else {
zigbee_devices.setFriendlyName(shortaddr, p);
2020-01-19 21:59:02 +00:00
Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), shortaddr, p);
}
}
//
// Command `ZbName`
2020-03-01 10:25:59 +00:00
// Specify, read or erase a ModelId, only for debug purposes
//
2020-03-01 10:25:59 +00:00
void CmndZbModelId(void) {
// Syntax is:
// ZbName <device_id>,<friendlyname> - assign a friendly name
// ZbName <device_id> - display the current friendly name
// ZbName <device_id>, - remove friendly name
2020-03-01 10:25:59 +00:00
//
// Where <device_id> can be: short_addr, long_addr, device_index, friendly_name
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
2020-03-01 10:25:59 +00:00
// check if parameters contain a comma ','
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
// parse first part, <device_id>
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data, true); // in case of short_addr, it must be already registered
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
2020-03-01 10:25:59 +00:00
if (p == nullptr) {
2020-03-14 13:17:30 +00:00
const char * modelId = zigbee_devices.getModelId(shortaddr);
Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_MODELID "\":\"%s\"}}"), shortaddr, modelId ? modelId : "");
2020-03-01 10:25:59 +00:00
} else {
zigbee_devices.setModelId(shortaddr, p);
Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_MODELID "\":\"%s\"}}"), shortaddr, p);
}
}
//
// Command `ZbLight`
2020-03-14 13:17:30 +00:00
// Specify, read or erase a Light type for Hue/Alexa integration
void CmndZbLight(void) {
// Syntax is:
// ZbLight <device_id>,<x> - assign a bulb type 0-5
// ZbLight <device_id> - display the current bulb type and status
//
// Where <device_id> can be: short_addr, long_addr, device_index, friendly_name
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
2020-03-14 13:17:30 +00:00
// check if parameters contain a comma ','
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
// parse first part, <device_id>
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data, true); // in case of short_addr, it must be already registered
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
2020-03-14 13:17:30 +00:00
if (p) {
int8_t bulbtype = strtol(p, nullptr, 10);
2020-03-23 07:25:01 +00:00
if (bulbtype > 5) { bulbtype = 5; }
if (bulbtype < -1) { bulbtype = -1; }
2020-03-14 13:17:30 +00:00
zigbee_devices.setHueBulbtype(shortaddr, bulbtype);
}
String dump = zigbee_devices.dumpLightState(shortaddr);
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_LIGHT "\":%s}"), dump.c_str());
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_LIGHT));
XdrvRulesProcess();
ResponseCmndDone();
}
//
// Command `ZbForget`
// Remove an old Zigbee device from the list of known devices, use ZigbeeStatus to know all registered devices
//
void CmndZbForget(void) {
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
// everything is good, we can send the command
if (zigbee_devices.removeDevice(shortaddr)) {
ResponseCmndDone();
} else {
2020-03-16 17:55:58 +00:00
ResponseCmndChar_P(PSTR("Unknown device"));
}
}
//
// Command `ZbSave`
// Save Zigbee information to flash
//
void CmndZbSave(void) {
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
saveZigbeeDevices();
ResponseCmndDone();
}
// Restore a device configuration previously exported via `ZbStatus2``
// Format:
// Either the entire `ZbStatus3` export, or an array or just the device configuration.
