Tasmota/tasmota/xsns_37_rfsensor.ino

687 lines
26 KiB
Arduino
Raw Normal View History

/*
xsns_37_rfsensor.ino - RF sensor receiver for Tasmota
2019-12-31 13:23:34 +00:00
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_RF_SENSOR
/*********************************************************************************************\
* RF receiver based on work by Paul Tonkes (www.nodo-domotica.nl)
*
* Supported 434MHz receiver is Aurel RX-4M50RR30SF
* Supported 868MHz receiver is Aurel RX-AM8SF
*
* Connect one of above receivers with a 330 Ohm resistor to any GPIO
*
* USE_THEO_V2 Add support for 434MHz Theo V2 sensors as documented on https://sidweb.nl
* USE_ALECTO_V2 Add support for 868MHz Alecto V2 sensors like ACH2010, WS3000 and DKW2012 weather stations
\*********************************************************************************************/
#define XSNS_37 37
//#define USE_THEO_V2 // Add support for 434MHz Theo V2 sensors as documented on https://sidweb.nl
//#define USE_ALECTO_V2 // Add support for 868MHz Alecto V2 sensors like ACH2010, WS3000 and DKW2012
#define RFSNS_VALID_WINDOW 1800 // Number of seconds for sensor to respond (1800 = 30 minutes)
#define RFSNS_LOOPS_PER_MILLI 1900 // (345 voor 16MHz ATMega) Voor 80MHz NodeMCU (ESP-12E). Getest met TheoV2 Protocol.
#define RFSNS_RAW_BUFFER_SIZE 180 // (256) Maximum number of RF pulses that can be captured
#define RFSNS_MIN_RAW_PULSES 112 // (16) =8 bits. Minimaal aantal ontvangen bits*2 alvorens cpu tijd wordt besteed aan decodering, etc.
// Zet zo hoog mogelijk om CPU-tijd te sparen en minder 'onzin' te ontvangen.
#define RFSNS_MIN_PULSE_LENGTH 300 // (50) Pulsen korter dan deze tijd uSec. worden als stoorpulsen beschouwd.
#define RFSNS_RAWSIGNAL_SAMPLE 50 // Sample grootte / Resolutie in uSec waarmee ontvangen Rawsignalen pulsen worden opgeslagen
#define RFSNS_SIGNAL_TIMEOUT 10 // Pulse timings in mSec. Beyond this value indicate end of message
#define RFSNS_SIGNAL_REPEAT_TIME 500 // (500) Tijd in mSec. waarbinnen hetzelfde event niet nogmaals via RF mag binnenkomen. Onderdrukt ongewenste herhalingen van signaal
typedef struct RawSignalStruct // Variabelen geplaatst in struct zodat deze later eenvoudig kunnen worden weggeschreven naar SDCard
{
int Number; // aantal bits, maal twee omdat iedere bit een mark en een space heeft.
uint8_t Repeats; // Aantal maal dat de pulsreeks verzonden moet worden bij een zendactie.
uint8_t Multiply; // Pulses[] * Multiply is de echte tijd van een puls in microseconden
unsigned long Time; // Tijdstempel wanneer signaal is binnengekomen (millis())
uint8_t Pulses[RFSNS_RAW_BUFFER_SIZE+2]; // Tabel met de gemeten pulsen in microseconden gedeeld door rfsns_raw_signal->Multiply. Dit scheelt helft aan RAM geheugen.
// Om legacy redenen zit de eerste puls in element 1. Element 0 wordt dus niet gebruikt.
