Tasmota/sonoff/xsns_ds18b20.ino

223 lines
5.6 KiB
Arduino
Raw Normal View History

2017-01-28 13:41:01 +00:00
/*
xsns_ds18b20.ino - DS18B20 temperature sensor support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
2017-01-28 13:41:01 +00:00
*/
#ifdef USE_DS18B20
/*********************************************************************************************\
* DS18B20 - Temperature
*
* Source: Marinus vd Broek https://github.com/ESP8266nu/ESPEasy and AlexTransit (CRC)
\*********************************************************************************************/
float dsb_mt = 0;
uint16_t dsb_lastresult = 0;
2017-01-28 13:41:01 +00:00
uint8_t dsb_reset()
{
uint8_t r;
uint8_t retries = 125;
pinMode(pin[GPIO_DSB], INPUT);
do { // wait until the wire is high... just in case
if (--retries == 0) {
return 0;
}
2017-01-28 13:41:01 +00:00
delayMicroseconds(2);
} while (!digitalRead(pin[GPIO_DSB]));
pinMode(pin[GPIO_DSB], OUTPUT);
digitalWrite(pin[GPIO_DSB], LOW);
delayMicroseconds(492); // Dallas spec. = Min. 480uSec. Arduino 500uSec.
pinMode(pin[GPIO_DSB], INPUT); // Float
delayMicroseconds(40);
r = !digitalRead(pin[GPIO_DSB]);
delayMicroseconds(420);
return r;
}
uint8_t dsb_read_bit(void)
{
uint8_t r;
pinMode(pin[GPIO_DSB], OUTPUT);
digitalWrite(pin[GPIO_DSB], LOW);
delayMicroseconds(3);
pinMode(pin[GPIO_DSB], INPUT); // let pin float, pull up will raise
delayMicroseconds(10);
r = digitalRead(pin[GPIO_DSB]);
delayMicroseconds(53);
return r;
}
uint8_t dsb_read(void)
{
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if (dsb_read_bit()) {
r |= bitMask;
}
}
2017-01-28 13:41:01 +00:00
return r;
}
void dsb_write_bit(uint8_t v)
{
if (v & 1) {
digitalWrite(pin[GPIO_DSB], LOW);
pinMode(pin[GPIO_DSB], OUTPUT);
delayMicroseconds(10);
digitalWrite(pin[GPIO_DSB], HIGH);
delayMicroseconds(55);
} else {
digitalWrite(pin[GPIO_DSB], LOW);
pinMode(pin[GPIO_DSB], OUTPUT);
delayMicroseconds(65);
digitalWrite(pin[GPIO_DSB], HIGH);
delayMicroseconds(5);
}
}
void dsb_write(uint8_t ByteToWrite)
{
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
2017-01-28 13:41:01 +00:00
dsb_write_bit((bitMask & ByteToWrite) ? 1 : 0);
}
2017-01-28 13:41:01 +00:00
}
uint8 dsb_crc(uint8 inp, uint8 crc)
{
inp ^= crc;
crc = 0;
if (inp & 0x1) crc ^= 0x5e;
if (inp & 0x2) crc ^= 0xbc;
if (inp & 0x4) crc ^= 0x61;
if (inp & 0x8) crc ^= 0xc2;
if (inp & 0x10) crc ^= 0x9d;
if (inp & 0x20) crc ^= 0x23;
if (inp & 0x40) crc ^= 0x46;
if (inp & 0x80) crc ^= 0x8c;
return crc;
}
void dsb_readTempPrep()
{
dsb_reset();
dsb_write(0xCC); // Skip ROM
dsb_write(0x44); // Start conversion
}
boolean dsb_readTemp(float &t)
2017-01-28 13:41:01 +00:00
{
int16_t DSTemp;
byte msb, lsb, crc, sign = 1;
2017-01-28 13:41:01 +00:00
if (!dsb_mt) {
t = NAN;
} else {
dsb_lastresult++;
if (dsb_lastresult > 8) { // Reset after 8 misses
dsb_mt = NAN;
}
t = dsb_mt;
}
2017-01-28 13:41:01 +00:00
if (!dsb_read_bit()) { //check measurement end
addLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_BUSY));
return !isnan(t);
2017-01-28 13:41:01 +00:00
}
/*
dsb_reset();
dsb_write(0xCC); // Skip ROM
dsb_write(0x44); // Start conversion
delay(800);
*/
dsb_reset();
dsb_write(0xCC); // Skip ROM
dsb_write(0xBE); // Read scratchpad
lsb = dsb_read();
msb = dsb_read();
crc = dsb_crc(lsb, crc);
crc = dsb_crc(msb, crc);
crc = dsb_crc(dsb_read(), crc);
crc = dsb_crc(dsb_read(), crc);
crc = dsb_crc(dsb_read(), crc);
crc = dsb_crc(dsb_read(), crc);
crc = dsb_crc(dsb_read(), crc);
crc = dsb_crc(dsb_read(), crc);
crc = dsb_crc(dsb_read(), crc);
dsb_reset();
if (crc) { //check crc
addLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR));
2017-01-28 13:41:01 +00:00
} else {
DSTemp = (msb << 8) + lsb;
if (DSTemp > 2047) {
DSTemp = (~DSTemp) +1;
sign = -1;
}
t = convertTemp((float)sign * DSTemp * 0.0625);
dsb_lastresult = 0;
}
if (!isnan(t)) {
dsb_mt = t;
2017-01-28 13:41:01 +00:00
}
return !isnan(t);
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
void dsb_mqttPresent(uint8_t* djson)
2017-01-28 13:41:01 +00:00
{
char stemp1[10];
float t;
if (dsb_readTemp(t)) { // Check if read failed
dtostrfd(t, sysCfg.flag.temperature_resolution, stemp1);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s, \"DS18B20\":{\"" D_TEMPERATURE "\":%s}"), mqtt_data, stemp1);
2017-01-28 13:41:01 +00:00
*djson = 1;
#ifdef USE_DOMOTICZ
domoticz_sensor(0, stemp1);
2017-01-28 13:41:01 +00:00
#endif // USE_DOMOTICZ
}
}
#ifdef USE_WEBSERVER
String dsb_webPresent()
{
// Needs TelePeriod to refresh data (Do not do it here as it takes too much time)
String page = "";
float st;
if (dsb_readTemp(st)) { // Check if read failed
char stemp[10];
char sensor[80];
dtostrfi(st, sysCfg.flag.temperature_resolution, stemp);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_TEMP, "DS18B20", stemp, tempUnit());
page += sensor;
2017-01-28 13:41:01 +00:00
}
dsb_readTempPrep();
2017-01-28 13:41:01 +00:00
return page;
}
#endif // USE_WEBSERVER
#endif // USE_DS18B20