Tasmota/sonoff/xnrg_02_cse7766.ino

255 lines
8.5 KiB
Arduino
Raw Normal View History

/*
xnrg_02_cse7766.ino - CSE7766 energy sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_CSE7766
/*********************************************************************************************\
* CSE7766 - Energy (Sonoff S31 and Sonoff Pow R2)
*
* Based on datasheet from http://www.chipsea.com/UploadFiles/2017/08/11144342F01B5662.pdf
\*********************************************************************************************/
#define XNRG_02 2
#define CSE_MAX_INVALID_POWER 128 // Number of invalid power receipts before deciding active power is zero
#define CSE_NOT_CALIBRATED 0xAA
#define CSE_PULSES_NOT_INITIALIZED -1
#define CSE_PREF 1000
#define CSE_UREF 100
uint8_t cse_receive_flag = 0;
long voltage_cycle = 0;
long current_cycle = 0;
long power_cycle = 0;
long power_cycle_first = 0;
long cf_pulses = 0;
long cf_pulses_last_time = CSE_PULSES_NOT_INITIALIZED;
uint8_t cse_power_invalid = CSE_MAX_INVALID_POWER;
void CseReceived(void)
{
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// 55 5A 02 F7 60 00 03 5A 00 40 10 04 8B 9F 51 A6 58 18 72 75 61 AC A1 30 - Power not valid (load below 5W)
// 55 5A 02 F7 60 00 03 AB 00 40 10 02 60 5D 51 A6 58 03 E9 EF 71 0B 7A 36
// Hd Id VCal---- Voltage- ICal---- Current- PCal---- Power--- Ad CF--- Ck
uint8_t header = serial_in_buffer[0];
if ((header & 0xFC) == 0xFC) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: Abnormal hardware"));
return;
}
// Get chip calibration data (coefficients) and use as initial defaults
if (HLW_UREF_PULSE == Settings.energy_voltage_calibration) {
long voltage_coefficient = 191200; // uSec
if (CSE_NOT_CALIBRATED != header) {
voltage_coefficient = serial_in_buffer[2] << 16 | serial_in_buffer[3] << 8 | serial_in_buffer[4];
}
Settings.energy_voltage_calibration = voltage_coefficient / CSE_UREF;
}
if (HLW_IREF_PULSE == Settings.energy_current_calibration) {
long current_coefficient = 16140; // uSec
if (CSE_NOT_CALIBRATED != header) {
current_coefficient = serial_in_buffer[8] << 16 | serial_in_buffer[9] << 8 | serial_in_buffer[10];
}
Settings.energy_current_calibration = current_coefficient;
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
long power_coefficient = 5364000; // uSec
if (CSE_NOT_CALIBRATED != header) {
power_coefficient = serial_in_buffer[14] << 16 | serial_in_buffer[15] << 8 | serial_in_buffer[16];
}
Settings.energy_power_calibration = power_coefficient / CSE_PREF;
}
uint8_t adjustement = serial_in_buffer[20];
voltage_cycle = serial_in_buffer[5] << 16 | serial_in_buffer[6] << 8 | serial_in_buffer[7];
current_cycle = serial_in_buffer[11] << 16 | serial_in_buffer[12] << 8 | serial_in_buffer[13];
power_cycle = serial_in_buffer[17] << 16 | serial_in_buffer[18] << 8 | serial_in_buffer[19];
cf_pulses = serial_in_buffer[21] << 8 | serial_in_buffer[22];
if (energy_power_on) { // Powered on
if (adjustement & 0x40) { // Voltage valid
energy_voltage = (float)(Settings.energy_voltage_calibration * CSE_UREF) / (float)voltage_cycle;
}
if (adjustement & 0x10) { // Power valid
cse_power_invalid = 0;
if ((header & 0xF2) == 0xF2) { // Power cycle exceeds range
energy_active_power = 0;
} else {
if (0 == power_cycle_first) { power_cycle_first = power_cycle; } // Skip first incomplete power_cycle
if (power_cycle_first != power_cycle) {
power_cycle_first = -1;
energy_active_power = (float)(Settings.energy_power_calibration * CSE_PREF) / (float)power_cycle;
} else {
energy_active_power = 0;
