2020-04-20 21:50:53 +01:00
/*
xdrv_39_thermostat . ino - Thermostat controller for Tasmota
Copyright ( C ) 2020 Javier Arigita
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifdef USE_THERMOSTAT
# define XDRV_39 39
// Enable/disable debugging
2020-04-20 23:14:39 +01:00
//#define DEBUG_THERMOSTAT
2020-04-20 21:50:53 +01:00
# ifdef DEBUG_THERMOSTAT
# define DOMOTICZ_IDX1 791
# define DOMOTICZ_IDX2 792
# define DOMOTICZ_IDX3 793
# endif
// Commands
# define D_CMND_THERMOSTATMODESET "ThermostatModeSet"
# define D_CMND_TEMPFROSTPROTECTSET "TempFrostProtectSet"
# define D_CMND_CONTROLLERMODESET "ControllerModeSet"
# define D_CMND_INPUTSWITCHSET "InputSwitchSet"
# define D_CMND_OUTPUTRELAYSET "OutputRelaySet"
# define D_CMND_TIMEALLOWRAMPUPSET "TimeAllowRampupSet"
# define D_CMND_TEMPMEASUREDSET "TempMeasuredSet"
# define D_CMND_TEMPTARGETSET "TempTargetSet"
# define D_CMND_TEMPTARGETREAD "TempTargetRead"
# define D_CMND_TEMPMEASUREDREAD "TempMeasuredRead"
# define D_CMND_TEMPMEASUREDGRDREAD "TempMeasuredGrdRead"
# define D_CMND_TEMPSENSNUMBERSET "TempSensNumberSet"
# define D_CMND_STATEEMERGENCYSET "StateEmergencySet"
# define D_CMND_POWERMAXSET "PowerMaxSet"
# define D_CMND_TIMEMANUALTOAUTOSET "TimeManualToAutoSet"
# define D_CMND_TIMEONLIMITSET "TimeOnLimitSet"
# define D_CMND_PROPBANDSET "PropBandSet"
# define D_CMND_TIMERESETSET "TimeResetSet"
# define D_CMND_TIMEPICYCLESET "TimePiCycleSet"
# define D_CMND_TEMPANTIWINDUPRESETSET "TempAntiWindupResetSet"
# define D_CMND_TEMPHYSTSET "TempHystSet"
# define D_CMND_TIMEMAXACTIONSET "TimeMaxActionSet"
# define D_CMND_TIMEMINACTIONSET "TimeMinActionSet"
# define D_CMND_TIMEMINTURNOFFACTIONSET "TimeMinTurnoffActionSet"
# define D_CMND_TEMPRUPDELTINSET "TempRupDeltInSet"
# define D_CMND_TEMPRUPDELTOUTSET "TempRupDeltOutSet"
# define D_CMND_TIMERAMPUPMAXSET "TimeRampupMaxSet"
# define D_CMND_TIMERAMPUPCYCLESET "TimeRampupCycleSet"
# define D_CMND_TEMPRAMPUPPIACCERRSET "TempRampupPiAccErrSet"
# define D_CMND_TIMEPIPROPORTREAD "TimePiProportRead"
# define D_CMND_TIMEPIINTEGRREAD "TimePiIntegrRead"
# define D_CMND_TIMESENSLOSTSET "TimeSensLostSet"
enum ThermostatModes { THERMOSTAT_OFF , THERMOSTAT_AUTOMATIC_OP , THERMOSTAT_MANUAL_OP , THERMOSTAT_MODES_MAX } ;
enum ControllerModes { CTR_HYBRID , CTR_PI , CTR_RAMP_UP , CTR_MODES_MAX } ;
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP , CTR_HYBRID_PI } ;
enum InterfaceStates { IFACE_OFF , IFACE_ON } ;
enum CtrCycleStates { CYCLE_OFF , CYCLE_ON } ;
enum EmergencyStates { EMERGENCY_OFF , EMERGENCY_ON } ;
enum ThermostatSupportedInputSwitches {
THERMOSTAT_INPUT_NONE ,
THERMOSTAT_INPUT_SWT1 = 1 , // Buttons
THERMOSTAT_INPUT_SWT2 ,
THERMOSTAT_INPUT_SWT3 ,
THERMOSTAT_INPUT_SWT4
} ;
enum ThermostatSupportedOutputRelays {
THERMOSTAT_OUTPUT_NONE ,
THERMOSTAT_OUTPUT_REL1 = 1 , // Relays
THERMOSTAT_OUTPUT_REL2 ,
THERMOSTAT_OUTPUT_REL3 ,
THERMOSTAT_OUTPUT_REL4 ,
THERMOSTAT_OUTPUT_REL5 ,
THERMOSTAT_OUTPUT_REL6 ,
THERMOSTAT_OUTPUT_REL7 ,
THERMOSTAT_OUTPUT_REL8
} ;
typedef union {
uint16_t data ;
struct {
uint16_t thermostat_mode : 2 ; // Operation mode of the thermostat system
uint16_t controller_mode : 2 ; // Operation mode of the thermostat controller
uint16_t sensor_alive : 1 ; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active)
uint16_t command_output : 1 ; // Flag stating state to save the command to the output (0 = inactive, 1 = active)
uint16_t phase_hybrid_ctr : 1 ; // Phase of the hybrid controller (Ramp-up or PI)
uint16_t status_output : 1 ; // Status of the output switch
uint16_t status_cycle_active : 1 ; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint16_t state_emergency : 1 ; // State for thermostat emergency
uint16_t counter_seconds : 6 ; // Second counter used to track minutes
} ;
} ThermostatBitfield ;
# ifdef DEBUG_THERMOSTAT
const char DOMOTICZ_MES [ ] PROGMEM = " { \" idx \" :%d, \" nvalue \" :%d, \" svalue \" : \" %s \" } " ;
# endif
const char kThermostatCommands [ ] PROGMEM = " | " D_CMND_THERMOSTATMODESET " | " D_CMND_TEMPFROSTPROTECTSET " | "
D_CMND_CONTROLLERMODESET " | " D_CMND_INPUTSWITCHSET " | " D_CMND_OUTPUTRELAYSET " | " D_CMND_TIMEALLOWRAMPUPSET " | "
D_CMND_TEMPMEASUREDSET " | " D_CMND_TEMPTARGETSET " | " D_CMND_TEMPTARGETREAD " | "
D_CMND_TEMPMEASUREDREAD " | " D_CMND_TEMPMEASUREDGRDREAD " | " D_CMND_TEMPSENSNUMBERSET " | "
D_CMND_STATEEMERGENCYSET " | " D_CMND_POWERMAXSET " | " D_CMND_TIMEMANUALTOAUTOSET " | " D_CMND_TIMEONLIMITSET " | "
D_CMND_PROPBANDSET " | " D_CMND_TIMERESETSET " | " D_CMND_TIMEPICYCLESET " | " D_CMND_TEMPANTIWINDUPRESETSET " | "
D_CMND_TEMPHYSTSET " | " D_CMND_TIMEMAXACTIONSET " | " D_CMND_TIMEMINACTIONSET " | " D_CMND_TIMEMINTURNOFFACTIONSET " | "
