Tasmota/tasmota/xsns_30_mpr121.ino

451 lines
14 KiB
Arduino
Raw Normal View History

2019-12-31 13:23:34 +00:00
/*
xsns_30_mpr121.ino - MPR121 support for Tasmota
2021-01-01 12:44:04 +00:00
Copyright (C) 2021 Rene 'Renne' Bartsch and Theo Arends
2019-12-31 13:23:34 +00:00
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
*
* @file xsns_30_mpr121.ino
*
* @package Tasmota
* @subpackage Sensors
* @name MPR121
*
* @description Driver for up to 4x Freescale MPR121 Proximity Capacitive Touch Sensor Controllers (Only touch buttons).
*
* @author Rene 'Renne' Bartsch, B.Sc. Informatics, <rene@bartschnet.de>
* @copyright Rene 'Renne' Bartsch 2018
* @date $Date$
* @version $Id$
*
* @link https://github.com/arendst/Tasmota/wiki/MPR121 \endlink
* @link https://www.sparkfun.com/datasheets/Components/MPR121.pdf \endlink
* @link http://cache.freescale.com/files/sensors/doc/app_note/AN3891.pdf \endlink
* @link http://cache.freescale.com/files/sensors/doc/app_note/AN3892.pdf \endlink
* @link http://cache.freescale.com/files/sensors/doc/app_note/AN3893.pdf \endlink
* @link http://cache.freescale.com/files/sensors/doc/app_note/AN3894.pdf \endlink
* @link http://cache.freescale.com/files/sensors/doc/app_note/AN3895.pdf \endlink
*
* @license GNU GPL v.3
*/
#ifdef USE_I2C
#ifdef USE_MPR121
/**
* @ingroup group1
* Assign Tasmota sensor model ID
*/
#define XSNS_30 30
#define XI2C_23 23 // See I2CDEVICES.md
/** @defgroup group1 MPR121
* MPR121 preprocessor directives
* @{
*/
/** Electrodes Status Register. */
#define MPR121_ELEX_REG 0x00
/** ELEC0-11 Maximum Half Delta Rising Register. */
#define MPR121_MHDR_REG 0x2B
/** ELEC0-11 Maximum Half Delta Rising Value. */
#define MPR121_MHDR_VAL 0x01
/** ELEC0-11 Noise Half Delta Falling Register. */
#define MPR121_NHDR_REG 0x2C
/** ELEC0-11 Noise Half Delta Falling Value. */
#define MPR121_NHDR_VAL 0x01
/** ELEC0-11 Noise Count Limit Rising Register. */
#define MPR121_NCLR_REG 0x2D
/** ELEC0-11 Noise Count Limit Rising Value. */
#define MPR121_NCLR_VAL 0x0E
/** ELEC0-11 Maximum Half Delta Falling Register. */
#define MPR121_MHDF_REG 0x2F
/** ELEC0-11 Maximum Half Delta Falling Value. */
#define MPR121_MHDF_VAL 0x01
/** ELEC0-11 Noise Half Delta Falling Register. */
#define MPR121_NHDF_REG 0x30
/** ELEC0-11 Noise Half Delta Falling Value. */
#define MPR121_NHDF_VAL 0x05
/** ELEC0-11 Noise Count Limit Falling Register. */
#define MPR121_NCLF_REG 0x31
/** ELEC0-11 Noise Count Limit Falling Value. */
#define MPR121_NCLF_VAL 0x01
/** Proximity Maximum Half Delta Rising Register. */
#define MPR121_MHDPROXR_REG 0x36
/** Proximity Maximum Half Delta Rising Value. */
#define MPR121_MHDPROXR_VAL 0x3F
/** Proximity Noise Half Delta Rising Register. */
#define MPR121_NHDPROXR_REG 0x37
/** Proximity Noise Half Delta Rising Value. */
#define MPR121_NHDPROXR_VAL 0x5F
/** Proximity Noise Count Limit Rising Register. */
#define MPR121_NCLPROXR_REG 0x38
/** Proximity Noise Count Limit Rising Value. */
#define MPR121_NCLPROXR_VAL 0x04
/** Proximity Filter Delay Count Limit Rising Register. */
#define MPR121_FDLPROXR_REG 0x39
/** Proximity Filter Delay Count Limit Rising Value. */
