Tasmota/tasmota/support_crash_recorder.ino

360 lines
13 KiB
Arduino
Raw Normal View History

/*
support_crash_recorder.ino - record the call stack in RTC in case of crash
2021-01-01 12:44:04 +00:00
Copyright (C) 2021 Stephan Hadinger, Theo Arends,
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Generate a crash to test the crash recorder
void CmndCrash(void)
{
volatile uint32_t dummy;
dummy = *((uint32_t*) 0x00000000);
(void)dummy;
}
// Do an infinite loop to trigger WDT watchdog
void CmndWDT(void)
{
volatile uint32_t dummy = 0;
while (1) {
dummy++;
}
}
// This will trigger the os watch after OSWATCH_RESET_TIME (=120) seconds
void CmndBlockedLoop(void)
{
while (1) {
delay(1000);
}
}
#ifdef ESP8266
const uint32_t crash_magic = 0x53415400; // Stack trace magic number (TASx)
const uint32_t crash_rtc_offset = 32; // Offset in RTC memory skipping OTA used block
const uint32_t crash_dump_max_len = 31; // Dump only 31 call addresses to satisfy max JSON length of about 600 characters
/**
* Save crash information in RTC memory
* This function is called automatically if ESP8266 suffers an exception
* It should be kept quick / consise to be able to execute before hardware wdt may kick in
*/
extern "C" void custom_crash_callback(struct rst_info * rst_info, uint32_t stack, uint32_t stack_end )
{
uint32_t addr_written = 0; // how many addresses have we already written in RTC
uint32_t value; // 4 bytes buffer to write to RTC
for (uint32_t i = stack; i < stack_end; i += 4) {
value = *((uint32_t*) i); // load value from stack
if ((value >= 0x40000000) && (value < 0x40300000)) { // keep only addresses in code area
ESP.rtcUserMemoryWrite(crash_rtc_offset + addr_written, (uint32_t*)&value, sizeof(value));
addr_written++;
if (addr_written >= crash_dump_max_len) { break; } // we store only 31 addresses
}
}
value = crash_magic + addr_written;
ESP.rtcUserMemoryWrite(crash_rtc_offset + crash_dump_max_len, (uint32_t*)&value, sizeof(value));
}
// Clear the RTC dump counter when we do a normal reboot, this avoids garbage data to stay in RTC
void CrashDumpClear(void)
{
uint32_t value = 0;
ESP.rtcUserMemoryWrite(crash_rtc_offset + crash_dump_max_len, (uint32_t*)&value, sizeof(value));
}
/*********************************************************************************************\
* CmndCrashDump - dump the crash history - called by `Status 12`
\*********************************************************************************************/
2019-12-28 13:54:26 +00:00
bool CrashFlag(void)
{
return ((ResetReason() == REASON_EXCEPTION_RST) || (ResetReason() == REASON_SOFT_WDT_RST) || oswatch_blocked_loop);
}
void CrashDump(void)
{
ResponseAppend_P(PSTR("{\"Exception\":%d,\"Reason\":\"%s\",\"EPC\":[\"%08x\",\"%08x\",\"%08x\"],\"EXCVADDR\":\"%08x\",\"DEPC\":\"%08x\""),
resetInfo.exccause, // Exception Cause
GetResetReason().c_str(), // Reset Reason
resetInfo.epc1, // Exception Progam Counter
resetInfo.epc2, // Exception Progam Counter - High-Priority Interrupt 1
resetInfo.epc3, // Exception Progam Counter - High-Priority Interrupt 2
resetInfo.excvaddr, // Exception Virtual Address Register - Virtual address that caused last fetch, load, or store exception
resetInfo.depc); // Double Exception Program Counter
uint32_t value;
ESP.rtcUserMemoryRead(crash_rtc_offset + crash_dump_max_len, (uint32_t*)&value, sizeof(value));
if (crash_magic == (value & 0xFFFFFF00)) {
ResponseAppend_P(PSTR(",\"CallChain\":["));
uint32_t count = value & 0x3F;
for (uint32_t i = 0; i < count; i++) {
ESP.rtcUserMemoryRead(crash_rtc_offset +i, (uint32_t*)&value, sizeof(value));
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"%08x\""), value);
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEnd();
}
#endif // ESP8266
#ifdef ESP32
const uint32_t crash_magic = 0x53415400; // Stack trace magic number (TASx)
const uint32_t crash_dump_max_len = 48; // Dump only 48 call addresses
// RTC_NOINIT_ATTR: store in RTC slow memory that survices a boot/crash