D_CMND_TEMPRUPDELTINSET " | " D_CMND_TEMPRUPDELTOUTSET " | " D_CMND_TIMERAMPUPMAXSET " | " D_CMND_TIMERAMPUPCYCLESET " | "
D_CMND_TEMPRAMPUPPIACCERRSET " | " D_CMND_TIMEPIPROPORTREAD " | " D_CMND_TIMEPIINTEGRREAD " | " D_CMND_TIMESENSLOSTSET ;
void ( * const ThermostatCommand [ ] ) ( void ) PROGMEM = {
& CmndThermostatModeSet , & CmndTempFrostProtectSet , & CmndControllerModeSet , & CmndInputSwitchSet , & CmndOutputRelaySet ,
& CmndTimeAllowRampupSet , & CmndTempMeasuredSet , & CmndTempTargetSet , & CmndTempTargetRead ,
& CmndTempMeasuredRead , & CmndTempMeasuredGrdRead , & CmndTempSensNumberSet , & CmndStateEmergencySet ,
& CmndPowerMaxSet , & CmndTimeManualToAutoSet , & CmndTimeOnLimitSet , & CmndPropBandSet , & CmndTimeResetSet ,
& CmndTimePiCycleSet , & CmndTempAntiWindupResetSet , & CmndTempHystSet , & CmndTimeMaxActionSet ,
& CmndTimeMinActionSet , & CmndTimeMinTurnoffActionSet , & CmndTempRupDeltInSet , & CmndTempRupDeltOutSet ,
& CmndTimeRampupMaxSet , & CmndTimeRampupCycleSet , & CmndTempRampupPiAccErrSet , & CmndTimePiProportRead ,
& CmndTimePiIntegrRead , & CmndTimeSensLostSet } ;
struct THERMOSTAT {
2020-04-20 23:14:39 +01:00
uint32_t timestamp_temp_measured_update = 0 ; // Timestamp of latest measurement update
uint32_t timestamp_temp_meas_change_update = 0 ; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_off = 0 ; // Timestamp of latest thermostat output Off state
uint32_t timestamp_input_on = 0 ; // Timestamp of latest input On state
uint32_t time_thermostat_total = 0 ; // Time thermostat on within a specific timeframe
uint32_t time_ctr_checkpoint = 0 ; // Time to finalize the control cycle within the PI strategy or to switch to PI from Rampup
uint32_t time_ctr_changepoint = 0 ; // Time until switching off output within the controller
int32_t temp_measured_gradient = 0 ; // Temperature measured gradient from sensor in thousandths of degrees per hour
uint16_t temp_target_level = THERMOSTAT_TEMP_INIT ; // Target level of the thermostat in tenths of degrees
uint16_t temp_target_level_ctr = THERMOSTAT_TEMP_INIT ; // Target level set for the controller
int16_t temp_pi_accum_error = 0 ; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0 ; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi ; // Time proportional part of the PI controller
int32_t time_integral_pi ; // Time integral part of the PI controller
int32_t time_total_pi ; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0 ; // kP value for the PI controller
uint16_t kI_pi = 0 ; // kP value for the PI controller multiplied by 100
int16_t temp_measured = 0 ; // Temperature measurement received from sensor in tenths of degrees
uint8_t time_output_delay = THERMOSTAT_TIME_OUTPUT_DELAY ; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t counter_rampup_cycles = 0 ; // Counter of ramp-up cycles
int32_t temp_rampup_meas_gradient = 0 ; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
uint32_t timestamp_rampup_start = 0 ; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0 ; // Time constant of the thermostat system (step response time)
uint32_t time_rampup_nextcycle = 0 ; // Time where the ramp-up controller shall start the next cycle
uint8_t output_relay_number = THERMOSTAT_RELAY_NUMBER ; // Output relay number
uint8_t input_switch_number = THERMOSTAT_SWITCH_NUMBER ; // Input switch number
uint8_t temp_sens_number = THERMOSTAT_TEMP_SENS_NUMBER ; // Temperature sensor number
uint8_t temp_rampup_pi_acc_error = THERMOSTAT_TEMP_PI_RAMPUP_ACC_E ; // Accumulated error when switching from ramp-up controller to PI
uint8_t temp_rampup_delta_out = THERMOSTAT_TEMP_RAMPUP_DELTA_OUT ; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = THERMOSTAT_TEMP_RAMPUP_DELTA_IN ; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
int16_t temp_rampup_output_off = 0 ; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0 ; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0 ; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
uint16_t time_rampup_max = THERMOSTAT_TIME_RAMPUP_MAX ; // Time maximum ramp-up controller duration in minutes
uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE ; // Time ramp-up cycle in seconds
uint16_t time_allow_rampup = THERMOSTAT_TIME_ALLOW_RAMPUP ; // Time in minutes after last target update to allow ramp-up controller phase
2020-04-20 21:50:53 +01:00
uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST ; // Maximum time w/o sensor update to set it as lost
uint16_t time_manual_to_auto = THERMOSTAT_TIME_MANUAL_TO_AUTO ; // Time without input switch active to change from manual to automatic in minutes
uint16_t time_on_limit = THERMOSTAT_TIME_ON_LIMIT ; // Maximum time with output active in minutes