#define MPR121_FDLPROXR_VAL 0x00
/** Proximity Maximum Half Delta Falling Register. */
#define MPR121_MHDPROXF_REG 0x3A
/** Proximity Maximum Half Delta Falling Value. */
#define MPR121_MHDPROXF_VAL 0x01
/** Proximity Noise Half Delta Falling Register. */
#define MPR121_NHDPROXF_REG 0x3B
/** Proximity Noise Half Delta Falling Value. */
#define MPR121_NHDPROXF_VAL 0x01
/** Proximity Noise Count Limit Falling Register. */
#define MPR121_NCLPROXF_REG 0x3C
/** Proximity Noise Count Limit Falling Value. */
#define MPR121_NCLPROXF_VAL 0x1F
/** Proximity Filter Delay Count Limit Falling Register. */
#define MPR121_FDLPROXF_REG 0x3D
/** Proximity Filter Delay Count Limit Falling Value. */
#define MPR121_FDLPROXF_VAL 0x04
/** First Electrode Touch Threshold Register. */
#define MPR121_E0TTH_REG 0x41
/** First Electrode Touch Threshold Value. */
#define MPR121_E0TTH_VAL 12
/** First Electrode Release Threshold Register. */
#define MPR121_E0RTH_REG 0x42
/** First Electrode Release Threshold Value. */
#define MPR121_E0RTH_VAL 6
/** Global CDC/CDT Configuration Register. */
#define MPR121_CDT_REG 0x5D
/** Global CDC/CDT Configuration Value. */
#define MPR121_CDT_VAL 0x20
/** Enable electrodes Register. */
#define MPR121_ECR_REG 0x5E
/** Enable electrodes Value. */
#define MPR121_ECR_VAL 0x8F // Start ELE0-11 with first 5 bits of baseline tracking
//#define MPR121_ECR_VAL 0xBF // Start ELE0-11 + proximity with first 5 bits of baseline tracking
/** Soft-reset Register. */
#define MPR121_SRST_REG 0x80
/** Soft-reset Value. */
#define MPR121_SRST_VAL 0x63
/** Get bit of variable 'current' of sensor at position. */
#define BITC(sensor, position) ((pS->current[sensor] >> position) & 1)
/** Get bit of variable 'previous' of sensor at position. */
#define BITP(sensor, position) ((pS->previous[sensor] >> position) & 1)
/**@}*/
/**
* MPR121 sensors status and data struct.
*
* The struct mpr121 uses the indices of i2c_addr and id to link the specific sensors to an I2C address and a human-readable ID
* and the indices of the arrays connected, running, current and previous to store sensor status and data of a specific sensor.
*
*/
typedef struct mpr121 mpr121;
struct mpr121 {
const uint8_t i2c_addr[4] = { 0x5A, 0x5B, 0x5C, 0x5D }; /** I2C addresses of MPR121 controller */
const char id[4] = { 'A', 'B', 'C', 'D' }; /** Human-readable sensor IDs*/
bool connected[4] = { false, false, false, false }; /** Status if sensor is connected at I2C address */
bool running[4] = { false, false, false, false }; /** Running state of sensor */
uint16_t current[4] = { 0x0000, 0x0000, 0x0000, 0x0000 }; /** Current values in electrode register of sensor */
uint16_t previous[4] = { 0x0000, 0x0000, 0x0000, 0x0000 }; /** Current values in electrode register of sensor */
};
2019-11-11 16:32:44 +00:00
bool mpr21_found = false;
/**
* The function Mpr121Init() soft-resets, detects and configures up to 4x MPR121 sensors.
*
* @param struct *pS Struct with MPR121 status and data.
2019-11-11 16:32:44 +00:00
* bool initial true - Initial call, false - next calls
* @return void
* @pre None.
* @post None.
