Tasmota/tasmota/xdrv_31_tasmota_slave.ino

481 lines
13 KiB
Arduino
Raw Normal View History

2019-10-20 19:12:05 +01:00
/*
2019-10-26 21:58:04 +01:00
xdrv_31_tasmota_slave.ino - Support for external microcontroller slave on serial
2019-10-20 19:12:05 +01:00
Copyright (C) 2019 Andre Thomas and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2019-10-26 21:58:04 +01:00
#ifdef USE_TASMOTA_SLAVE
2019-10-21 11:25:22 +01:00
/*********************************************************************************************\
2019-10-26 21:58:04 +01:00
* Tasmota slave
2019-10-21 11:25:22 +01:00
\*********************************************************************************************/
2019-10-20 19:12:05 +01:00
2019-10-21 11:25:22 +01:00
#define XDRV_31 31
2019-10-20 19:12:05 +01:00
#define CONST_STK_CRC_EOP 0x20
#define CMND_STK_GET_SYNC 0x30
#define CMND_STK_SET_DEVICE 0x42
#define CMND_STK_SET_DEVICE_EXT 0x45
#define CMND_STK_ENTER_PROGMODE 0x50
#define CMND_STK_LEAVE_PROGMODE 0x51
#define CMND_STK_LOAD_ADDRESS 0x55
#define CMND_STK_PROG_PAGE 0x64
2019-10-26 21:58:04 +01:00
/*************************************************\
* Tasmota Slave Specific Commands
\*************************************************/
#define CMND_START 0xFC
#define CMND_END 0xFD
#define CMND_FEATURES 0x01
#define CMND_JSON 0x02
#define PARAM_DATA_START 0xFE
#define PARAM_DATA_END 0xFF
2019-10-21 11:25:22 +01:00
#include <TasmotaSerial.h>
2019-10-20 19:12:05 +01:00
2019-10-26 21:58:04 +01:00
/*
* Embedding class in here since its rather specific to Arduino bootloader
*/
class SimpleHexParse {
public:
SimpleHexParse(void);
uint8_t parseLine(char *hexline);
uint8_t ptr_l = 0;
uint8_t ptr_h = 0;
bool PageIsReady = false;
bool firstrun = true;
bool EndOfFile = false;
uint8_t FlashPage[128];
uint8_t FlashPageIdx = 0;
uint8_t layoverBuffer[16];
uint8_t layoverIdx = 0;
uint8_t getByte(char *hexline, uint8_t idx);
};
SimpleHexParse::SimpleHexParse(void)
{
}
uint8_t SimpleHexParse::parseLine(char *hexline)
{
if (layoverIdx) {
memcpy(&FlashPage[0], &layoverBuffer[0], layoverIdx);
FlashPageIdx = layoverIdx;
layoverIdx = 0;
}
uint8_t len = getByte(hexline, 1);
uint8_t addr_h = getByte(hexline, 2);
uint8_t addr_l = getByte(hexline, 3);
uint8_t rectype = getByte(hexline, 4);
for (uint8_t idx = 0; idx < len; idx++) {
if (FlashPageIdx < 128) {
FlashPage[FlashPageIdx] = getByte(hexline, idx+5);
FlashPageIdx++;
} else { // We have layover bytes
layoverBuffer[layoverIdx] = getByte(hexline, idx+5);
layoverIdx++;
}
}
if (1 == rectype) {
EndOfFile = true;
while (FlashPageIdx < 128) {
FlashPage[FlashPageIdx] = 0xFF;
FlashPageIdx++;
}
}
if (FlashPageIdx == 128) {
if (firstrun) {
firstrun = false;
} else {
ptr_l += 0x40;
if (ptr_l == 0) {
ptr_l = 0;
ptr_h++;
}
}
firstrun = false;
PageIsReady = true;
}
return 0;
}
uint8_t SimpleHexParse::getByte(char* hexline, uint8_t idx)
{
char buff[3];
buff[3] = '\0';
memcpy(&buff, &hexline[(idx*2)-1], 2);
return strtol(buff, 0, 16);
}
/*
* End of embedded class SimpleHexParse
*/
struct TSLAVE {
2019-10-21 11:25:22 +01:00
uint32_t spi_hex_size = 0;
uint32_t spi_sector_counter = 0;
uint8_t spi_sector_cursor = 0;
bool type = false;
bool flashing = false;
2019-10-26 21:58:04 +01:00
bool SerialEnabled = false;
uint8_t waitstate = 0; // We use this so that features detection does not slow down other stuff on startup
} TSlave;
typedef union {
uint16_t data;
struct {
uint16_t json : 1;
uint16_t spare1 : 1;
uint16_t spare2 : 1;
uint16_t spare3 : 1;
uint16_t spare4 : 1;
uint16_t spare5 : 1;
uint16_t spare6 : 1;
uint16_t spare7 : 1;
uint16_t spare8 : 1;
uint16_t spare9 : 1;
uint16_t spare10 : 1;
uint16_t spare11 : 1;
uint16_t spare12 : 1;
uint16_t spare13 : 1;
uint16_t spare14 : 1;
uint16_t spare15 : 1;
};
} TSlaveFeatureCfg;
2019-10-20 19:12:05 +01:00
2019-10-26 21:58:04 +01:00
/*
* The structure below must remain 4 byte aligned to be compatible with
* Tasmota as master
*/
struct FEATURES {
uint32_t features_version;
TSlaveFeatureCfg features;
uint16_t spare4;
} TSlaveSettings;
struct COMMAND {
uint8_t command;
uint8_t parameter;
uint8_t unused2;
uint8_t unused3;
} Command;
TasmotaSerial *TasmotaSlave_Serial;
uint32_t TasmotaSlave_FlashStart(void)
2019-10-21 11:25:22 +01:00
{
return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side
}
2019-10-20 19:12:05 +01:00
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_UpdateInit(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
TSlave.spi_hex_size = 0;
TSlave.spi_sector_counter = TasmotaSlave_FlashStart(); // Reset the pre-defined write address where firmware will temporarily be stored
TSlave.spi_sector_cursor = 0;
2019-10-20 19:12:05 +01:00
return 0;