} raw_signal_t;
raw_signal_t *rfsns_raw_signal = nullptr;
uint8_t rfsns_rf_bit;
uint8_t rfsns_rf_port;
uint8_t rfsns_any_sensor = 0;
/*********************************************************************************************\
* Fetch signals from RF pin
\*********************************************************************************************/
bool RfSnsFetchSignal(uint8_t DataPin, bool StateSignal)
{
uint8_t Fbit = digitalPinToBitMask(DataPin);
uint8_t Fport = digitalPinToPort(DataPin);
uint8_t FstateMask = (StateSignal ? Fbit : 0);
if ((*portInputRegister(Fport) & Fbit) == FstateMask) { // Als er signaal is
const unsigned long LoopsPerMilli = RFSNS_LOOPS_PER_MILLI;
// Als het een herhalend signaal is, dan is de kans groot dat we binnen hele korte tijd weer in deze
// routine terugkomen en dan midden in de volgende herhaling terecht komen. Daarom wordt er in dit
// geval gewacht totdat de pulsen voorbij zijn en we met het capturen van data beginnen na een korte
// rust tussen de signalen. Op deze wijze wordt het aantal zinloze captures teruggebracht.
unsigned long PulseLength = 0;
if (rfsns_raw_signal->Time) { // Eerst een snelle check, want dit bevindt zich in een tijdkritisch deel...
if (rfsns_raw_signal->Repeats && (rfsns_raw_signal->Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) { // ...want deze check duurt enkele micro's langer!
PulseLength = micros() + RFSNS_SIGNAL_TIMEOUT *1000; // Wachttijd
while (((rfsns_raw_signal->Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) && (PulseLength > micros())) {
if ((*portInputRegister(Fport) & Fbit) == FstateMask) {
PulseLength = micros() + RFSNS_SIGNAL_TIMEOUT *1000;
}
}
while (((rfsns_raw_signal->Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) && ((*portInputRegister(Fport) & Fbit) != FstateMask));
}
}
int RawCodeLength = 1; // We starten bij 1, dit om legacy redenen. Vroeger had element 0 een speciaal doel.
bool Ftoggle = false;
unsigned long numloops = 0;
unsigned long maxloops = RFSNS_SIGNAL_TIMEOUT * LoopsPerMilli;
rfsns_raw_signal->Multiply = RFSNS_RAWSIGNAL_SAMPLE; // Ingestelde sample groote.
do { // lees de pulsen in microseconden en plaats deze in de tijdelijke buffer rfsns_raw_signal
numloops = 0;
while(((*portInputRegister(Fport) & Fbit) == FstateMask) ^ Ftoggle) { // while() loop *A*
if (numloops++ == maxloops) { break; } // timeout opgetreden
}
PulseLength = (numloops *1000) / LoopsPerMilli; // Bevat nu de pulslengte in microseconden
if (PulseLength < RFSNS_MIN_PULSE_LENGTH) { break; }
Ftoggle = !Ftoggle;
rfsns_raw_signal->Pulses[RawCodeLength++] = PulseLength / (unsigned long)rfsns_raw_signal->Multiply; // sla op in de tabel rfsns_raw_signal
}
while(RawCodeLength < RFSNS_RAW_BUFFER_SIZE && numloops <= maxloops); // Zolang nog ruimte in de buffer, geen timeout en geen stoorpuls
if ((RawCodeLength >= RFSNS_MIN_RAW_PULSES) && (RawCodeLength < RFSNS_RAW_BUFFER_SIZE -1)) {
rfsns_raw_signal->Repeats = 0; // Op dit moment weten we nog niet het type signaal, maar de variabele niet ongedefinieerd laten.
rfsns_raw_signal->Number = RawCodeLength -1; // Aantal ontvangen tijden (pulsen *2)
rfsns_raw_signal->Pulses[rfsns_raw_signal->Number] = 0; // Laatste element bevat de timeout. Niet relevant.
