Tasmota/tasmota/xsns_68_windmeter.ino

334 lines
12 KiB
Arduino
Raw Normal View History

2020-04-26 08:43:52 +01:00
/*
xsns_68_windmeter.ino - Analog wind sensor support for Tasmota
Copyright (C) 2020 Matteo Albinola
(inspired by great works of Thomas Eckerstorfer, Norbert Richter, Maarten Damen and Theo Arends)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_WINDMETER
/*********************************************************************************************\
* WindMeter sensor (speed)
\*********************************************************************************************/
#define XSNS_68 68
#define D_WINDMETER_NAME "WindMeter"
#define WINDMETER_DEF_RADIUS 61 // Radius in millimeters (calculated by measuring the distance from the centre to the edge of one of the cups)
#define WINDMETER_DEF_PULSES_X_ROT 1 // Number of pulses for a complete rotation
#define WINDMETER_DEF_PULSE_DEBOUNCE 10 // Pulse counter debounce time (milliseconds)
#define WINDMETER_DEF_COMP_FACTOR 1.18 // Compensation factor
#define WINDMETER_WEIGHT_AVG_SAMPLE 150 // No of samples to take
#ifdef USE_WEBSERVER
#define D_WINDMETER_WIND_AVG "&empty;"
#define D_WINDMETER_WIND_ANGLE "&ang;"
#define D_WINDMETER_WIND_DEGREE "&deg;"
const char HTTP_SNS_WINDMETER[] PROGMEM =
"{s}" D_WINDMETER_NAME " " D_TX20_WIND_SPEED "{m}%s %s{e}"
#ifndef USE_WINDMETER_NOSTATISTICS
"{s}" D_WINDMETER_NAME " " D_TX20_WIND_SPEED " " D_WINDMETER_WIND_AVG "{m}%s %s{e}"
"{s}" D_WINDMETER_NAME " " D_TX20_WIND_SPEED_MIN "{m}%s %s{e}"
"{s}" D_WINDMETER_NAME " " D_TX20_WIND_SPEED_MAX "{m}%s %s{e}"
#endif // USE_WINDMETER_NOSTATISTICS
// "{s}WindMeter " D_TX20_WIND_DIRECTION "{m}%s %s" D_WINDMETER_WIND_DEGREE "{e}"
//#ifndef USE_WINDMETER_NOSTATISTICS
// "{s}WindMeter " D_TX20_WIND_DIRECTION " " D_WINDMETER_WIND_AVG "{m}%s %s" D_WINDMETER_WIND_DEGREE "{e}"
// "{s}WindMeter " D_TX20_WIND_DIRECTION " " D_WINDMETER_WIND_ANGLE "{m}%s" D_WINDMETER_WIND_DEGREE " (%s,%s)" D_WINDMETER_WIND_DEGREE;
//#endif // USE_WINDMETER_NOSTATISTICS
;
#endif // USE_WEBSERVER
// float saves 48 byte
float const windmeter_pi = 3.1415926535897932384626433; // Pi
float const windmeter_2pi = windmeter_pi * 2;
struct WINDMETER {
uint32_t counter_time;
unsigned long counter = 0;
//uint32_t speed_time;
float speed = 0;
#ifndef USE_WINDMETER_NOSTATISTICS
float speed_min = 0;
float speed_max = 0;
float speed_avg = 0;
uint32_t samples_count = 0;
uint32_t avg_samples_no;
#endif // USE_WINDMETER_NOSTATISTICS
} WindMeter;
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0 // Fix core 2.5.x ISR not in IRAM Exception
void WindMeterUpdateSpeed(void) ICACHE_RAM_ATTR;
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
void WindMeterUpdateSpeed(void)
{
uint32_t time = micros();
uint32_t time_diff = time - WindMeter.counter_time;
if (time_diff > Settings.windmeter_pulse_debounce * 1000) {
2020-04-26 08:43:52 +01:00
WindMeter.counter_time = time;
WindMeter.counter++;
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("WMET: Counter %d"), WindMeter.counter);
}
}
/********************************************************************************************/
void WindMeterInit(void)
{
if (!Settings.flag2.speed_conversion) {
Settings.flag2.speed_conversion = 2; // 0 = none, 1 = m/s, 2 = km/h, 3 = kn, 4 = mph, 5 = ft/s, 6 = yd/s
}
if (!Settings.windmeter_radius) {
Settings.windmeter_radius = WINDMETER_DEF_RADIUS;
2020-04-26 08:43:52 +01:00
}
if (!Settings.windmeter_pulses_x_rot) {
Settings.windmeter_pulses_x_rot = WINDMETER_DEF_PULSES_X_ROT;
2020-04-26 08:43:52 +01:00
}
if (!Settings.windmeter_pulse_debounce) {
Settings.windmeter_pulse_debounce = WINDMETER_DEF_PULSE_DEBOUNCE;
2020-04-26 08:43:52 +01:00
}
if (!Settings.windmeter_speed_factor) {
Settings.windmeter_speed_factor = (int16_t)(WINDMETER_DEF_COMP_FACTOR * 1000);