uint32_t time_reset = THERMOSTAT_TIME_RESET ; // Reset time of the PI controller in seconds
uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE ; // Cycle time for the thermostat controller in seconds
uint16_t time_max_action = THERMOSTAT_TIME_MAX_ACTION ; // Maximum thermostat time per cycle in minutes
uint16_t time_min_action = THERMOSTAT_TIME_MIN_ACTION ; // Minimum thermostat time per cycle in minutes
uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION ; // Minimum turnoff time in minutes, below it the thermostat will be held on
uint8_t val_prop_band = THERMOSTAT_PROP_BAND ; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP ; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS ; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT ; // Minimum temperature for frost protection, in tenths of degrees celsius
uint16_t power_max = THERMOSTAT_POWER_MAX ; // Maximum output power in Watt
2020-04-20 23:14:39 +01:00
uint16_t energy_thermostat_output_max = THERMOSTAT_ENERGY_OUTPUT_MAX ; // Maximum allowed energy output for thermostat valve in Watts
ThermostatBitfield status ; // Bittfield including states as well as several flags
2020-04-20 21:50:53 +01:00
} Thermostat ;
/*********************************************************************************************/
void ThermostatInit ( )
{
ExecuteCommandPower ( Thermostat . output_relay_number , POWER_OFF , SRC_THERMOSTAT ) ; // Make sure the Output is OFF
// Init Thermostat.status bitfield:
Thermostat . status . thermostat_mode = THERMOSTAT_OFF ;
Thermostat . status . controller_mode = CTR_HYBRID ;
Thermostat . status . sensor_alive = IFACE_OFF ;
Thermostat . status . command_output = IFACE_OFF ;
Thermostat . status . phase_hybrid_ctr = CTR_HYBRID_PI ;
Thermostat . status . status_output = IFACE_OFF ;
Thermostat . status . status_cycle_active = CYCLE_OFF ;
Thermostat . status . state_emergency = EMERGENCY_OFF ;
Thermostat . status . counter_seconds = 0 ;
}
bool ThermostatMinuteCounter ( )
{
bool result = false ;
Thermostat . status . counter_seconds + + ; // increment time
if ( ( Thermostat . status . counter_seconds % 60 ) = = 0 ) {
result = true ;
Thermostat . status . counter_seconds = 0 ;
}
return ( result ) ;
}
inline bool ThermostatSwitchIdValid ( uint8_t switchId )
{
return ( switchId > = THERMOSTAT_INPUT_SWT1 & & switchId < = THERMOSTAT_INPUT_SWT4 ) ;
}
inline bool ThermostatRelayIdValid ( uint8_t relayId )
{
return ( relayId > = THERMOSTAT_OUTPUT_REL1 & & relayId < = THERMOSTAT_OUTPUT_REL8 ) ;
}
uint8_t ThermostatSwitchStatus ( uint8_t input_switch )
{
bool ifId = ThermostatSwitchIdValid ( input_switch ) ;
if ( ifId ) {
return ( SwitchGetVirtual ( ifId - THERMOSTAT_INPUT_SWT1 ) ) ;
}
else return 255 ;
}
void ThermostatSignalProcessingSlow ( )
{
if ( ( uptime - Thermostat . timestamp_temp_measured_update ) > ( ( uint32_t ) Thermostat . time_sens_lost * 60 ) ) { // Check if sensor alive
Thermostat . status . sensor_alive = IFACE_OFF ;
Thermostat . temp_measured_gradient = 0 ;
Thermostat . temp_measured = 0 ;
}
}
void ThermostatSignalProcessingFast ( )
{
if ( ThermostatSwitchStatus ( Thermostat . input_switch_number ) ) { // Check if input switch active and register last update
Thermostat . timestamp_input_on = uptime ;
}
}
void ThermostatCtrState ( )
{
switch ( Thermostat . status . controller_mode ) {
case CTR_HYBRID : // Hybrid controller (Ramp-up + PI)
ThermostatHybridCtrPhase ( ) ;
break ;
case CTR_PI : // PI controller
break ;
case CTR_RAMP_UP : // Ramp-up controller (predictive)
break ;
}
}
void ThermostatHybridCtrPhase ( )
{
if ( Thermostat . status . controller_mode = = CTR_HYBRID ) {
switch ( Thermostat . status . phase_hybrid_ctr ) {
case CTR_HYBRID_RAMP_UP : // Ramp-up phase with gradient control
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
if ( ( Thermostat . time_ctr_checkpoint ! = 0 )
& & ( uptime > = Thermostat . time_ctr_checkpoint ) ) {
// Reset pause period
Thermostat . time_ctr_checkpoint = 0 ;
// Reset timers
Thermostat . time_ctr_changepoint = 0 ;
// Set PI controller
Thermostat . status . phase_hybrid_ctr = CTR_HYBRID_PI ;
}
break ;
case CTR_HYBRID_PI : // PI controller phase
// If no output action for a pre-defined time
// AND temp target has changed
// AND temp target - target actual bigger than threshold
// then go to ramp-up
if ( ( ( uptime - Thermostat . timestamp_output_off ) > ( 60 * ( uint32_t ) Thermostat . time_allow_rampup ) )
& & ( Thermostat . temp_target_level ! = Thermostat . temp_target_level_ctr )
& & ( ( Thermostat . temp_target_level - Thermostat . temp_measured ) > Thermostat . temp_rampup_delta_in ) ) {
Thermostat . timestamp_rampup_start = uptime ;