}
}
} else {
if (cse_power_invalid < CSE_MAX_INVALID_POWER) { // Allow measurements down to about 1W
cse_power_invalid++;
} else {
power_cycle_first = 0;
energy_active_power = 0; // Powered on but no load
}
}
if (adjustement & 0x20) { // Current valid
if (0 == energy_active_power) {
energy_current = 0;
} else {
energy_current = (float)Settings.energy_current_calibration / (float)current_cycle;
}
}
} else { // Powered off
power_cycle_first = 0;
energy_voltage = 0;
energy_active_power = 0;
energy_current = 0;
}
}
bool CseSerialInput(void)
{
if (cse_receive_flag) {
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
if (24 == serial_in_byte_counter) {
AddLogSerial(LOG_LEVEL_DEBUG_MORE);
uint8_t checksum = 0;
for (uint8_t i = 2; i < 23; i++) { checksum += serial_in_buffer[i]; }
if (checksum == serial_in_buffer[23]) {
CseReceived();
cse_receive_flag = 0;
return 1;
} else {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: " D_CHECKSUM_FAILURE));
do { // Sync buffer with data (issue #1907 and #3425)
memmove(serial_in_buffer, serial_in_buffer +1, 24);
serial_in_byte_counter--;
} while ((serial_in_byte_counter > 2) && (0x5A != serial_in_buffer[1]));
if (0x5A != serial_in_buffer[1]) {
cse_receive_flag = 0;
serial_in_byte_counter = 0;
}
}
}
} else {
if ((0x5A == serial_in_byte) && (1 == serial_in_byte_counter)) { // 0x5A - Packet header 2
cse_receive_flag = 1;
} else {
serial_in_byte_counter = 0;
}
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
}
serial_in_byte = 0; // Discard
return 0;
}
/********************************************************************************************/
void CseEverySecond(void)
{
long cf_frequency = 0;
if (CSE_PULSES_NOT_INITIALIZED == cf_pulses_last_time) {
cf_pulses_last_time = cf_pulses; // Init after restart
} else {
if (cf_pulses < cf_pulses_last_time) { // Rolled over after 65535 pulses
cf_frequency = (65536 - cf_pulses_last_time) + cf_pulses;
} else {
cf_frequency = cf_pulses - cf_pulses_last_time;
}
if (cf_frequency && energy_active_power) {
cf_pulses_last_time = cf_pulses;
energy_kWhtoday_delta += (cf_frequency * Settings.energy_power_calibration) / 36;
EnergyUpdateToday();
}
}
}
void CseDrvInit(void)
{
if (!energy_flg) {
if ((3 == pin[GPIO_CSE7766_RX]) && (1 == pin[GPIO_CSE7766_TX])) { // As it uses 8E1 currently only hardware serial is supported
baudrate = 4800;
serial_config = SERIAL_8E1;
energy_flg = XNRG_02;
}
}
}
bool CseCommand(void)
{
bool serviced = true;
if (CMND_POWERSET == energy_command_code) {
if (XdrvMailbox.data_len && power_cycle) {
Settings.energy_power_calibration = (unsigned long)(CharToDouble(XdrvMailbox.data) * power_cycle) / CSE_PREF;
}
}
else if (CMND_VOLTAGESET == energy_command_code) {
if (XdrvMailbox.data_len && voltage_cycle) {
Settings.energy_voltage_calibration = (unsigned long)(CharToDouble(XdrvMailbox.data) * voltage_cycle) / CSE_UREF;
}
}
else if (CMND_CURRENTSET == energy_command_code) {
if (XdrvMailbox.data_len && current_cycle) {
Settings.energy_current_calibration = (unsigned long)(CharToDouble(XdrvMailbox.data) * current_cycle) / 1000;
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
int Xnrg02(uint8_t function)
{
int result = 0;
if (FUNC_PRE_INIT == function) {
CseDrvInit();
}
else if (XNRG_02 == energy_flg) {
switch (function) {
case FUNC_EVERY_SECOND:
CseEverySecond();
break;
case FUNC_COMMAND:
result = CseCommand();
break;
case FUNC_SERIAL:
result = CseSerialInput();
break;
}
}
return result;
}
#endif // USE_CSE7766
#endif // USE_ENERGY_SENSOR