2020-04-26 08:43:52 +01:00
}
#ifndef USE_WINDMETER_NOSTATISTICS
WindMeterResetStatData();
WindMeterCheckSampleCount();
#endif // USE_WINDMETER_NOSTATISTICS
pinMode(pin[GPIO_WINDMETER_SPEED], INPUT_PULLUP);
attachInterrupt(pin[GPIO_WINDMETER_SPEED], WindMeterUpdateSpeed, FALLING);
}
void WindMeterEverySecond(void)
{
//uint32_t time = micros();
//uint32_t delta_time = time - WindMeter.speed_time;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("delta_time: %d"), delta_time);
// speed = ( (pulses / pulses_per_rotation) * (2 * pi * radius) ) / delta_time
WindMeter.speed = ((WindMeter.counter / Settings.windmeter_pulses_x_rot) * (windmeter_2pi * ((float)Settings.windmeter_radius / 1000))) * ((float)Settings.windmeter_speed_factor / 1000);
//WindMeter.speed = (((WindMeter.counter / Settings.windmeter_pulses_x_rot) * (windmeter_2pi * ((float)Settings.windmeter_radius / 1000))) / ((float)delta_time / 1000000)) * ((float)Settings.windmeter_speed_factor / 1000);
2020-04-26 08:43:52 +01:00
WindMeter.counter = 0;
//WindMeter.speed_time = time;
//char speed_string[FLOATSZ];
//dtostrfd(WindMeter.speed, 2, speed_string);
//char uspeed_string[FLOATSZ];
//dtostrfd(ConvertSpeed(WindMeter.speed), 2, uspeed_string);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("WMET: Speed %s [m/s] - %s [unit]"), speed_string, uspeed_string);
#ifndef USE_WINDMETER_NOSTATISTICS
if (WindMeter.speed < WindMeter.speed_min) {
WindMeter.speed_min = WindMeter.speed;
}
if (WindMeter.speed > WindMeter.speed_max) {
WindMeter.speed_max = WindMeter.speed;
}
// exponentially weighted average is not quite as smooth as the arithmetic average
// but close enough to the moving average and does not require the regular reset
// of the divider with the associated jump in avg values after period is over
if (WindMeter.samples_count <= WindMeter.avg_samples_no) {
WindMeter.samples_count++;
}
WindMeter.speed_avg -= WindMeter.speed_avg / WindMeter.samples_count;
WindMeter.speed_avg += float(WindMeter.speed) / WindMeter.samples_count;
WindMeterCheckSampleCount();
if (0==Settings.tele_period) {
WindMeterResetStatData();
}
#endif // USE_WINDMETER_NOSTATISTICS
}
void WindMeterResetStatData(void)
{
WindMeter.speed_min = WindMeter.speed;
WindMeter.speed_max = WindMeter.speed;
//WindMeter.direction_min = WindMeter.direction;
//WindMeter.direction_max = WindMeter.direction;
}
void WindMeterCheckSampleCount(void)
{
uint32_t prev_avg_samples_no = WindMeter.avg_samples_no;
if (Settings.tele_period) {
// number for avg samples = teleperiod value if set
WindMeter.avg_samples_no = Settings.tele_period;
} else {
// otherwise use default number of samples for this driver
WindMeter.avg_samples_no = WINDMETER_WEIGHT_AVG_SAMPLE;
}
if (prev_avg_samples_no != WindMeter.avg_samples_no) {
WindMeter.speed_avg = WindMeter.speed;
WindMeter.samples_count = 0;
}
}
void WindMeterShow(bool json)
{
char speed_string[FLOATSZ];
dtostrfd(ConvertSpeed(WindMeter.speed), 2, speed_string);
#ifndef USE_WINDMETER_NOSTATISTICS
char speed_min_string[FLOATSZ];
dtostrfd(ConvertSpeed(WindMeter.speed_min), 2, speed_min_string);
char speed_max_string[FLOATSZ];
dtostrfd(ConvertSpeed(WindMeter.speed_max), 2, speed_max_string);
char speed_avg_string[FLOATSZ];
dtostrfd(ConvertSpeed(WindMeter.speed_avg), 2, speed_avg_string);
//char direction_avg_string[FLOATSZ];
//dtostrfd(WindMeter.direction_avg, 1, direction_avg_string);
//char direction_avg_cardinal_string[4];
//GetTextIndexed(direction_avg_cardinal_string, sizeof(direction_avg_cardinal_string), int((WindMeter.direction_avg/22.5f)+0.5f) % 16, kWindMeterDirections);
//char direction_range_string[FLOATSZ];
//dtostrfd(Tx2xNormalize(WindMeter.direction_max-WindMeter.direction_min)*22.5, 1, direction_range_string);
//char direction_min_string[FLOATSZ];