// If array, if can contain multiple devices
// ZbRestore {"ZbStatus3":[{"Device":"0x5ADF","Name":"Petite_Lampe","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}]}
// ZbRestore [{"Device":"0x5ADF","Name":"Petite_Lampe","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}]
// ZbRestore {"Device":"0x5ADF","Name":"Petite_Lampe","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
void CmndZbRestore(void) {
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
DynamicJsonBuffer jsonBuf;
const JsonVariant json_parsed = jsonBuf.parse((const char*) XdrvMailbox.data); // const to force a copy of parameter
const JsonVariant * json = &json_parsed; // root of restore, to be changed if needed
bool success = false;
// check if parsing succeeded
if (json_parsed.is<JsonObject>()) {
success = json_parsed.as<const JsonObject&>().success();
} else if (json_parsed.is<JsonArray>()) {
success = json_parsed.as<const JsonArray&>().success();
}
if (!success) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; }
// Check is root contains `ZbStatus<x>` key, if so change the root
const JsonVariant * zbstatus = &startsWithCaseInsensitive(*json, PSTR("ZbStatus"));
if (nullptr != zbstatus) {
json = zbstatus;
}
// check if the root is an array
if (json->is<JsonArray>()) {
const JsonArray& arr = json->as<const JsonArray&>();
for (auto elt : arr) {
// call restore on each item
int32_t res = zigbee_devices.deviceRestore(elt);
if (res < 0) {
ResponseCmndChar_P(PSTR("Restore failed"));
return;
}
}
} else if (json->is<JsonObject>()) {
int32_t res = zigbee_devices.deviceRestore(*json);
if (res < 0) {
ResponseCmndChar_P(PSTR("Restore failed"));
return;
}
// call restore on a single object
} else {
ResponseCmndChar_P(PSTR("Missing parameters"));
return;
}
ResponseCmndDone();
}
//
// Command `ZbRead`
// Send an attribute read command to a device, specifying cluster and list of attributes
//
void CmndZbRead(void) {
// ZbRead {"Device":"0xF289","Cluster":0,"Endpoint":3,"Attr":5}
// ZbRead {"Device":"0xF289","Cluster":"0x0000","Endpoint":"0x0003","Attr":"0x0005"}
// ZbRead {"Device":"0xF289","Cluster":0,"Endpoint":3,"Attr":[5,6,7,4]}
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
DynamicJsonBuffer jsonBuf;
JsonObject &json = jsonBuf.parseObject((const char*) XdrvMailbox.data);
2020-03-16 17:55:58 +00:00
if (!json.success()) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; }
// params
2020-05-17 17:33:42 +01:00
uint16_t device = BAD_SHORTADDR; // BAD_SHORTADDR is broadcast, so considered invalid
2020-03-14 13:17:30 +00:00
uint16_t groupaddr = 0x0000; // if 0x0000 ignore group adress
uint16_t cluster = 0x0000; // default to general cluster
uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint
uint16_t manuf = 0x0000; // Manuf Id in ZCL frame
size_t attrs_len = 0;
uint8_t* attrs = nullptr; // empty string is valid
const JsonVariant &val_device = GetCaseInsensitive(json, PSTR("Device"));
if (nullptr != &val_device) {
device = zigbee_devices.parseDeviceParam(val_device.as<char*>());
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == device) { ResponseCmndChar_P(PSTR("Invalid parameter")); return; }
}
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == device) { // if not found, check if we have a group
const JsonVariant &val_group = GetCaseInsensitive(json, PSTR("Group"));