Thermostat . temp_rampup_start = Thermostat . temp_measured ;
Thermostat . temp_rampup_meas_gradient = 0 ;
Thermostat . time_rampup_deadtime = 0 ;
Thermostat . counter_rampup_cycles = 1 ;
Thermostat . time_ctr_changepoint = 0 ;
Thermostat . time_ctr_checkpoint = 0 ;
Thermostat . status . phase_hybrid_ctr = CTR_HYBRID_RAMP_UP ;
}
break ;
}
}
# ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitchCtrState ( ) ;
# endif
}
bool HeatStateAutoToManual ( )
{
bool change_state = false ;
// If switch input is active
// OR temperature sensor is not alive
// then go to manual
if ( ( ThermostatSwitchStatus ( Thermostat . input_switch_number ) = = 1 )
| | ( Thermostat . status . sensor_alive = = IFACE_OFF ) ) {
change_state = true ;
}
return change_state ;
}
bool HeatStateManualToAuto ( )
{
bool change_state ;
// If switch input inactive
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
if ( ( ThermostatSwitchStatus ( Thermostat . input_switch_number ) = = 0 )
& & ( ( uptime - Thermostat . timestamp_input_on ) > ( ( uint32_t ) Thermostat . time_manual_to_auto * 60 ) ) ) {
change_state = true ;
}
return change_state ;
}
bool HeatStateAllToOff ( )
{
bool change_state ;
// If emergency mode then switch OFF the output inmediately
if ( Thermostat . status . state_emergency = = EMERGENCY_ON ) {
Thermostat . status . thermostat_mode = THERMOSTAT_OFF ; // Emergency switch to THERMOSTAT_OFF
}
return change_state ;
}
void ThermostatState ( )
{
switch ( Thermostat . status . thermostat_mode ) {
case THERMOSTAT_OFF : // State if Off or Emergency
// No change of state possible without external command
break ;
case THERMOSTAT_AUTOMATIC_OP : // State automatic thermostat active following to command target temp.
if ( HeatStateAllToOff ( ) ) {
Thermostat . status . thermostat_mode = THERMOSTAT_OFF ; // Emergency switch to THERMOSTAT_OFF
}
if ( HeatStateAutoToManual ( ) ) {
Thermostat . status . thermostat_mode = THERMOSTAT_MANUAL_OP ; // If sensor not alive change to THERMOSTAT_MANUAL_OP
}
ThermostatCtrState ( ) ;
break ;
case THERMOSTAT_MANUAL_OP : // State manual operation following input switch
if ( HeatStateAllToOff ( ) ) {
Thermostat . status . thermostat_mode = THERMOSTAT_OFF ; // Emergency switch to THERMOSTAT_OFF
}
if ( HeatStateManualToAuto ( ) ) {
Thermostat . status . thermostat_mode = THERMOSTAT_AUTOMATIC_OP ; // Input switch inactive and timeout reached change to THERMOSTAT_AUTOMATIC_OP
}
break ;
}
}
void ThermostatOutputRelay ( bool active )
{
// TODO: See if the real output state can be read by f.i. bitRead(power, Thermostat.output_relay_number))
// If command received to enable output
// AND current output status is OFF
// then switch output to ON
if ( ( active = = true )
& & ( Thermostat . status . status_output = = IFACE_OFF ) ) {
ExecuteCommandPower ( Thermostat . output_relay_number , POWER_ON , SRC_THERMOSTAT ) ;
Thermostat . status . status_output = IFACE_ON ;
# ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitch ( ) ;
# endif
}
// If command received to disable output
// AND current output status is ON
// then switch output to OFF
else if ( ( active = = false ) & & ( Thermostat . status . status_output = = IFACE_ON ) ) {
ExecuteCommandPower ( Thermostat . output_relay_number , POWER_OFF , SRC_THERMOSTAT ) ;
Thermostat . timestamp_output_off = uptime ;
Thermostat . status . status_output = IFACE_OFF ;
# ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitch ( ) ;
# endif
}
}
void ThermostatCalculatePI ( )
{
// Calculate error
Thermostat . temp_pi_error = Thermostat . temp_target_level_ctr - Thermostat . temp_measured ;
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
Thermostat . kP_pi = 100 / ( uint16_t ) ( Thermostat . val_prop_band ) ;
// Calculate proportional
Thermostat . time_proportional_pi = ( ( int32_t ) ( Thermostat . temp_pi_error * ( int16_t ) Thermostat . kP_pi ) * ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) ) / 1000 ;
// Minimum proportional action limiter
// If proportional action is less than the minimum action time
// AND proportional > 0
// then adjust to minimum value
if ( ( Thermostat . time_proportional_pi < abs ( ( ( int32_t ) Thermostat . time_min_action * 60 ) ) )
& & ( Thermostat . time_proportional_pi > 0 ) ) {
Thermostat . time_proportional_pi = ( ( int32_t ) Thermostat . time_min_action * 60 ) ;
}
if ( Thermostat . time_proportional_pi < 0 ) {
Thermostat . time_proportional_pi = 0 ;
}
else if ( Thermostat . time_proportional_pi > ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) ) {
Thermostat . time_proportional_pi = ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) ;
}
// Calculate integral