//dtostrfd(Tx2xNormalize(WindMeter.direction_min)*22.5, 1, direction_min_string);
//char direction_max_string[FLOATSZ];
//dtostrfd(Tx2xNormalize(WindMeter.direction_max)*22.5, 1, direction_max_string);
#endif // USE_WINDMETER_NOSTATISTICS
if (json) {
#ifndef USE_WINDMETER_NOSTATISTICS
ResponseAppend_P(PSTR(",\"" D_WINDMETER_NAME "\":{\"" D_JSON_SPEED "\":{\"Act\":%s,\"Avg\":%s,\"Min\":%s,\"Max\":%s},\"Dir\":{\"Card\":\"%s\",\"Deg\":%s,\"Avg\":%s,\"AvgCard\":\"%s\",\"Min\":%s,\"Max\":%s,\"Range\":%s}}"),
speed_string,
speed_avg_string,
speed_min_string,
speed_max_string,
"n/a", //direction_cardinal_string,
"n/a", //direction_string,
"n/a", //direction_avg_string,
"n/a", //direction_avg_cardinal_string,
"n/a", //direction_min_string,
"n/a", //direction_max_string,
"n/a" //direction_range_string
);
#else // USE_WINDMETER_NOSTATISTICS
ResponseAppend_P(PSTR(",\"" D_WINDMETER_NAME "\":{\"" D_JSON_SPEED "\":{\"Act\":%s},\"Dir\":{\"Card\":\"%s\",\"Deg\":%s}}"),
speed_string,
"n/a", //wind_direction_cardinal_string,
"n/a" //wind_direction_string
);
#endif // USE_WINDMETER_NOSTATISTICS
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_WINDMETER,
speed_string,
SpeedUnit().c_str(),
#ifndef USE_WINDMETER_NOSTATISTICS
speed_avg_string,
SpeedUnit().c_str(),
speed_min_string,
SpeedUnit().c_str(),
speed_max_string,
SpeedUnit().c_str(),
#endif // USE_WINDMETER_NOSTATISTICS
"n/a", //wind_direction_cardinal_string,
"n/a" //wind_direction_string
#ifndef USE_WINDMETER_NOSTATISTICS
,"n/a", //,wind_direction_avg_cardinal_string,
"n/a", //wind_direction_avg_string,
"n/a", //wind_direction_range_string,
"n/a", //wind_direction_min_string,
"n/a" //wind_direction_max_string
#endif // USE_WINDMETER_NOSTATISTICS
);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
bool Xsns68Cmnd(void)
{
bool serviced = true;
bool show_parms = true;
char sub_string[XdrvMailbox.data_len +1];
switch (XdrvMailbox.payload) {
case 1:
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.windmeter_radius = (uint16_t)strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
2020-04-26 08:43:52 +01:00
}
break;
case 2:
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.windmeter_pulses_x_rot = (uint8_t)strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
2020-04-26 08:43:52 +01:00
}
break;
case 3:
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.windmeter_pulse_debounce = (uint16_t)strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
2020-04-26 08:43:52 +01:00
}
break;
case 4:
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.windmeter_speed_factor = (int16_t)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 2)) * 1000);
2020-04-26 08:43:52 +01:00
}
break;
}
if (show_parms) {
char speed_factor_string[FLOATSZ];
dtostrfd((float)Settings.windmeter_speed_factor / 1000, 3, speed_factor_string);
2020-04-26 08:43:52 +01:00
Response_P(PSTR("{\"" D_WINDMETER_NAME "\":{\"Radius\":%d,\"PulsesPerRot\":%d,\"PulseDebounce\":%d,\"SpeedFactor\":%s}}"),
Settings.windmeter_radius, Settings.windmeter_pulses_x_rot, Settings.windmeter_pulse_debounce, speed_factor_string);
2020-04-26 08:43:52 +01:00
}
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns68(uint8_t function)
{
bool result = false;
if (pin[GPIO_WINDMETER_SPEED] < 99) {
switch (function) {
case FUNC_INIT:
WindMeterInit();
break;
case FUNC_EVERY_SECOND:
WindMeterEverySecond();
break;
#ifndef USE_WINDMETER_NOSTATISTICS
case FUNC_AFTER_TELEPERIOD:
WindMeterResetStatData();
break;
#endif // USE_WINDMETER_NOSTATISTICS
case FUNC_JSON_APPEND:
WindMeterShow(true);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
WindMeterShow(false);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND_SENSOR:
if (XSNS_68 == XdrvMailbox.index) {
result = Xsns68Cmnd();
}
}
}
return result;
}
#endif // USE_WINDMETER