// needs to be volatile and have no intializer
RTC_NOINIT_ATTR volatile struct {
uint32_t magic;
uint32_t stack[crash_dump_max_len];
uint32_t pc;
uint32_t exccause;
uint32_t excvaddr;
} crash_recorder;
bool CrashFlag(void)
{
return crash_recorder.magic == crash_magic;
}
// Clear the RTC dump counter when we do a normal reboot, this avoids garbage data to stay in RTC
void CrashDumpClear(void)
{
crash_recorder.magic = 0;
for (uint32_t i=0; i<crash_dump_max_len; i++) {
crash_recorder.stack[i] = 0;
}
}
2022-01-30 11:55:03 +00:00
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
/**
* Save crash information in RTC memory
* This function is called automatically if ESP8266 suffers an exception
* It should be kept quick / consise to be able to execute before hardware wdt may kick in
*
* https://github.com/espressif/esp-idf/blob/dd491ee8513689191421943b737a31c159c91d17/components/esp_system/panic.c#L217
* https://github.com/espressif/esp-idf/blob/8131d6f46d690e9cb60cc5cd457863cc5479351f/components/esp_system/port/panic_handler.c
* https://github.com/espressif/esp-idf/issues/5163#issuecomment-617666293
* https://github.com/memfault/memfault-firmware-sdk/blob/70f2d4ed6884d907d4b39da99434b762209ba568/ports/esp_idf/memfault/CMakeLists.txt#L79
*
*/
// extern "C" void custom_crash_callback(struct rst_info * rst_info, uint32_t stack, uint32_t stack_end )
// esp_err_t IRAM_ATTR esp_backtrace_print(int depth)
#include "freertos/xtensa_api.h"
2021-09-12 18:55:15 +01:00
#if ESP_IDF_VERSION_MAJOR >= 4
#include "esp_debug_helpers.h"
#else // IDF 3.x
#include "esp_panic.h"
#endif
extern "C" {
// esp-idf 3.x
void __real_panicHandler(XtExcFrame *frame);
void __real_xt_unhandled_exception(XtExcFrame *frame);
}
extern "C" IRAM_ATTR void custom_crash_recorder(XtExcFrame *exc_frame) {
crash_recorder.magic = crash_magic; // crash occured
crash_recorder.pc = exc_frame->pc;
crash_recorder.exccause = exc_frame->exccause;
crash_recorder.excvaddr = exc_frame->excvaddr;
for (uint32_t i=0; i<crash_dump_max_len; i++) {
crash_recorder.stack[i] = 0;
}
uint32_t idx = 0; // slot in stack trace
// code copied from doBacktrace()
//Initialize stk_frame with first frame of stack
// esp_backtrace_frame_t stk_frame = {.pc = exc_frame->pc, .sp = exc_frame->a1, .next_pc = exc_frame->a0};
esp_backtrace_frame_t stk_frame;
stk_frame.pc = exc_frame->pc;
stk_frame.sp = exc_frame->a1;
stk_frame.next_pc = exc_frame->a0;
crash_recorder.stack[idx++] = esp_cpu_process_stack_pc(stk_frame.pc);
static const uint32_t depth = 100;
//Check if first frame is valid
bool corrupted = (esp_stack_ptr_is_sane(stk_frame.sp) &&
esp_ptr_executable((void*)esp_cpu_process_stack_pc(stk_frame.pc))) ?
false : true;
uint32_t i = ((depth <= 0) ? INT32_MAX : depth) - 1; //Account for stack frame that's already printed
while (i-- > 0 && stk_frame.next_pc != 0 && !corrupted) {
if (!esp_backtrace_get_next_frame(&stk_frame)) { //Get next stack frame
corrupted = true;
}
crash_recorder.stack[idx++] = esp_cpu_process_stack_pc(stk_frame.pc);
if (idx >= crash_dump_max_len) break; // no more slots
}
}
extern "C" IRAM_ATTR void __wrap_panicHandler(XtExcFrame *frame) {
custom_crash_recorder(frame);
__real_panicHandler(frame); // call the actual panic handler
}
extern "C" IRAM_ATTR void __wrap_xt_unhandled_exception(XtExcFrame *frame) {
crash_recorder.magic = crash_magic; // crash occured
custom_crash_recorder(frame);
__real_xt_unhandled_exception(frame); // call the actual panic handler
}
// taken in panic.c, but orginal array is 'static' so can't be called
static const char *edesc[] = {
"IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError",
"Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue",
"Privileged", "LoadStoreAlignment", "res", "res",
"InstrPDAddrError", "LoadStorePIFDataError", "InstrPIFAddrError", "LoadStorePIFAddrError",
"InstTLBMiss", "InstTLBMultiHit", "InstFetchPrivilege", "res",
"InstrFetchProhibited", "res", "res", "res",
"LoadStoreTLBMiss", "LoadStoreTLBMultihit", "LoadStorePrivilege", "res",