*
*/
2019-11-11 16:32:44 +00:00
void Mpr121Init(struct mpr121 *pS, bool initial)
{
// Loop through I2C addresses
for (uint32_t i = 0; i < sizeof(pS->i2c_addr[i]); i++) {
2019-11-11 16:32:44 +00:00
if (initial && I2cActive(pS->i2c_addr[i])) { continue; }
// Soft reset sensor and check if connected at I2C address
pS->connected[i] = (I2cWrite8(pS->i2c_addr[i], MPR121_SRST_REG, MPR121_SRST_VAL)
&& (0x24 == I2cRead8(pS->i2c_addr[i], 0x5D)));
if (pS->connected[i]) {
// Log sensor found
2019-11-11 16:32:44 +00:00
mpr21_found = true;
char device_name[16];
snprintf_P(device_name, sizeof(device_name), PSTR("MPR121(%c)"), pS->id[i]);
I2cSetActiveFound(pS->i2c_addr[i], device_name);
// Set thresholds for registers 0x41 - 0x5A (ExTTH and ExRTH)
for (uint32_t j = 0; j < 13; j++) {
// Touch
I2cWrite8(pS->i2c_addr[i], MPR121_E0TTH_REG + 2 * j, MPR121_E0TTH_VAL);
// Release
I2cWrite8(pS->i2c_addr[i], MPR121_E0RTH_REG + 2 * j, MPR121_E0RTH_VAL);
}
// ELEC0-11 Maximum Half Delta Rising
I2cWrite8(pS->i2c_addr[i], MPR121_MHDR_REG, MPR121_MHDR_VAL);
// ELEC0-11 Noise Half Delta Rising
I2cWrite8(pS->i2c_addr[i], MPR121_NHDR_REG, MPR121_NHDR_VAL);
// ELEC0-11 Noise Count Limit Rising
I2cWrite8(pS->i2c_addr[i], MPR121_NCLR_REG, MPR121_NCLR_VAL);
// ELEC0-11 Maximum Half Delta Falling
I2cWrite8(pS->i2c_addr[i], MPR121_MHDF_REG, MPR121_MHDF_VAL);
// ELEC0-11 Noise Half Delta Falling
I2cWrite8(pS->i2c_addr[i], MPR121_NHDF_REG, MPR121_NHDF_VAL);
// ELEC0-11 Noise Count Limit Falling
I2cWrite8(pS->i2c_addr[i], MPR121_NCLF_REG, MPR121_NCLF_VAL);
// Proximity Maximum Half Delta Rising
I2cWrite8(pS->i2c_addr[i], MPR121_MHDPROXR_REG, MPR121_MHDPROXR_VAL);
// Proximity Noise Half Delta Rising
I2cWrite8(pS->i2c_addr[i], MPR121_NHDPROXR_REG, MPR121_NHDPROXR_VAL);
// Proximity Noise Count Limit Rising
I2cWrite8(pS->i2c_addr[i], MPR121_NCLPROXR_REG, MPR121_NCLPROXR_VAL);
// Proximity Filter Delay Count Limit Rising
I2cWrite8(pS->i2c_addr[i], MPR121_FDLPROXR_REG, MPR121_FDLPROXR_VAL);
// Proximity Maximum Half Delta Falling
I2cWrite8(pS->i2c_addr[i], MPR121_MHDPROXF_REG, MPR121_MHDPROXF_VAL);
// Proximity Noise Half Delta Falling
I2cWrite8(pS->i2c_addr[i], MPR121_NHDPROXF_REG, MPR121_NHDPROXF_VAL);
// Proximity Noise Count Limit Falling
I2cWrite8(pS->i2c_addr[i], MPR121_NCLPROXF_REG, MPR121_NCLPROXF_VAL);
// Proximity Filter Delay Count Limit Falling
I2cWrite8(pS->i2c_addr[i], MPR121_FDLPROXF_REG, MPR121_FDLPROXF_VAL);
// Global CDC/CDT Configuration
I2cWrite8(pS->i2c_addr[i], MPR121_CDT_REG, MPR121_CDT_VAL);
// Enable sensor
I2cWrite8(pS->i2c_addr[i], MPR121_ECR_REG, MPR121_ECR_VAL);
// Check if sensor is running
pS->running[i] = (0x00 != I2cRead8(pS->i2c_addr[i], MPR121_ECR_REG));
2021-01-23 16:10:06 +00:00
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_I2C "MPR121%c: %sRunning"), pS->id[i], (pS->running[i]) ? "" : "NOT");
} else {
// Make sure running is false
pS->running[i] = false;
}
} // for-loop
// Display no sensor found message
if (!(pS->connected[0] || pS->connected[1] || pS->connected[2]
|| pS->connected[3])) {
2021-01-23 16:10:06 +00:00
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_I2C "MPR121: No sensors found"));
}
} // void Mpr121Init(struct mpr121 *s)
/**
* Publishes the sensor information.
*
* The function Mpr121Show() reads sensor data, checks for over-current exceptions and
* creates strings with button states for the web-interface and near real-time/ telemetriy MQTT.
*
* @param struct *pS Struct with MPR121 status and data.
* @param byte function Tasmota function ID.
* @return void
* @pre Call Mpr121Init() once.
* @post None.