Thermostat . kI_pi = ( uint16_t ) ( ( ( float ) Thermostat . kP_pi * ( ( float ) ( ( uint32_t ) Thermostat . time_pi_cycle * 60 ) / ( float ) Thermostat . time_reset ) ) * 100 ) ;
// Reset of antiwindup
// If error does not lay within the integrator scope range, do not use the integral
// and accumulate error = 0
if ( abs ( Thermostat . temp_pi_error ) > Thermostat . temp_reset_anti_windup ) {
Thermostat . time_integral_pi = 0 ;
Thermostat . temp_pi_accum_error = 0 ;
}
// Normal use of integrator
// result will be calculated with the cummulated previous error anterior
// and current error will be cummulated to the previous one
else {
// Hysteresis limiter
// If error is less than or equal than hysteresis, limit output to 0, when temperature
// is rising, never when falling. Limit cummulated error. If this is not done,
// there will be very strong control actions from the integral part due to a
// very high cummulated error when beingin hysteresis. This triggers high
// integral actions
// If we are under setpoint
// AND we are within the hysteresis
// AND we are rising
if ( ( Thermostat . temp_pi_error > = 0 )
& & ( abs ( Thermostat . temp_pi_error ) < = ( int16_t ) Thermostat . temp_hysteresis )
& & ( Thermostat . temp_measured_gradient > 0 ) ) {
Thermostat . temp_pi_accum_error + = Thermostat . temp_pi_error ;
// Reduce accumulator error 20% in each cycle
Thermostat . temp_pi_accum_error * = 0.8 ;
}
// If we are over setpoint
// AND temperature is rising
else if ( ( Thermostat . temp_pi_error < 0 )
& & ( Thermostat . temp_measured_gradient > 0 ) ) {
Thermostat . temp_pi_accum_error + = Thermostat . temp_pi_error ;
// Reduce accumulator error 20% in each cycle
Thermostat . temp_pi_accum_error * = 0.8 ;
}
else {
Thermostat . temp_pi_accum_error + = Thermostat . temp_pi_error ;
}
// Limit lower limit of acumErr to 0
if ( Thermostat . temp_pi_accum_error < 0 ) {
Thermostat . temp_pi_accum_error = 0 ;
}
// Integral calculation
Thermostat . time_integral_pi = ( ( ( int32_t ) Thermostat . temp_pi_accum_error * ( int32_t ) Thermostat . kI_pi ) * ( int32_t ) ( ( uint32_t ) Thermostat . time_pi_cycle * 60 ) ) / 100000 ;
// Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated]]
if ( Thermostat . time_integral_pi > ( ( uint32_t ) Thermostat . time_pi_cycle * 60 ) ) {
Thermostat . time_integral_pi = ( ( uint32_t ) Thermostat . time_pi_cycle * 60 ) ;
}
}
// Calculate output
Thermostat . time_total_pi = Thermostat . time_proportional_pi + Thermostat . time_integral_pi ;
// Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated]]
if ( Thermostat . time_total_pi > = ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) ) {
// Limit to cycle time //at least switch down a minimum time
Thermostat . time_total_pi = ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) ;
}
else if ( Thermostat . time_total_pi < 0 ) {
Thermostat . time_total_pi = 0 ;
}
// Target value limiter
// If target value has been reached or we are over it]]
if ( Thermostat . temp_pi_error < = 0 ) {
// If we are over the hysteresis or the gradient is positive
if ( ( abs ( Thermostat . temp_pi_error ) > Thermostat . temp_hysteresis )
| | ( Thermostat . temp_measured_gradient > = 0 ) ) {
Thermostat . time_total_pi = 0 ;
}
}
// If target value has not been reached
// AND we are withing the histeresis
// AND gradient is positive
// then set value to 0
else if ( ( Thermostat . temp_pi_error > 0 )
& & ( abs ( Thermostat . temp_pi_error ) < = Thermostat . temp_hysteresis )
& & ( Thermostat . temp_measured_gradient > 0 ) ) {
Thermostat . time_total_pi = 0 ;
}
// Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value]]
if ( ( Thermostat . time_total_pi < = abs ( ( ( uint32_t ) Thermostat . time_min_action * 60 ) ) )
& & ( Thermostat . time_total_pi ! = 0 ) ) {
Thermostat . time_total_pi = ( ( int32_t ) Thermostat . time_min_action * 60 ) ;
}
// Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value]]
else if ( Thermostat . time_total_pi > abs ( ( ( int32_t ) Thermostat . time_max_action * 60 ) ) ) {
Thermostat . time_total_pi = ( ( int32_t ) Thermostat . time_max_action * 60 ) ;
}
// If switched off less time than safety time, do not switch off
else if ( Thermostat . time_total_pi > ( ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) - ( ( int32_t ) Thermostat . time_min_turnoff_action * 60 ) ) ) {
Thermostat . time_total_pi = ( ( int32_t ) Thermostat . time_pi_cycle * 60 ) ;
}
// Adjust output switch point
Thermostat . time_ctr_changepoint = uptime + ( uint32_t ) Thermostat . time_total_pi ;
// Adjust next cycle point
Thermostat . time_ctr_checkpoint = uptime + ( ( uint32_t ) Thermostat . time_pi_cycle * 60 ) ;
}
void ThermostatWorkAutomaticPI ( )
{
char result_chr [ FLOATSZ ] ; // Remove!
