mirror of https://github.com/arendst/Tasmota.git
702 lines
22 KiB
C++
702 lines
22 KiB
C++
|
/*
|
||
|
RCSwitch - Arduino libary for remote control outlet switches
|
||
|
Copyright (c) 2011 Suat Özgür. All right reserved.
|
||
|
|
||
|
Contributors:
|
||
|
- Andre Koehler / info(at)tomate-online(dot)de
|
||
|
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
|
||
|
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
|
||
|
- Dominik Fischer / dom_fischer(at)web(dot)de
|
||
|
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
|
||
|
- Andreas Steinel / A.<lastname>(at)gmail(dot)com
|
||
|
- Max Horn / max(at)quendi(dot)de
|
||
|
- Robert ter Vehn / <first name>.<last name>(at)gmail(dot)com
|
||
|
- Johann Richard / <first name>.<last name>(at)gmail(dot)com
|
||
|
- Vlad Gheorghe / <first name>.<last name>(at)gmail(dot)com https://github.com/vgheo
|
||
|
|
||
|
Project home: https://github.com/sui77/rc-switch/
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#include "RCSwitch.h"
|
||
|
|
||
|
#ifdef RaspberryPi
|
||
|
// PROGMEM and _P functions are for AVR based microprocessors,
|
||
|
// so we must normalize these for the ARM processor:
|
||
|
#define PROGMEM
|
||
|
#define memcpy_P(dest, src, num) memcpy((dest), (src), (num))
|
||
|
#endif
|
||
|
|
||
|
#if defined(ESP8266) || defined(ESP32)
|
||
|
// interrupt handler and related code must be in RAM on ESP8266,
|
||
|
// according to issue #46.
|
||
|
#define RECEIVE_ATTR ICACHE_RAM_ATTR
|
||
|
#else
|
||
|
#define RECEIVE_ATTR
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Format for protocol definitions:
|
||
|
* {pulselength, Sync bit, "0" bit, "1" bit}
|
||
|
*
|
||
|
* pulselength: pulse length in microseconds, e.g. 350
|
||
|
* Sync bit: {1, 31} means 1 high pulse and 31 low pulses
|
||
|
* (perceived as a 31*pulselength long pulse, total length of sync bit is
|
||
|
* 32*pulselength microseconds), i.e:
|
||
|
* _
|
||
|
* | |_______________________________ (don't count the vertical bars)
|
||
|
* "0" bit: waveform for a data bit of value "0", {1, 3} means 1 high pulse
|
||
|
* and 3 low pulses, total length (1+3)*pulselength, i.e:
|
||
|
* _
|
||
|
* | |___
|
||
|
* "1" bit: waveform for a data bit of value "1", e.g. {3,1}:
|
||
|
* ___
|
||
|
* | |_
|
||
|
*
|
||
|
* These are combined to form Tri-State bits when sending or receiving codes.
|
||
|
*/
|
||
|
#if defined(ESP8266) || defined(ESP32)
|
||
|
static const RCSwitch::Protocol proto[] = {
|
||
|
#else
|
||
|
static const RCSwitch::Protocol PROGMEM proto[] = {
|
||
|
#endif
|
||
|
{ 350, { 1, 31 }, { 1, 3 }, { 3, 1 }, false }, // protocol 1
|
||
|
{ 650, { 1, 10 }, { 1, 2 }, { 2, 1 }, false }, // protocol 2
|
||
|
{ 100, { 30, 71 }, { 4, 11 }, { 9, 6 }, false }, // protocol 3
|
||
|
{ 380, { 1, 6 }, { 1, 3 }, { 3, 1 }, false }, // protocol 4
|
||
|
{ 500, { 6, 14 }, { 1, 2 }, { 2, 1 }, false }, // protocol 5
|
||
|
{ 450, { 23, 1 }, { 1, 2 }, { 2, 1 }, true }, // protocol 6 (HT6P20B)
|
||
|
{ 150, { 2, 62 }, { 1, 6 }, { 6, 1 }, false } // protocol 7 (HS2303-PT, i. e. used in AUKEY Remote)
|
||
|
};
|
||
|
|
||
|
enum {
|
||
|
numProto = sizeof(proto) / sizeof(proto[0])
|
||
|
};
|
||
|
|
||
|
#if not defined( RCSwitchDisableReceiving )
|
||
|
volatile unsigned long RCSwitch::nReceivedValue = 0;
|
||
|
volatile unsigned int RCSwitch::nReceivedBitlength = 0;
|
||
|
volatile unsigned int RCSwitch::nReceivedDelay = 0;
|
||
|
volatile unsigned int RCSwitch::nReceivedProtocol = 0;
|
||
|
int RCSwitch::nReceiveTolerance = 60;
|
||
|
const unsigned int RCSwitch::nSeparationLimit = 4300;
|
||
|
// separationLimit: minimum microseconds between received codes, closer codes are ignored.