if (nullptr != &val_group) {
groupaddr = strToUInt(val_group);
} else { // no device nor group
ResponseCmndChar_P(PSTR("Unknown device"));
return;
2020-03-14 13:17:30 +00:00
}
}
const JsonVariant &val_cluster = GetCaseInsensitive(json, PSTR("Cluster"));
if (nullptr != &val_cluster) { cluster = strToUInt(val_cluster); }
const JsonVariant &val_endpoint = GetCaseInsensitive(json, PSTR("Endpoint"));
if (nullptr != &val_endpoint) { endpoint = strToUInt(val_endpoint); }
const JsonVariant &val_manuf = GetCaseInsensitive(json, PSTR("Manuf"));
if (nullptr != &val_manuf) { manuf = strToUInt(val_manuf); }
const JsonVariant &val_attr = GetCaseInsensitive(json, PSTR("Read"));
if (nullptr != &val_attr) {
2019-12-12 21:22:34 +00:00
uint16_t val = strToUInt(val_attr);
if (val_attr.is<JsonArray>()) {
const JsonArray& attr_arr = val_attr.as<const JsonArray&>();
attrs_len = attr_arr.size() * 2;
attrs = new uint8_t[attrs_len];
uint32_t i = 0;
for (auto value : attr_arr) {
uint16_t val = strToUInt(value);
attrs[i++] = val & 0xFF;
attrs[i++] = val >> 8;
}
} else {
attrs_len = 2;
attrs = new uint8_t[attrs_len];
attrs[0] = val & 0xFF; // little endian
attrs[1] = val >> 8;
}
}
2020-03-14 13:17:30 +00:00
if ((0 == endpoint) && (device)) { // try to compute the endpoint
endpoint = zigbee_devices.findFirstEndpoint(device);
2020-05-17 17:33:42 +01:00
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbRead: guessing endpoint 0x%02X"), endpoint);
}
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == device) {
2020-03-14 13:17:30 +00:00
endpoint = 0xFF; // endpoint not used for group addresses
}
if ((0 != endpoint) && (attrs_len > 0)) {
ZigbeeZCLSend_Raw(device, groupaddr, cluster, endpoint, ZCL_READ_ATTRIBUTES, false, manuf, attrs, attrs_len, true /* we do want a response */, zigbee_devices.getNextSeqNumber(device));
ResponseCmndDone();
} else {
2020-03-16 17:55:58 +00:00
ResponseCmndChar_P(PSTR("Missing parameters"));
}
2019-12-12 21:32:00 +00:00
if (attrs) { delete[] attrs; }
}
//
// Command `ZbPermitJoin`
// Allow or Deny pairing of new Zigbee devices
//
2020-03-14 13:17:30 +00:00
void CmndZbPermitJoin(void) {
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
uint32_t payload = XdrvMailbox.payload;
2020-03-14 13:17:30 +00:00
uint16_t dstAddr = 0xFFFC; // default addr
uint8_t duration = 60; // default 60s
2020-03-14 13:17:30 +00:00
if (payload <= 0) {
duration = 0;
} else if (99 == payload) {
duration = 0xFF; // unlimited time
}
2020-03-14 13:17:30 +00:00
SBuffer buf(34);
buf.add8(Z_SREQ | Z_ZDO); // 25
buf.add8(ZDO_MGMT_PERMIT_JOIN_REQ); // 36
buf.add8(0x0F); // AddrMode
buf.add16(0xFFFC); // DstAddr
buf.add8(duration);
buf.add8(0x00); // TCSignificance
ZigbeeZNPSend(buf.getBuffer(), buf.len());
ResponseCmndDone();
}
//
// Command `ZbStatus`
//
void CmndZbStatus(void) {
if (ZigbeeSerial) {
2020-03-16 17:55:58 +00:00
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
if (XdrvMailbox.payload > 0) {
2020-05-17 17:33:42 +01:00
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
}
2020-04-22 15:07:52 +01:00
String dump = zigbee_devices.dump(XdrvMailbox.index, shortaddr);
Response_P(PSTR("{\"%s%d\":%s}"), XdrvMailbox.command, XdrvMailbox.index, dump.c_str());
}
}
//
// Command `ZbConfig`
//
void CmndZbConfig(void) {
// ZbConfig