*
*/
void Mpr121Show(struct mpr121 *pS, uint8_t function)
{
// Loop through sensors
for (uint32_t i = 0; i < sizeof(pS->i2c_addr[i]); i++) {
// Check if sensor is connected
if (pS->connected[i]) {
// Read data
if (!I2cValidRead16LE(&pS->current[i], pS->i2c_addr[i], MPR121_ELEX_REG)) {
2021-01-23 16:10:06 +00:00
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_I2C "MPR121%c: ERROR: Cannot read data!"), pS->id[i]);
2019-11-11 16:32:44 +00:00
Mpr121Init(pS, false);
return;
}
// Check if OVCF bit is set
if (BITC(i, 15)) {
// Clear OVCF bit
I2cWrite8(pS->i2c_addr[i], MPR121_ELEX_REG, 0x00);
2021-01-23 16:10:06 +00:00
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_I2C "MPR121%c: ERROR: Excess current detected! Fix circuits if it happens repeatedly! Soft-resetting MPR121 ..."), pS->id[i]);
2019-11-11 16:32:44 +00:00
Mpr121Init(pS, false);
return;
}
}
// Check if sensor is running
if (pS->running[i]) {
// Append sensor to JSON message string
if (FUNC_JSON_APPEND == function) {
ResponseAppend_P(PSTR(",\"MPR121%c\":{"), pS->id[i]);
}
// Loop through buttons
for (uint32_t j = 0; j < 13; j++) {
// Add sensor, button and state to MQTT JSON message string
if ((FUNC_EVERY_50_MSECOND == function)
&& (BITC(i, j) != BITP(i, j))) {
Response_P(PSTR("{\"MPR121%c\":{\"Button%i\":%i}}"), pS->id[i], j, BITC(i, j));
2021-04-07 14:07:05 +01:00
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("MPR121"));
}
// Add buttons to web string
#ifdef USE_WEBSERVER
if (FUNC_WEB_SENSOR == function) {
WSContentSend_PD(PSTR("{s}MPR121%c Button%d{m}%d{e}"), pS->id[i], j, BITC(i, j));
}
#endif // USE_WEBSERVER
// Append JSON message string
if (FUNC_JSON_APPEND == function) {
ResponseAppend_P(PSTR("%s\"Button%i\":%i"), (j > 0 ? "," : ""), j, BITC(i, j));
}
} // for-loop j
// Save sensor data
pS->previous[i] = pS->current[i];
// Append JSON message string
if (FUNC_JSON_APPEND == function) {
ResponseJsonEnd();
}
} // if->running
} // for-loop i
} // void Mpr121Show(uint8_t function)
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
/**
* The function Xsns30() interfaces Tasmota with the driver.
*
* It provides the function IDs
* FUNC_INIT to initialize a driver,
* FUNC_EVERY_50_MSECOND for near real-time operation,
* FUNC_JSON_APPEND for telemetry data and
* FUNC_WEB_SENSOR for displaying data in the Tasmota web-interface
*
* @param byte function Tasmota function ID.
* @return bool ???
* @pre None.
* @post None.
*
*/
bool Xsns30(uint8_t function)
{
2019-11-04 09:38:05 +00:00
if (!I2cEnabled(XI2C_23)) { return false; }
bool result = false;
// Sensor state/data struct
static struct mpr121 mpr121;
2019-11-11 16:32:44 +00:00
if (FUNC_INIT == function) {
2019-11-04 09:38:05 +00:00
// Initialize Sensors
2019-11-11 16:32:44 +00:00
Mpr121Init(&mpr121, true);
}
else if (mpr21_found) {
2019-11-11 16:32:44 +00:00
switch (function) {
2019-11-11 16:32:44 +00:00
// Run ever 50 milliseconds (near real-time functions)
case FUNC_EVERY_50_MSECOND:
Mpr121Show(&mpr121, FUNC_EVERY_50_MSECOND);
break;
// Generate JSON telemetry string
case FUNC_JSON_APPEND:
Mpr121Show(&mpr121, FUNC_JSON_APPEND);
break;
#ifdef USE_WEBSERVER
2019-11-11 16:32:44 +00:00
// Show sensor data on main web page
case FUNC_WEB_SENSOR:
Mpr121Show(&mpr121, FUNC_WEB_SENSOR);
break;
#endif // USE_WEBSERVER
2019-11-11 16:32:44 +00:00
}
}
// Return bool result
return result;
}
#endif // USE_MPR121
#endif // USE_I2C