|
||
|
// according to discussion on issue #14 it might be more suitable to set the separation
|
||
|
// limit to the same time as the 'low' part of the sync signal for the current protocol.
|
||
|
unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES];
|
||
|
#endif
|
||
|
|
||
|
RCSwitch::RCSwitch() {
|
||
|
this->nTransmitterPin = -1;
|
||
|
this->setRepeatTransmit(10);
|
||
|
this->setProtocol(1);
|
||
|
#if not defined( RCSwitchDisableReceiving )
|
||
|
this->nReceiverInterrupt = -1;
|
||
|
this->setReceiveTolerance(60);
|
||
|
RCSwitch::nReceivedValue = 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the protocol to send.
|
||
|
*/
|
||
|
void RCSwitch::setProtocol(Protocol protocol) {
|
||
|
this->protocol = protocol;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the protocol to send, from a list of predefined protocols
|
||
|
*/
|
||
|
void RCSwitch::setProtocol(int nProtocol) {
|
||
|
if (nProtocol < 1 || nProtocol > numProto) {
|
||
|
nProtocol = 1; // TODO: trigger an error, e.g. "bad protocol" ???
|
||
|
}
|
||
|
#if defined(ESP8266) || defined(ESP32)
|
||
|
this->protocol = proto[nProtocol-1];
|
||
|
#else
|
||
|
memcpy_P(&this->protocol, &proto[nProtocol-1], sizeof(Protocol));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the protocol to send with pulse length in microseconds.
|
||
|
*/
|
||
|
void RCSwitch::setProtocol(int nProtocol, int nPulseLength) {
|
||
|
setProtocol(nProtocol);
|
||
|
this->setPulseLength(nPulseLength);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Sets pulse length in microseconds
|
||
|
*/
|
||
|
void RCSwitch::setPulseLength(int nPulseLength) {
|
||
|
this->protocol.pulseLength = nPulseLength;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets Repeat Transmits
|
||
|
*/
|
||
|
void RCSwitch::setRepeatTransmit(int nRepeatTransmit) {
|
||
|
this->nRepeatTransmit = nRepeatTransmit;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set Receiving Tolerance
|
||
|
*/
|
||
|
#if not defined( RCSwitchDisableReceiving )
|
||
|
void RCSwitch::setReceiveTolerance(int nPercent) {
|
||
|
RCSwitch::nReceiveTolerance = nPercent;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Enable transmissions
|
||
|
*
|
||
|
* @param nTransmitterPin Arduino Pin to which the sender is connected to
|
||
|
*/
|
||
|
void RCSwitch::enableTransmit(int nTransmitterPin) {
|
||
|
this->nTransmitterPin = nTransmitterPin;
|
||
|
pinMode(this->nTransmitterPin, OUTPUT);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Disable transmissions
|
||
|
*/
|
||
|
void RCSwitch::disableTransmit() {
|
||
|
this->nTransmitterPin = -1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch on (Type D REV)
|
||
|
*
|
||
|
* @param sGroup Code of the switch group (A,B,C,D)
|
||
|
* @param nDevice Number of the switch itself (1..3)
|
||
|
*/
|
||
|
void RCSwitch::switchOn(char sGroup, int nDevice) {
|
||
|
this->sendTriState( this->getCodeWordD(sGroup, nDevice, true) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch off (Type D REV)
|
||
|
*
|
||
|
* @param sGroup Code of the switch group (A,B,C,D)
|
||
|
* @param nDevice Number of the switch itself (1..3)
|
||
|
*/
|
||
|
void RCSwitch::switchOff(char sGroup, int nDevice) {
|
||
|
this->sendTriState( this->getCodeWordD(sGroup, nDevice, false) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch on (Type C Intertechno)
|
||
|
*
|
||
|
* @param sFamily Familycode (a..f)
|
||
|
* @param nGroup Number of group (1..4)
|
||
|
* @param nDevice Number of device (1..4)
|
||
|
*/
|
||
|
void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) {
|
||
|