rfsns_raw_signal->Time = millis();
return true;
}
else
rfsns_raw_signal->Number = 0;
}
return false;
}
#ifdef USE_THEO_V2
/*********************************************************************************************\
* Theo V2 protocol
* Dit protocol zorgt voor ontvangst van Theo sensoren met protocol V2
*
* Auteur : Theo Arends
* Support : www.sidweb.nl
* Datum : 17 Apr 2014
* Versie : 0.1 - Initiele versie
**********************************************************************************************
* Technische informatie:
*
* Theo Sensor V2 type 1 Message Format (7 Bytes, 57 bits):
* Checksum Type Chl BsVoltag Temperature Light
* S AAAAAAAA BBBBBCCC DEFFFFFF GGGGGGGG GGGGGGGG HHHHHHHH HHHHHHHH
* idx: 0 1 2 3 4 5 6
*
* Theo Sensor V2 type 2 Message Format (7 Bytes, 57 bits):
* Checksum Type Chl BsVoltag Temperature Humidity
* S AAAAAAAA BBBBBCCC DEFFFFFF GGGGGGGG GGGGGGGG HHHHHHHH HHHHHHHH
* idx: 0 1 2 3 4 5 6
\*********************************************************************************************/
#define RFSNS_THEOV2_MAX_CHANNEL 2 // Max number of ATTiny sensor channels supported
#define RFSNS_THEOV2_PULSECOUNT 114
#define RFSNS_THEOV2_RF_PULSE_MID 1000 // PWM: Pulsen langer zijn '1'
typedef struct {
uint32_t time;
int16_t temp;
uint16_t lux;
uint8_t volt;
} theo_v2_t1_t;
typedef struct {
uint32_t time;
int16_t temp;
uint16_t hum;
uint8_t volt;
} theo_v2_t2_t;
theo_v2_t1_t *rfsns_theo_v2_t1 = nullptr;
theo_v2_t2_t *rfsns_theo_v2_t2 = nullptr;
void RfSnsInitTheoV2(void)
{
rfsns_theo_v2_t1 = (theo_v2_t1_t*)malloc(RFSNS_THEOV2_MAX_CHANNEL * sizeof(theo_v2_t1_t));
rfsns_theo_v2_t2 = (theo_v2_t2_t*)malloc(RFSNS_THEOV2_MAX_CHANNEL * sizeof(theo_v2_t2_t));
rfsns_any_sensor++;
}
void RfSnsAnalyzeTheov2(void)
{
if (rfsns_raw_signal->Number != RFSNS_THEOV2_PULSECOUNT) { return; }
uint8_t Checksum; // 8 bits Checksum over following bytes
uint8_t Channel; // 3 bits channel
uint8_t Type; // 5 bits type
uint8_t Voltage; // 8 bits Vcc like 45 = 4.5V, bit 8 is batt low
int Payload1; // 16 bits
int Payload2; // 16 bits
uint8_t b, bytes, bits, id;
uint8_t idx = 3;
uint8_t chksum = 0;
for (bytes = 0; bytes < 7; bytes++) {
b = 0;
for (bits = 0; bits <= 7; bits++)
{
if ((rfsns_raw_signal->Pulses[idx] * rfsns_raw_signal->Multiply) > RFSNS_THEOV2_RF_PULSE_MID) {
b |= 1 << bits;
}
idx += 2;
}
if (bytes > 0) { chksum += b; } // bereken checksum
switch (bytes) {
case 0:
Checksum = b;
break;
case 1:
id = b;
Channel = b & 0x7;
Type = (b >> 3) & 0x1f;
break;
case 2:
Voltage = b;
break;
case 3:
Payload1 = b;
break;
case 4:
Payload1 = (b << 8) | Payload1;
break;
case 5:
Payload2 = b;
break;
case 6:
Payload2 = (b << 8) | Payload2;
break;
}
}
if (Checksum != chksum) { return; }
if ((Channel == 0) || (Channel > RFSNS_THEOV2_MAX_CHANNEL)) { return; }
Channel--;
rfsns_raw_signal->Repeats = 1; // het is een herhalend signaal. Bij ontvangst herhalingen onderdukken
int Payload3 = Voltage & 0x3f;
switch (Type) {
case 1: // Temp / Lux
rfsns_theo_v2_t1[Channel].time = LocalTime();
rfsns_theo_v2_t1[Channel].volt = Payload3;