if ( ( uptime > = Thermostat . time_ctr_checkpoint )
| | ( Thermostat . temp_target_level ! = Thermostat . temp_target_level_ctr )
| | ( ( Thermostat . temp_measured < Thermostat . temp_target_level )
& & ( Thermostat . temp_measured_gradient < 0 )
& & ( Thermostat . status . status_cycle_active = = CYCLE_OFF ) ) ) {
Thermostat . temp_target_level_ctr = Thermostat . temp_target_level ;
ThermostatCalculatePI ( ) ;
// Reset cycle active
Thermostat . status . status_cycle_active = CYCLE_OFF ;
}
if ( uptime < Thermostat . time_ctr_changepoint ) {
Thermostat . status . status_cycle_active = CYCLE_ON ;
Thermostat . status . command_output = IFACE_ON ;
}
else {
Thermostat . status . command_output = IFACE_OFF ;
}
}
void ThermostatWorkAutomaticRampUp ( )
{
uint32_t time_in_rampup ;
int16_t temp_delta_rampup ;
// Update timestamp for temperature at start of ramp-up if temperature still dropping
if ( Thermostat . temp_measured < Thermostat . temp_rampup_start ) {
Thermostat . temp_rampup_start = Thermostat . temp_measured ;
}
// Update time in ramp-up as well as delta temp
time_in_rampup = uptime - Thermostat . timestamp_rampup_start ;
temp_delta_rampup = Thermostat . temp_measured - Thermostat . temp_rampup_start ;
// Init command output status to true
Thermostat . status . command_output = IFACE_ON ;
// Update temperature target level for controller
Thermostat . temp_target_level_ctr = Thermostat . temp_target_level ;
// If time in ramp-up < max time
// AND temperature measured < target
if ( ( time_in_rampup < = ( 60 * ( uint32_t ) Thermostat . time_rampup_max ) )
& & ( Thermostat . temp_measured < Thermostat . temp_target_level ) ) {
// DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold
// AND deadtime still 0
if ( ( temp_delta_rampup > = Thermostat . temp_rampup_delta_out )
& & ( Thermostat . time_rampup_deadtime = = 0 ) ) {
// Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered
// minus open time of the valve (arround 3 minutes). If rise very fast limit it to delay of output valve
int32_t time_aux ;
time_aux = ( ( time_in_rampup / 2 ) - Thermostat . time_output_delay ) ;
if ( time_aux > = Thermostat . time_output_delay ) {
Thermostat . time_rampup_deadtime = ( uint32_t ) time_aux ;
}
else {
Thermostat . time_rampup_deadtime = Thermostat . time_output_delay ;
}
// Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Thermostat . temp_rampup_meas_gradient = ( int32_t ) ( ( 360000 * ( int32_t ) temp_delta_rampup ) / ( int32_t ) time_in_rampup ) ;
Thermostat . time_rampup_nextcycle = uptime + ( uint32_t ) Thermostat . time_rampup_cycle ;
// Set auxiliary variables
Thermostat . temp_rampup_cycle = Thermostat . temp_measured ;
Thermostat . time_ctr_changepoint = uptime + ( 60 * ( uint32_t ) Thermostat . time_rampup_max ) ;
Thermostat . temp_rampup_output_off = Thermostat . temp_target_level_ctr ;
}
// Gradient calculation every time_rampup_cycle
else if ( ( Thermostat . time_rampup_deadtime > 0 ) & & ( uptime > = Thermostat . time_rampup_nextcycle ) ) {
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Thermostat . temp_measured - Thermostat . temp_rampup_cycle ;
uint32_t time_total_rampup = ( uint32_t ) Thermostat . time_rampup_cycle * Thermostat . counter_rampup_cycles ;
// Translate into gradient per hour (thousandths of ° per hour)
Thermostat . temp_rampup_meas_gradient = int32_t ( ( 360000 * ( int32_t ) temp_delta_rampup ) / ( int32_t ) time_total_rampup ) ;
if ( Thermostat . temp_rampup_meas_gradient > 0 ) {
// Calculate time to switch Off and come out of ramp-up
// y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec
// Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed)
// x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime
// Thermostat.time_ctr_changepoint = (uint32_t)(((float)(Thermostat.temp_target_level_ctr - Thermostat.temp_rampup_cycle) / (float)temp_delta_rampup) * (float)(time_total_rampup)) + (uint32_t)(Thermostat.time_rampup_nextcycle - (time_total_rampup)) - Thermostat.time_rampup_deadtime;
Thermostat . time_ctr_changepoint = ( uint32_t ) ( ( ( float ) ( Thermostat . temp_target_level_ctr - Thermostat . temp_rampup_cycle ) * ( float ) ( time_total_rampup ) ) / ( float ) temp_delta_rampup ) + ( uint32_t ) ( Thermostat . time_rampup_nextcycle - ( time_total_rampup ) ) - Thermostat . time_rampup_deadtime ;
// Calculate temperature for switching off the output
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
// Thermostat.temp_rampup_output_off = (int16_t)(((float)(temp_delta_rampup) / (float)(time_total_rampup * Thermostat.counter_rampup_cycles)) * (float)(Thermostat.time_ctr_changepoint - (uptime - (time_total_rampup)))) + Thermostat.temp_rampup_cycle;
Thermostat . temp_rampup_output_off = ( int16_t ) ( ( ( float ) temp_delta_rampup * ( float ) ( Thermostat . time_ctr_changepoint - ( uptime - ( time_total_rampup ) ) ) ) / ( float ) ( time_total_rampup * Thermostat . counter_rampup_cycles ) ) + Thermostat . temp_rampup_cycle ;
// Set auxiliary variables
Thermostat . time_rampup_nextcycle = uptime + ( uint32_t ) Thermostat . time_rampup_cycle ;
Thermostat . temp_rampup_cycle = Thermostat . temp_measured ;
// Reset period counter
Thermostat . counter_rampup_cycles = 1 ;
}
else {
// Increase the period counter
Thermostat . counter_rampup_cycles + + ;
// Set another period
Thermostat . time_rampup_nextcycle = uptime + ( uint32_t ) Thermostat . time_rampup_cycle ;
// Reset time_ctr_changepoint and temp_rampup_output_off
Thermostat . time_ctr_changepoint = uptime + ( 60 * ( uint32_t ) Thermostat . time_rampup_max ) - time_in_rampup ;
Thermostat . temp_rampup_output_off = Thermostat . temp_target_level_ctr ;
}
// Set time to get out of ramp-up
Thermostat . time_ctr_checkpoint = Thermostat . time_ctr_changepoint + Thermostat . time_rampup_deadtime ;
}
// Set output switch ON or OFF
// If deadtime has not been calculated
// or checkpoint has not been calculated
// or it is not yet time and temperature to switch it off acc. to calculations
// or gradient is <= 0
if ( ( Thermostat . time_rampup_deadtime = = 0 )
| | ( Thermostat . time_ctr_checkpoint = = 0 )
| | ( uptime < Thermostat . time_ctr_changepoint )
| | ( Thermostat . temp_measured < Thermostat . temp_rampup_output_off )
| | ( Thermostat . temp_rampup_meas_gradient < = 0 ) ) {
Thermostat . status . command_output = IFACE_ON ;
}
else {
Thermostat . status . command_output = IFACE_OFF ;
}
}
else {
// If we have not reached the temperature, start with an initial value for accumulated error for the PI controller
if ( Thermostat . temp_measured < Thermostat . temp_target_level_ctr ) {
Thermostat . temp_pi_accum_error = Thermostat . temp_rampup_pi_acc_error ;
}
// Set to now time to get out of ramp-up
Thermostat . time_ctr_checkpoint = uptime ;
// Switch Off output
Thermostat . status . command_output = IFACE_OFF ;
}
}
void ThermostatCtrWork ( )
{
switch ( Thermostat . status . controller_mode ) {
case CTR_HYBRID : // Hybrid controller (Ramp-up + PI)
switch ( Thermostat . status . phase_hybrid_ctr ) {
case CTR_HYBRID_RAMP_UP :
ThermostatWorkAutomaticRampUp ( ) ;
break ;
case CTR_HYBRID_PI :
ThermostatWorkAutomaticPI ( ) ;
break ;
}
break ;
case CTR_PI : // PI controller
ThermostatWorkAutomaticPI ( ) ;
break ;
case CTR_RAMP_UP : // Ramp-up controller (predictive)
ThermostatWorkAutomaticRampUp ( ) ;
break ;
}
}
void ThermostatWork ( )
{
switch ( Thermostat . status . thermostat_mode ) {
case THERMOSTAT_OFF : // State if Off or Emergency
Thermostat . status . command_output = IFACE_OFF ;
break ;
case THERMOSTAT_AUTOMATIC_OP : // State automatic thermostat active following to command target temp.