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch off (Type C Intertechno)
|
||
|
*
|
||
|
* @param sFamily Familycode (a..f)
|
||
|
* @param nGroup Number of group (1..4)
|
||
|
* @param nDevice Number of device (1..4)
|
||
|
*/
|
||
|
void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) {
|
||
|
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch on (Type B with two rotary/sliding switches)
|
||
|
*
|
||
|
* @param nAddressCode Number of the switch group (1..4)
|
||
|
* @param nChannelCode Number of the switch itself (1..4)
|
||
|
*/
|
||
|
void RCSwitch::switchOn(int nAddressCode, int nChannelCode) {
|
||
|
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch off (Type B with two rotary/sliding switches)
|
||
|
*
|
||
|
* @param nAddressCode Number of the switch group (1..4)
|
||
|
* @param nChannelCode Number of the switch itself (1..4)
|
||
|
*/
|
||
|
void RCSwitch::switchOff(int nAddressCode, int nChannelCode) {
|
||
|
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Deprecated, use switchOn(const char* sGroup, const char* sDevice) instead!
|
||
|
* Switch a remote switch on (Type A with 10 pole DIP switches)
|
||
|
*
|
||
|
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
|
||
|
* @param nChannelCode Number of the switch itself (1..5)
|
||
|
*/
|
||
|
void RCSwitch::switchOn(const char* sGroup, int nChannel) {
|
||
|
const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
|
||
|
this->switchOn(sGroup, code[nChannel]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Deprecated, use switchOff(const char* sGroup, const char* sDevice) instead!
|
||
|
* Switch a remote switch off (Type A with 10 pole DIP switches)
|
||
|
*
|
||
|
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
|
||
|
* @param nChannelCode Number of the switch itself (1..5)
|
||
|
*/
|
||
|
void RCSwitch::switchOff(const char* sGroup, int nChannel) {
|
||
|
const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
|
||
|
this->switchOff(sGroup, code[nChannel]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch on (Type A with 10 pole DIP switches)
|
||
|
*
|
||
|
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
|
||
|
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
|
||
|
*/
|
||
|
void RCSwitch::switchOn(const char* sGroup, const char* sDevice) {
|
||
|
this->sendTriState( this->getCodeWordA(sGroup, sDevice, true) );
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Switch a remote switch off (Type A with 10 pole DIP switches)
|
||
|
*
|
||
|
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
|
||
|
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
|
||
|
*/
|
||
|
void RCSwitch::switchOff(const char* sGroup, const char* sDevice) {
|
||
|
this->sendTriState( this->getCodeWordA(sGroup, sDevice, false) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns a char[13], representing the code word to be send.
|
||
|
*
|
||
|
*/
|
||
|
char* RCSwitch::getCodeWordA(const char* sGroup, const char* sDevice, bool bStatus) {
|
||
|
static char sReturn[13];
|
||
|
int nReturnPos = 0;
|
||
|
|
||
|
for (int i = 0; i < 5; i++) {
|
||
|
sReturn[nReturnPos++] = (sGroup[i] == '0') ? 'F' : '0';
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 5; i++) {
|
||
|
sReturn[nReturnPos++] = (sDevice[i] == '0') ? 'F' : '0';
|
||
|
}
|
||
|
|
||
|
sReturn[nReturnPos++] = bStatus ? '0' : 'F';
|
||
|
sReturn[nReturnPos++] = bStatus ? 'F' : '0';
|
||
|
|
||
|
sReturn[nReturnPos] = '\0';
|
||
|
return sReturn;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Encoding for type B switches with two rotary/sliding switches.