rfsns_theo_v2_t1[Channel].temp = Payload1;
rfsns_theo_v2_t1[Channel].lux = Payload2;
break;
case 2: // Temp / Hum
rfsns_theo_v2_t2[Channel].time = LocalTime();
rfsns_theo_v2_t2[Channel].volt = Payload3;
rfsns_theo_v2_t2[Channel].temp = Payload1;
rfsns_theo_v2_t2[Channel].hum = Payload2;
break;
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("RFS: TheoV2, ChkCalc %d, Chksum %d, id %d, Type %d, Ch %d, Volt %d, BattLo %d, Pld1 %d, Pld2 %d"),
chksum, Checksum, id, Type, Channel +1, Payload3, (Voltage & 0x80) >> 7, Payload1, Payload2);
}
void RfSnsTheoV2Show(bool json)
{
bool sensor_once = false;
for (uint32_t i = 0; i < RFSNS_THEOV2_MAX_CHANNEL; i++) {
if (rfsns_theo_v2_t1[i].time) {
char sensor[10];
snprintf_P(sensor, sizeof(sensor), PSTR("TV2T1C%d"), i +1);
char voltage[33];
dtostrfd((float)rfsns_theo_v2_t1[i].volt / 10, 1, voltage);
if (rfsns_theo_v2_t1[i].time < LocalTime() - RFSNS_VALID_WINDOW) {
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_RFRECEIVED "\":\"%s\",\"" D_JSON_VOLTAGE "\":%s}"),
sensor, GetDT(rfsns_theo_v2_t1[i].time).c_str(), voltage);
}
} else {
char temperature[33];
dtostrfd(ConvertTemp((float)rfsns_theo_v2_t1[i].temp / 100), Settings.flag2.temperature_resolution, temperature);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_ILLUMINANCE "\":%d,\"" D_JSON_VOLTAGE "\":%s}"),
sensor, temperature, rfsns_theo_v2_t1[i].lux, voltage);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && !sensor_once) {
DomoticzSensor(DZ_TEMP, temperature);
DomoticzSensor(DZ_ILLUMINANCE, rfsns_theo_v2_t1[i].lux);
sensor_once = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, sensor, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, sensor, rfsns_theo_v2_t1[i].lux);
#endif // USE_WEBSERVER
}
}
}
}
sensor_once = false;
for (uint32_t i = 0; i < RFSNS_THEOV2_MAX_CHANNEL; i++) {
if (rfsns_theo_v2_t2[i].time) {
char sensor[10];
snprintf_P(sensor, sizeof(sensor), PSTR("TV2T2C%d"), i +1);
char voltage[33];
dtostrfd((float)rfsns_theo_v2_t2[i].volt / 10, 1, voltage);
if (rfsns_theo_v2_t2[i].time < LocalTime() - RFSNS_VALID_WINDOW) {
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_RFRECEIVED" \":\"%s\",\"" D_JSON_VOLTAGE "\":%s}"),
sensor, GetDT(rfsns_theo_v2_t2[i].time).c_str(), voltage);
}
} else {
float temp = ConvertTemp((float)rfsns_theo_v2_t2[i].temp / 100);
float humi = ConvertHumidity((float)rfsns_theo_v2_t2[i].hum / 100);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{"), sensor);
ResponseAppendTHD(temp, humi);
ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s}"), voltage);
if ((0 == tele_period) && !sensor_once) {
#ifdef USE_DOMOTICZ
DomoticzTempHumPressureSensor(temp, humi); //
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, temp);
KnxSensor(KNX_HUMIDITY, humi);
#endif // USE_KNX
sensor_once = true;
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_THD(sensor, temp, humi);
#endif // USE_WEBSERVER
}
}
}
}
}
#endif // USE_THEO_V2 ************************************************************************
#ifdef USE_ALECTO_V2
/*********************************************************************************************\