ThermostatCtrWork ( ) ;
break ;
case THERMOSTAT_MANUAL_OP : // State manual operation following input switch
Thermostat . time_ctr_checkpoint = 0 ;
break ;
}
bool output_command ;
if ( Thermostat . status . command_output = = IFACE_OFF ) {
output_command = false ;
}
else {
output_command = true ;
}
ThermostatOutputRelay ( output_command ) ;
}
void ThermostatDiagnostics ( )
{
// TODOs:
// 1. Check time max for output switch on not exceeded
// 2. Check state of output corresponds to command
// 3. Check maximum power at output switch not exceeded
}
void ThermostatController ( )
{
ThermostatState ( ) ;
ThermostatWork ( ) ;
}
# ifdef DEBUG_THERMOSTAT
void ThermostatVirtualSwitch ( )
{
char domoticz_in_topic [ ] = DOMOTICZ_IN_TOPIC ;
Response_P ( DOMOTICZ_MES , DOMOTICZ_IDX1 , ( 0 = = Thermostat . status . status_output ) ? 0 : 1 , " " ) ;
MqttPublish ( domoticz_in_topic ) ;
}
void ThermostatVirtualSwitchCtrState ( )
{
char domoticz_in_topic [ ] = DOMOTICZ_IN_TOPIC ;
Response_P ( DOMOTICZ_MES , DOMOTICZ_IDX2 , ( 0 = = Thermostat . status . phase_hybrid_ctr ) ? 0 : 1 , " " ) ;
MqttPublish ( domoticz_in_topic ) ;
//Response_P(DOMOTICZ_MES, DOMOTICZ_IDX3, (0 == Thermostat.time_ctr_changepoint) ? 0 : 1, "");
//MqttPublish(domoticz_in_topic);
}
# endif
/*********************************************************************************************\
* Commands
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void CmndThermostatModeSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) ) ;
if ( ( value > = THERMOSTAT_OFF ) & & ( value < THERMOSTAT_MODES_MAX ) ) {
Thermostat . status . thermostat_mode = value ;
Thermostat . timestamp_input_on = 0 ; // Reset last manual switch timer if command set externally
}
}
ResponseCmndNumber ( ( int ) Thermostat . status . thermostat_mode ) ;
}
void CmndTempFrostProtectSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 255 ) ) {
Thermostat . temp_frost_protect = value ;
}
}
ResponseCmndFloat ( ( float ) ( Thermostat . temp_frost_protect ) / 10 , 1 ) ;
}
void CmndControllerModeSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < CTR_MODES_MAX ) ) {
Thermostat . status . controller_mode = value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . status . controller_mode ) ;
}
void CmndInputSwitchSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ThermostatSwitchIdValid ( value ) ) {
Thermostat . input_switch_number = value ;
Thermostat . timestamp_input_on = uptime ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . input_switch_number ) ;
}
void CmndOutputRelaySet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ThermostatRelayIdValid ( value ) ) {
Thermostat . output_relay_number = value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . output_relay_number ) ;
}
void CmndTimeAllowRampupSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < 86400 ) ) {
Thermostat . time_allow_rampup = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_allow_rampup * 60 ) ) ;
}
void CmndTempMeasuredSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
int16_t value = ( int16_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = - 1000 ) & & ( value < = 1000 ) ) {
uint32_t timestamp = uptime ;
// Calculate temperature gradient if temperature value has changed
if ( value ! = Thermostat . temp_measured ) {
int16_t temp_delta = ( value - Thermostat . temp_measured ) ; // in tenths of degrees
uint32_t time_delta = ( timestamp - Thermostat . timestamp_temp_meas_change_update ) ; // in seconds
Thermostat . temp_measured_gradient = ( int32_t ) ( ( 360000 * ( int32_t ) temp_delta ) / ( int32_t ) time_delta ) ; // hundreths of degrees per hour
Thermostat . temp_measured = value ;
Thermostat . timestamp_temp_meas_change_update = timestamp ;
}
Thermostat . timestamp_temp_measured_update = timestamp ;
Thermostat . status . sensor_alive = IFACE_ON ;
}
}
ResponseCmndFloat ( ( ( float ) Thermostat . temp_measured ) / 10 , 1 ) ;
}
void CmndTempTargetSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint16_t value = ( uint16_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = - 1000 )
& & ( value < = 1000 )
& & ( value > = Thermostat . temp_frost_protect ) ) {
Thermostat . temp_target_level = value ;
}
}
ResponseCmndFloat ( ( ( float ) Thermostat . temp_target_level ) / 10 , 1 ) ;
}
void CmndTempTargetRead ( void )
{
ResponseCmndFloat ( ( ( float ) Thermostat . temp_target_level ) / 10 , 1 ) ;
}
void CmndTempMeasuredRead ( void )
{
ResponseCmndFloat ( ( float ) ( Thermostat . temp_measured ) / 10 , 1 ) ;
}
void CmndTempMeasuredGrdRead ( void )
{
ResponseCmndFloat ( ( float ) ( Thermostat . temp_measured_gradient ) / 1000 , 1 ) ;
}
void CmndTempSensNumberSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 255 ) ) {
Thermostat . temp_sens_number = value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . temp_sens_number ) ;
}
void CmndStateEmergencySet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 1 ) ) {
Thermostat . status . state_emergency = ( uint16_t ) value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . status . state_emergency ) ;
}
void CmndPowerMaxSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint16_t value = ( uint16_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 1300 ) ) {
Thermostat . power_max = value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . power_max ) ;
}
void CmndTimeManualToAutoSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_manual_to_auto = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_manual_to_auto * 60 ) ) ;
}
void CmndTimeOnLimitSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_on_limit = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_on_limit * 60 ) ) ;
}
void CmndPropBandSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 20 ) ) {
Thermostat . val_prop_band = value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . val_prop_band ) ;
}
void CmndTimeResetSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_reset = value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . time_reset ) ;
}
void CmndTimePiCycleSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_pi_cycle = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_pi_cycle * 60 ) ) ;
}
void CmndTempAntiWindupResetSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = ( float ) ( 0 ) ) & & ( value < = ( float ) ( 100.0 ) ) ) {
Thermostat . temp_reset_anti_windup = value ;
}
}
ResponseCmndFloat ( ( float ) ( Thermostat . temp_reset_anti_windup ) / 10 , 1 ) ;
}
void CmndTempHystSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
int8_t value = ( int8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = - 100 ) & & ( value < = 100 ) ) {
Thermostat . temp_hysteresis = value ;
}
}
ResponseCmndFloat ( ( float ) ( Thermostat . temp_hysteresis ) / 10 , 1 ) ;
}
void CmndTimeMaxActionSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_max_action = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_max_action * 60 ) ) ;
}
void CmndTimeMinActionSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_min_action = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_min_action * 60 ) ) ;
}
void CmndTimeSensLostSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_sens_lost = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_sens_lost * 60 ) ) ;
}
void CmndTimeMinTurnoffActionSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_min_turnoff_action = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( uint32_t ) Thermostat . time_min_turnoff_action * 60 ) ) ;
}
void CmndTempRupDeltInSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 100 ) ) {
Thermostat . temp_rampup_delta_in = value ;
}
}
ResponseCmndFloat ( ( float ) ( Thermostat . temp_rampup_delta_in ) / 10 , 1 ) ;
}
void CmndTempRupDeltOutSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 100 ) ) {
Thermostat . temp_rampup_delta_out = value ;
}
}
ResponseCmndFloat ( ( float ) ( Thermostat . temp_rampup_delta_out ) / 10 , 1 ) ;
}
void CmndTimeRampupMaxSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
Thermostat . time_rampup_max = ( uint16_t ) ( value / 60 ) ;
}
}
ResponseCmndNumber ( ( int ) ( ( ( uint32_t ) Thermostat . time_rampup_max ) * 60 ) ) ;
}
void CmndTimeRampupCycleSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 54000 ) ) {
Thermostat . time_rampup_cycle = ( uint16_t ) value ;
}
}
ResponseCmndNumber ( ( int ) Thermostat . time_rampup_cycle ) ;
}
void CmndTempRampupPiAccErrSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 250 ) ) {
Thermostat . temp_rampup_pi_acc_error = value ;
}
}
ResponseCmndFloat ( ( float ) ( Thermostat . temp_rampup_pi_acc_error ) / 10 , 1 ) ;
}
void CmndTimePiProportRead ( void )
{
ResponseCmndNumber ( ( int ) Thermostat . time_proportional_pi ) ;
}
void CmndTimePiIntegrRead ( void )
{
ResponseCmndNumber ( ( int ) Thermostat . time_integral_pi ) ;
}
/*********************************************************************************************\
* Interface
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
bool Xdrv39 ( uint8_t function )
{
# ifdef DEBUG_THERMOSTAT
char result_chr [ FLOATSZ ] ;
# endif
bool result = false ;
switch ( function ) {
case FUNC_INIT :
ThermostatInit ( ) ;
break ;
case FUNC_LOOP :
ThermostatSignalProcessingFast ( ) ;
ThermostatDiagnostics ( ) ;
break ;
case FUNC_SERIAL :
break ;
case FUNC_EVERY_SECOND :
if ( ThermostatMinuteCounter ( ) ) {
ThermostatSignalProcessingSlow ( ) ;
ThermostatController ( ) ;
# ifdef DEBUG_THERMOSTAT
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " " ) ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " ------ Thermostat Start ------ " ) ) ;
dtostrfd ( Thermostat . status . counter_seconds , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.counter_seconds: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . status . thermostat_mode , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.thermostat_mode: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . status . controller_mode , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.controller_mode: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . status . phase_hybrid_ctr , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.phase_hybrid_ctr: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . status . sensor_alive , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.sensor_alive: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . status . status_output , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.status_output: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . status . status_cycle_active , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.status.status_cycle_active: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . time_proportional_pi , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.time_proportional_pi: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . time_integral_pi , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.time_integral_pi: %s " ) , result_chr ) ;
dtostrfd ( Thermostat . time_total_pi , 0 , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " Thermostat.time_total_pi: %s " ) , result_chr ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " ------ Thermostat End ------ " ) ) ;
AddLog_P2 ( LOG_LEVEL_DEBUG , PSTR ( " " ) ) ;
# endif
}
break ;
case FUNC_COMMAND :
result = DecodeCommand ( kThermostatCommands , ThermostatCommand ) ;
break ;
}
return result ;
}
# endif // USE_THERMOSTAT