|
||
|
*
|
||
|
* The code word is a tristate word and with following bit pattern:
|
||
|
*
|
||
|
* +-----------------------------+-----------------------------+----------+------------+
|
||
|
* | 4 bits address | 4 bits address | 3 bits | 1 bit |
|
||
|
* | switch group | switch number | not used | on / off |
|
||
|
* | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | FFF | on=F off=0 |
|
||
|
* +-----------------------------+-----------------------------+----------+------------+
|
||
|
*
|
||
|
* @param nAddressCode Number of the switch group (1..4)
|
||
|
* @param nChannelCode Number of the switch itself (1..4)
|
||
|
* @param bStatus Whether to switch on (true) or off (false)
|
||
|
*
|
||
|
* @return char[13], representing a tristate code word of length 12
|
||
|
*/
|
||
|
char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, bool bStatus) {
|
||
|
static char sReturn[13];
|
||
|
int nReturnPos = 0;
|
||
|
|
||
|
if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (int i = 1; i <= 4; i++) {
|
||
|
sReturn[nReturnPos++] = (nAddressCode == i) ? '0' : 'F';
|
||
|
}
|
||
|
|
||
|
for (int i = 1; i <= 4; i++) {
|
||
|
sReturn[nReturnPos++] = (nChannelCode == i) ? '0' : 'F';
|
||
|
}
|
||
|
|
||
|
sReturn[nReturnPos++] = 'F';
|
||
|
sReturn[nReturnPos++] = 'F';
|
||
|
sReturn[nReturnPos++] = 'F';
|
||
|
|
||
|
sReturn[nReturnPos++] = bStatus ? 'F' : '0';
|
||
|
|
||
|
sReturn[nReturnPos] = '\0';
|
||
|
return sReturn;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like getCodeWord (Type C = Intertechno)
|
||
|
*/
|
||
|
char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, bool bStatus) {
|
||
|
static char sReturn[13];
|
||
|
int nReturnPos = 0;
|
||
|
|
||
|
int nFamily = (int)sFamily - 'a';
|
||
|
if ( nFamily < 0 || nFamily > 15 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// encode the family into four bits
|
||
|
sReturn[nReturnPos++] = (nFamily & 1) ? 'F' : '0';
|
||
|
sReturn[nReturnPos++] = (nFamily & 2) ? 'F' : '0';
|
||
|
sReturn[nReturnPos++] = (nFamily & 4) ? 'F' : '0';
|
||
|
sReturn[nReturnPos++] = (nFamily & 8) ? 'F' : '0';
|
||
|
|
||
|
// encode the device and group
|
||
|
sReturn[nReturnPos++] = ((nDevice-1) & 1) ? 'F' : '0';
|
||
|
sReturn[nReturnPos++] = ((nDevice-1) & 2) ? 'F' : '0';
|
||
|
sReturn[nReturnPos++] = ((nGroup-1) & 1) ? 'F' : '0';
|
||
|
sReturn[nReturnPos++] = ((nGroup-1) & 2) ? 'F' : '0';
|
||
|
|
||
|
// encode the status code
|
||
|
sReturn[nReturnPos++] = '0';
|
||
|
sReturn[nReturnPos++] = 'F';
|
||
|
sReturn[nReturnPos++] = 'F';
|
||
|
sReturn[nReturnPos++] = bStatus ? 'F' : '0';
|
||
|
|
||
|
sReturn[nReturnPos] = '\0';
|
||
|
return sReturn;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Encoding for the REV Switch Type
|
||
|
*
|
||
|
* The code word is a tristate word and with following bit pattern:
|
||
|
*
|
||
|
* +-----------------------------+-------------------+----------+--------------+
|
||
|
* | 4 bits address | 3 bits address | 3 bits | 2 bits |
|
||
|
* | switch group | device number | not used | on / off |
|
||
|
* | A=1FFF B=F1FF C=FF1F D=FFF1 | 1=0FF 2=F0F 3=FF0 | 000 | on=10 off=01 |
|
||
|
* +-----------------------------+-------------------+----------+--------------+
|
||
|
*
|
||
|
* Source: http://www.the-intruder.net/funksteckdosen-von-rev-uber-arduino-ansteuern/
|
||
|
*
|
||
|
* @param sGroup Name of the switch group (A..D, resp. a..d)
|
||
|
* @param nDevice Number of the switch itself (1..3)
|
||
|
* @param bStatus Whether to switch on (true) or off (false)
|
||
|
*
|
||
|