* Alecto V2 protocol
* Dit protocol zorgt voor ontvangst van Alecto weerstation buitensensoren
*
* Auteur : Nodo-team (Martinus van den Broek) www.nodo-domotica.nl
* Support ACH2010 en code optimalisatie door forumlid: Arendst
* Support : www.nodo-domotica.nl
* Datum : 25 Jan 2013
* Versie : 1.3
**********************************************************************************************
* Technische informatie:
* DKW2012 Message Format: (11 Bytes, 88 bits):
* AAAAAAAA AAAABBBB BBBB__CC CCCCCCCC DDDDDDDD EEEEEEEE FFFFFFFF GGGGGGGG GGGGGGGG HHHHHHHH IIIIIIII
* Temperature Humidity Windspd_ Windgust Rain____ ________ Winddir Checksum
* A = start/unknown, first 8 bits are always 11111111
* B = Rolling code
* C = Temperature (10 bit value with -400 base)
* D = Humidity
* E = windspeed (* 0.3 m/s, correction for webapp = 3600/1000 * 0.3 * 100 = 108))
* F = windgust (* 0.3 m/s, correction for webapp = 3600/1000 * 0.3 * 100 = 108))
* G = Rain ( * 0.3 mm)
* H = winddirection (0 = north, 4 = east, 8 = south 12 = west)
* I = Checksum, calculation is still under investigation
*
* WS3000 and ACH2010 systems have no winddirection, message format is 8 bit shorter
* Message Format: (10 Bytes, 80 bits):
* AAAAAAAA AAAABBBB BBBB__CC CCCCCCCC DDDDDDDD EEEEEEEE FFFFFFFF GGGGGGGG GGGGGGGG HHHHHHHH
* Temperature Humidity Windspd_ Windgust Rain____ ________ Checksum
*
* DCF Time Message Format: (NOT DECODED!)
* AAAAAAAA BBBBCCCC DDDDDDDD EFFFFFFF GGGGGGGG HHHHHHHH IIIIIIII JJJJJJJJ KKKKKKKK LLLLLLLL MMMMMMMM
* 11 Hours Minutes Seconds Year Month Day ? Checksum
* B = 11 = DCF
* C = ?
* D = ?
* E = ?
* F = Hours BCD format (7 bits only for this byte, MSB could be '1')
* G = Minutes BCD format
* H = Seconds BCD format
* I = Year BCD format (only two digits!)
* J = Month BCD format
* K = Day BCD format
* L = ?
* M = Checksum
\*********************************************************************************************/
#define RFSNS_DKW2012_PULSECOUNT 176
#define RFSNS_ACH2010_MIN_PULSECOUNT 160 // reduce this value (144?) in case of bad reception
#define RFSNS_ACH2010_MAX_PULSECOUNT 160
#define D_ALECTOV2 "AlectoV2"
const char kAlectoV2Directions[] PROGMEM = D_TX20_NORTH "|"
D_TX20_NORTH D_TX20_NORTH D_TX20_EAST "|"
D_TX20_NORTH D_TX20_EAST "|"
D_TX20_EAST D_TX20_NORTH D_TX20_EAST "|"
D_TX20_EAST "|"
D_TX20_EAST D_TX20_SOUTH D_TX20_EAST "|"
D_TX20_SOUTH D_TX20_EAST "|"
D_TX20_SOUTH D_TX20_SOUTH D_TX20_EAST "|"
D_TX20_SOUTH "|"
D_TX20_SOUTH D_TX20_SOUTH D_TX20_WEST "|"
D_TX20_SOUTH D_TX20_WEST "|"
D_TX20_WEST D_TX20_SOUTH D_TX20_WEST "|"
D_TX20_WEST "|"
D_TX20_WEST D_TX20_NORTH D_TX20_WEST "|"
D_TX20_NORTH D_TX20_WEST "|"
D_TX20_NORTH D_TX20_NORTH D_TX20_WEST;
typedef struct {
uint32_t time;
float temp;
float rain;
float wind;
float gust;
uint8_t type;
uint8_t humi;
uint8_t wdir;
} alecto_v2_t;
alecto_v2_t *rfsns_alecto_v2 = nullptr;
uint16_t rfsns_alecto_rain_base = 0;
void RfSnsInitAlectoV2(void)
{
rfsns_alecto_v2 = (alecto_v2_t*)malloc(sizeof(alecto_v2_t));
rfsns_any_sensor++;
}
void RfSnsAnalyzeAlectov2()
{