"LoadProhibited", "StoreProhibited", "res", "res",
"Cp0Dis", "Cp1Dis", "Cp2Dis", "Cp3Dis",
"Cp4Dis", "Cp5Dis", "Cp6Dis", "Cp7Dis"
};
#define NUM_EDESCS (sizeof(edesc) / sizeof(char *))
void CrashDump(void)
{
if (crash_recorder.magic == crash_magic) {
ResponseAppend_P("{\"Exception\":%d,\"Reason\":\"%s\",\"EPC\":\"%08x\",\"EXCVADDR\":\"%08x\"",
crash_recorder.exccause, // Exception Cause
crash_recorder.exccause < NUM_EDESCS ? edesc[crash_recorder.exccause] : "Unknown",
crash_recorder.pc, // Exception Progam Counter
crash_recorder.excvaddr // Exception Virtual Address Register - Virtual address that caused last fetch, load, or store exception
);
// crash dump present
ResponseAppend_P(PSTR(",\"CallChain\":["));
for (uint32_t i = 0; i < crash_dump_max_len; i++) {
uint32_t return_addr = crash_recorder.stack[i];
if (!return_addr) { break; }
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"%08x\""), return_addr);
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEnd();
}
#elif CONFIG_IDF_TARGET_ESP32C3
extern "C" {
// esp-idf 3.x
void __real_panicHandler(void *frame);
void __real_xt_unhandled_exception(void *frame);
}
// from panic_arch.c
const char *esp32c3_crash_reason[] = {
"Instruction address misaligned",
"Instruction access fault",
"Illegal instruction",
"Breakpoint",
"Load address misaligned",
"Load access fault",
"Store address misaligned",
"Store access fault",
"Environment call from U-mode",
"Environment call from S-mode",
"",
"Environment call from M-mode",
"Instruction page fault",
"Load page fault",
"",
"Store page fault",
};
#define NUM_C3_REASONS (sizeof(esp32c3_crash_reason) / sizeof(char *))
#include <riscv/rvruntime-frames.h>
extern "C" IRAM_ATTR void custom_crash_recorder(void *exc_frame) {
RvExcFrame *regs = (RvExcFrame *)exc_frame;
crash_recorder.magic = crash_magic; // crash occured
crash_recorder.pc = regs->mepc;
crash_recorder.exccause = regs->mcause;
crash_recorder.excvaddr = regs->mtval;
for (uint32_t i=0; i<crash_dump_max_len; i++) {
crash_recorder.stack[i] = 0;
}
uint32_t idx = 0; // slot in stack trace
crash_recorder.stack[idx++] = regs->ra; // push return address as first value
// // code copied from panic_print_basic_backtrace()
uint32_t * sp = (uint32_t*) regs->sp;
uint32_t i = 0;
for (uint32_t i = 0; ((uint32_t) sp) < 0x3FCDFFF0 && i < 320 && idx < crash_dump_max_len; i++, sp++) {
uint32_t value = *sp;
if ((value >= 0x40000000) && (value < 0x42800000)) { // keep only addresses in code area
crash_recorder.stack[idx++] = value;
}
}
}
extern "C" IRAM_ATTR void __wrap_panicHandler(void *frame) {
custom_crash_recorder(frame);
__real_panicHandler(frame); // call the actual panic handler
}
extern "C" IRAM_ATTR void __wrap_xt_unhandled_exception(void *frame) {
crash_recorder.magic = crash_magic; // crash occured
custom_crash_recorder(frame);
__real_xt_unhandled_exception(frame); // call the actual panic handler
}
void CrashDump(void)
{
if (crash_recorder.magic == crash_magic) {
ResponseAppend_P("{\"Exception\":%d,\"Reason\":\"%s\",\"EPC\":\"%08x\",\"EXCVADDR\":\"%08x\"",
crash_recorder.exccause, // Exception Cause
crash_recorder.exccause < NUM_C3_REASONS ? esp32c3_crash_reason[crash_recorder.exccause] : "Unknown",
crash_recorder.pc, // Exception Progam Counter
crash_recorder.excvaddr // Exception Virtual Address Register - Virtual address that caused last fetch, load, or store exception
);
// crash dump present
ResponseAppend_P(PSTR(",\"CallChain\":["));
for (uint32_t i = 0; i < crash_dump_max_len; i++) {
uint32_t return_addr = crash_recorder.stack[i];
if (!return_addr) { break; }
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"%08x\""), return_addr);
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEnd();
}
#else // unknown
bool CrashFlag(void)
{
return false;
}
// Clear the RTC dump counter when we do a normal reboot, this avoids garbage data to stay in RTC
void CrashDumpClear(void)
{
}
void CrashDump(void)
{
}
#endif
#endif