* @return char[13], representing a tristate code word of length 12
|
||
|
*/
|
||
|
char* RCSwitch::getCodeWordD(char sGroup, int nDevice, bool bStatus) {
|
||
|
static char sReturn[13];
|
||
|
int nReturnPos = 0;
|
||
|
|
||
|
// sGroup must be one of the letters in "abcdABCD"
|
||
|
int nGroup = (sGroup >= 'a') ? (int)sGroup - 'a' : (int)sGroup - 'A';
|
||
|
if ( nGroup < 0 || nGroup > 3 || nDevice < 1 || nDevice > 3) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
sReturn[nReturnPos++] = (nGroup == i) ? '1' : 'F';
|
||
|
}
|
||
|
|
||
|
for (int i = 1; i <= 3; i++) {
|
||
|
sReturn[nReturnPos++] = (nDevice == i) ? '1' : 'F';
|
||
|
}
|
||
|
|
||
|
sReturn[nReturnPos++] = '0';
|
||
|
sReturn[nReturnPos++] = '0';
|
||
|
sReturn[nReturnPos++] = '0';
|
||
|
|
||
|
sReturn[nReturnPos++] = bStatus ? '1' : '0';
|
||
|
sReturn[nReturnPos++] = bStatus ? '0' : '1';
|
||
|
|
||
|
sReturn[nReturnPos] = '\0';
|
||
|
return sReturn;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @param sCodeWord a tristate code word consisting of the letter 0, 1, F
|
||
|
*/
|
||
|
void RCSwitch::sendTriState(const char* sCodeWord) {
|
||
|
// turn the tristate code word into the corresponding bit pattern, then send it
|
||
|
unsigned long code = 0;
|
||
|
unsigned int length = 0;
|
||
|
for (const char* p = sCodeWord; *p; p++) {
|
||
|
code <<= 2L;
|
||
|
switch (*p) {
|
||
|
case '0':
|
||
|
// bit pattern 00
|
||
|
break;
|
||
|
case 'F':
|
||
|
// bit pattern 01
|
||
|
code |= 1L;
|
||
|
break;
|
||
|
case '1':
|
||
|
// bit pattern 11
|
||
|
code |= 3L;
|
||
|
break;
|
||
|
}
|
||
|
length += 2;
|
||
|
}
|
||
|
this->send(code, length);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @param sCodeWord a binary code word consisting of the letter 0, 1
|
||
|
*/
|
||
|
void RCSwitch::send(const char* sCodeWord) {
|
||
|
// turn the tristate code word into the corresponding bit pattern, then send it
|
||
|
unsigned long code = 0;
|
||
|
unsigned int length = 0;
|
||
|
for (const char* p = sCodeWord; *p; p++) {
|
||
|
code <<= 1L;
|
||
|
if (*p != '0')
|
||
|
code |= 1L;
|
||
|
length++;
|
||
|
}
|
||
|
this->send(code, length);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transmit the first 'length' bits of the integer 'code'. The
|
||
|
* bits are sent from MSB to LSB, i.e., first the bit at position length-1,
|
||
|
* then the bit at position length-2, and so on, till finally the bit at position 0.
|
||
|
*/
|
||
|
void RCSwitch::send(unsigned long code, unsigned int length) {
|
||
|
if (this->nTransmitterPin == -1)
|
||
|
return;
|
||
|
|
||
|
#if not defined( RCSwitchDisableReceiving )
|
||
|
// make sure the receiver is disabled while we transmit
|
||
|
int nReceiverInterrupt_backup = nReceiverInterrupt;
|
||
|
if (nReceiverInterrupt_backup != -1) {
|
||
|
this->disableReceive();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
for (int nRepeat = 0; nRepeat < nRepeatTransmit; nRepeat++) {
|
||
|
for (int i = length-1; i >= 0; i--) {
|
||
|
if (code & (1L << i))
|
||
|
this->transmit(protocol.one);
|
||
|
else
|
||
|
this->transmit(protocol.zero);
|
||
|
}
|
||
|
this->transmit(protocol.syncFactor);
|
||
|
}
|
||
|
|
||
|
// Disable transmit after sending (i.e., for inverted protocols)
|
||
|
digitalWrite(this->nTransmitterPin, LOW);
|
||
|
|
||
|
#if not defined( RCSwitchDisableReceiving )
|
||
|
// enable receiver again if we just disabled it
|
||
|
if (nReceiverInterrupt_backup != -1) {
|
||
|
this->enableReceive(nReceiverInterrupt_backup);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transmit a single high-low pulse.