// ZbConfig {"Channel":11,"PanID":"0x1A63","ExtPanID":"0xCCCCCCCCCCCCCCCC","KeyL":"0x0F0D0B0907050301L","KeyH":"0x0D0C0A0806040200L"}
uint8_t zb_channel = Settings.zb_channel;
uint16_t zb_pan_id = Settings.zb_pan_id;
uint64_t zb_ext_panid = Settings.zb_ext_panid;
uint64_t zb_precfgkey_l = Settings.zb_precfgkey_l;
uint64_t zb_precfgkey_h = Settings.zb_precfgkey_h;
// if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
RemoveAllSpaces(XdrvMailbox.data);
if (strlen(XdrvMailbox.data) > 0) {
DynamicJsonBuffer jsonBuf;
const JsonObject &json = jsonBuf.parseObject((const char*) XdrvMailbox.data);
if (!json.success()) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; }
// Channel
const JsonVariant &val_channel = GetCaseInsensitive(json, PSTR("Channel"));
if (nullptr != &val_channel) { zb_channel = strToUInt(val_channel); }
2020-04-11 18:01:39 +01:00
if (zb_channel < 11) { zb_channel = 11; }
if (zb_channel > 26) { zb_channel = 26; }
// PanID
const JsonVariant &val_pan_id = GetCaseInsensitive(json, PSTR("PanID"));
if (nullptr != &val_pan_id) { zb_pan_id = strToUInt(val_pan_id); }
// ExtPanID
const JsonVariant &val_ext_pan_id = GetCaseInsensitive(json, PSTR("ExtPanID"));
if (nullptr != &val_ext_pan_id) { zb_ext_panid = strtoull(val_ext_pan_id.as<const char*>(), nullptr, 0); }
// KeyL
const JsonVariant &val_key_l = GetCaseInsensitive(json, PSTR("KeyL"));
if (nullptr != &val_key_l) { zb_precfgkey_l = strtoull(val_key_l.as<const char*>(), nullptr, 0); }
// KeyH
const JsonVariant &val_key_h = GetCaseInsensitive(json, PSTR("KeyH"));
if (nullptr != &val_key_h) { zb_precfgkey_h = strtoull(val_key_h.as<const char*>(), nullptr, 0); }
// Check if a parameter was changed after all
if ( (zb_channel != Settings.zb_channel) ||
(zb_pan_id != Settings.zb_pan_id) ||
(zb_ext_panid != Settings.zb_ext_panid) ||
(zb_precfgkey_l != Settings.zb_precfgkey_l) ||
(zb_precfgkey_h != Settings.zb_precfgkey_h) ) {
Settings.zb_channel = zb_channel;
Settings.zb_pan_id = zb_pan_id;
Settings.zb_ext_panid = zb_ext_panid;
Settings.zb_precfgkey_l = zb_precfgkey_l;
Settings.zb_precfgkey_h = zb_precfgkey_h;
restart_flag = 2; // save and reboot
}
}
// display the current or new configuration
char hex_ext_panid[20] = "0x";
Uint64toHex(zb_ext_panid, &hex_ext_panid[2], 64);
char hex_precfgkey_l[20] = "0x";
Uint64toHex(zb_precfgkey_l, &hex_precfgkey_l[2], 64);
char hex_precfgkey_h[20] = "0x";
Uint64toHex(zb_precfgkey_h, &hex_precfgkey_h[2], 64);
// {"ZbConfig":{"Channel":11,"PanID":"0x1A63","ExtPanID":"0xCCCCCCCCCCCCCCCC","KeyL":"0x0F0D0B0907050301L","KeyH":"0x0D0C0A0806040200L"}}
Response_P(PSTR("{\"" D_PRFX_ZB D_JSON_ZIGBEE_CONFIG "\":{"
"\"Channel\":%d"
",\"PanID\":\"0x%04X\""
",\"ExtPanID\":\"%s\""
",\"KeyL\":\"%s\""
",\"KeyH\":\"%s\""
"}}"),
zb_channel, zb_pan_id,
hex_ext_panid,
hex_precfgkey_l, hex_precfgkey_h);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv23(uint8_t function)
{
bool result = false;
if (zigbee.active) {
switch (function) {
case FUNC_EVERY_50_MSECOND:
if (!zigbee.init_phase) {
zigbee_devices.runTimer();
}
break;
case FUNC_LOOP:
if (ZigbeeSerial) { ZigbeeInputLoop(); }
if (zigbee.state_machine) {
ZigbeeStateMachine_Run();
}
break;
case FUNC_PRE_INIT:
ZigbeeInit();
break;
case FUNC_COMMAND:
result = DecodeCommand(kZbCommands, ZigbeeCommand);
break;
}
}
return result;
}
#endif // USE_ZIGBEE