|
||
|
*/
|
||
|
void RCSwitch::transmit(HighLow pulses) {
|
||
|
uint8_t firstLogicLevel = (this->protocol.invertedSignal) ? LOW : HIGH;
|
||
|
uint8_t secondLogicLevel = (this->protocol.invertedSignal) ? HIGH : LOW;
|
||
|
|
||
|
digitalWrite(this->nTransmitterPin, firstLogicLevel);
|
||
|
delayMicroseconds( this->protocol.pulseLength * pulses.high);
|
||
|
digitalWrite(this->nTransmitterPin, secondLogicLevel);
|
||
|
delayMicroseconds( this->protocol.pulseLength * pulses.low);
|
||
|
}
|
||
|
|
||
|
|
||
|
#if not defined( RCSwitchDisableReceiving )
|
||
|
/**
|
||
|
* Enable receiving data
|
||
|
*/
|
||
|
void RCSwitch::enableReceive(int interrupt) {
|
||
|
this->nReceiverInterrupt = interrupt;
|
||
|
this->enableReceive();
|
||
|
}
|
||
|
|
||
|
void RCSwitch::enableReceive() {
|
||
|
if (this->nReceiverInterrupt != -1) {
|
||
|
RCSwitch::nReceivedValue = 0;
|
||
|
RCSwitch::nReceivedBitlength = 0;
|
||
|
#if defined(RaspberryPi) // Raspberry Pi
|
||
|
wiringPiISR(this->nReceiverInterrupt, INT_EDGE_BOTH, &handleInterrupt);
|
||
|
#else // Arduino
|
||
|
attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Disable receiving data
|
||
|
*/
|
||
|
void RCSwitch::disableReceive() {
|
||
|
#if not defined(RaspberryPi) // Arduino
|
||
|
detachInterrupt(this->nReceiverInterrupt);
|
||
|
#endif // For Raspberry Pi (wiringPi) you can't unregister the ISR
|
||
|
this->nReceiverInterrupt = -1;
|
||
|
}
|
||
|
|
||
|
bool RCSwitch::available() {
|
||
|
return RCSwitch::nReceivedValue != 0;
|
||
|
}
|
||
|
|
||
|
void RCSwitch::resetAvailable() {
|
||
|
RCSwitch::nReceivedValue = 0;
|
||
|
}
|
||
|
|
||
|
unsigned long RCSwitch::getReceivedValue() {
|
||
|
return RCSwitch::nReceivedValue;
|
||
|
}
|
||
|
|
||
|
unsigned int RCSwitch::getReceivedBitlength() {
|
||
|
return RCSwitch::nReceivedBitlength;
|
||
|
}
|
||
|
|
||
|
unsigned int RCSwitch::getReceivedDelay() {
|
||
|
return RCSwitch::nReceivedDelay;
|
||
|
}
|
||
|
|
||
|
unsigned int RCSwitch::getReceivedProtocol() {
|
||
|
return RCSwitch::nReceivedProtocol;
|
||
|
}
|
||
|
|
||
|
unsigned int* RCSwitch::getReceivedRawdata() {
|
||
|
return RCSwitch::timings;
|
||
|
}
|
||
|
|
||
|
/* helper function for the receiveProtocol method */
|
||
|
static inline unsigned int diff(int A, int B) {
|
||
|
return abs(A - B);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
*/
|
||
|
bool RECEIVE_ATTR RCSwitch::receiveProtocol(const int p, unsigned int changeCount) {
|
||
|
#if defined(ESP8266) || defined(ESP32)
|
||
|
const Protocol &pro = proto[p-1];
|
||
|
#else
|
||
|
Protocol pro;
|
||
|
memcpy_P(&pro, &proto[p-1], sizeof(Protocol));
|
||
|
#endif
|
||
|
|
||
|
unsigned long code = 0;
|
||
|
//Assuming the longer pulse length is the pulse captured in timings[0]
|
||
|
const unsigned int syncLengthInPulses = ((pro.syncFactor.low) > (pro.syncFactor.high)) ? (pro.syncFactor.low) : (pro.syncFactor.high);
|
||
|
const unsigned int delay = RCSwitch::timings[0] / syncLengthInPulses;
|
||
|
const unsigned int delayTolerance = delay * RCSwitch::nReceiveTolerance / 100;
|
||
|
|
||
|
/* For protocols that start low, the sync period looks like
|
||
|
* _________
|
||
|
* _____________| |XXXXXXXXXXXX|
|
||
|
*
|
||
|
* |--1st dur--|-2nd dur-|-Start data-|
|
||
|
*
|
||
|
* The 3rd saved duration starts the data.
|
||
|
*
|
||
|
* For protocols that start high, the sync period looks like
|
||
|
*
|
||
|
* ______________
|
||
|
* | |____________|XXXXXXXXXXXXX|
|
||
|
*
|
||
|
* |-filtered out-|--1st dur--|--Start data--|
|
||
|
*
|
||
|
* The 2nd saved duration starts the data
|
||
|
*/
|
||
|
const unsigned int firstDataTiming = (pro.invertedSignal) ? (2) : (1);
|
||
|
|
||
|
for (unsigned int i = firstDataTiming; i < changeCount - 1; i += 2) {
|
||
|
code <<= 1;
|
||
|
if (diff(RCSwitch::timings[i], delay * pro.zero.high) < delayTolerance &&
|
||
|
diff(RCSwitch::timings[i + 1], delay * pro.zero.low) < delayTolerance) {
|
||
|
// zero
|
||
|
} else if (diff(RCSwitch::timings[i], delay * pro.one.high) < delayTolerance &&
|
||
|
diff(RCSwitch::timings[i + 1], delay * pro.one.low) < delayTolerance) {
|
||
|
// one
|
||
|
code |= 1;
|
||
|
} else {
|
||
|
// Failed
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (changeCount > 7) { // ignore very short transmissions: no device sends them, so this must be noise
|
||
|
RCSwitch::nReceivedValue = code;
|
||
|
RCSwitch::nReceivedBitlength = (changeCount - 1) / 2;
|
||
|
RCSwitch::nReceivedDelay = delay;
|
||
|
RCSwitch::nReceivedProtocol = p;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void RECEIVE_ATTR RCSwitch::handleInterrupt() {
|
||
|
|
||
|
static unsigned int changeCount = 0;
|
||
|
static unsigned long lastTime = 0;
|
||
|
static unsigned int repeatCount = 0;
|
||
|
|
||
|
const long time = micros();
|
||
|
const unsigned int duration = time - lastTime;
|
||
|
|
||
|
if (duration > RCSwitch::nSeparationLimit) {
|
||
|
// A long stretch without signal level change occurred. This could
|
||
|
// be the gap between two transmission.
|
||
|
if (diff(duration, RCSwitch::timings[0]) < 200) {
|
||
|
// This long signal is close in length to the long signal which
|
||
|
// started the previously recorded timings; this suggests that
|
||
|
// it may indeed by a a gap between two transmissions (we assume
|
||
|
// here that a sender will send the signal multiple times,
|
||
|
// with roughly the same gap between them).
|
||
|
repeatCount++;
|
||
|
if (repeatCount == 2) {
|
||
|
for(unsigned int i = 1; i <= numProto; i++) {
|
||
|
if (receiveProtocol(i, changeCount)) {
|
||
|
// receive succeeded for protocol i
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
repeatCount = 0;
|
||
|
}
|
||
|
}
|
||
|
changeCount = 0;
|
||
|
}
|
||
|
|
||
|
// detect overflow
|
||
|
if (changeCount >= RCSWITCH_MAX_CHANGES) {
|
||
|
changeCount = 0;
|
||
|
repeatCount = 0;
|
||
|
}
|
||
|
|
||
|
RCSwitch::timings[changeCount++] = duration;
|
||
|
lastTime = time;
|
||
|
}
|
||
|
#endif
|