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_Reset(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
if (TSlave.SerialEnabled) {
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], LOW);
2019-10-20 19:12:05 +01:00
delay(1);
2019-10-26 21:58:04 +01:00
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], HIGH);
2019-10-20 19:12:05 +01:00
delay(5);
}
}
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_waitForSerialData(int dataCount, int timeout)
2019-10-21 11:25:22 +01:00
{
2019-10-20 19:12:05 +01:00
int timer = 0;
while (timer < timeout) {
2019-10-26 21:58:04 +01:00
if (TasmotaSlave_Serial->available() >= dataCount) {
2019-10-20 19:12:05 +01:00
return 1;
}
delay(1);
timer++;
}
return 0;
}
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_sendBytes(uint8_t* bytes, int count)
2019-10-21 11:25:22 +01:00
{
2019-10-26 21:58:04 +01:00
TasmotaSlave_Serial->write(bytes, count);
TasmotaSlave_waitForSerialData(2, 1000);
uint8_t sync = TasmotaSlave_Serial->read();
uint8_t ok = TasmotaSlave_Serial->read();
if ((sync == 0x14) && (ok == 0x10)) {
2019-10-20 19:12:05 +01:00
return 1;
}
return 0;
}
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_execCmd(uint8_t cmd)
2019-10-21 11:25:22 +01:00
{
uint8_t bytes[] = { cmd, CONST_STK_CRC_EOP };
2019-10-26 21:58:04 +01:00
return TasmotaSlave_sendBytes(bytes, 2);
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_execParam(uint8_t cmd, uint8_t* params, int count)
2019-10-21 11:25:22 +01:00
{
uint8_t bytes[32];
2019-10-20 19:12:05 +01:00
bytes[0] = cmd;
int i = 0;
while (i < count) {
bytes[i + 1] = params[i];
i++;
}
bytes[i + 1] = CONST_STK_CRC_EOP;
2019-10-26 21:58:04 +01:00
return TasmotaSlave_sendBytes(bytes, i + 2);
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_exitProgMode(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
return TasmotaSlave_execCmd(CMND_STK_LEAVE_PROGMODE); // Exit programming mode
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_SetupFlash(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
uint8_t ProgParams[] = {0x86, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0xff, 0xff, 0xff, 0xff, 0x00, 0x80, 0x04, 0x00, 0x00, 0x00, 0x80, 0x00};
uint8_t ExtProgParams[] = {0x05, 0x04, 0xd7, 0xc2, 0x00};
TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_FLASH_SPEED);
if (TasmotaSlave_Serial->hardwareSerial()) {
2019-10-20 19:12:05 +01:00
ClaimSerial();
}
2019-10-26 21:58:04 +01:00
TasmotaSlave_Reset();
uint8_t timer = 0;
bool no_error = false;
while (200 > timer) {
if (TasmotaSlave_execCmd(CMND_STK_GET_SYNC)) {
timer = 200;
no_error = true;
}
delay(1);
}
if (no_error) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Found bootloader"));
} else {
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Bootloader could not be found"));
}
if (no_error) {
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE, ProgParams, sizeof(ProgParams))) {
} else {
no_error = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (1)"));
}
}
if (no_error) {
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE_EXT, ExtProgParams, sizeof(ExtProgParams))) {
} else {
no_error = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (2)"));
}
}
if (no_error) {
if (TasmotaSlave_execCmd(CMND_STK_ENTER_PROGMODE)) {
} else {
no_error = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Failed to put bootloader into programming mode"));
}
}
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
uint8_t TasmotaSlave_loadAddress(uint8_t adrHi, uint8_t adrLo)
2019-10-21 11:25:22 +01:00
{
2019-10-26 21:58:04 +01:00
uint8_t params[] = { adrLo, adrHi };
return TasmotaSlave_execParam(CMND_STK_LOAD_ADDRESS, params, sizeof(params));
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_FlashPage(uint8_t addr_h, uint8_t addr_l, uint8_t* data)
2019-10-20 19:12:05 +01:00
{
2019-10-21 11:25:22 +01:00
uint8_t Header[] = {CMND_STK_PROG_PAGE, 0x00, 0x80, 0x46};
2019-10-26 21:58:04 +01:00
TasmotaSlave_loadAddress(addr_h, addr_l);
TasmotaSlave_Serial->write(Header, 4);
2019-10-20 19:12:05 +01:00
for (int i = 0; i < 128; i++) {
2019-10-26 21:58:04 +01:00
TasmotaSlave_Serial->write(data[i]);
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
TasmotaSlave_Serial->write(CONST_STK_CRC_EOP);
TasmotaSlave_waitForSerialData(2, 1000);
TasmotaSlave_Serial->read();
TasmotaSlave_Serial->read();
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_Flash(void)
2019-10-20 19:12:05 +01:00
{
bool reading = true;
uint32_t read = 0;
uint32_t processed = 0;
char thishexline[50];
uint8_t position = 0;
char* flash_buffer;
2019-10-26 21:58:04 +01:00
SimpleHexParse hexParse = SimpleHexParse();
2019-10-20 19:12:05 +01:00
2019-10-26 21:58:04 +01:00
TasmotaSlave_SetupFlash();
2019-10-20 19:12:05 +01:00
flash_buffer = new char[SPI_FLASH_SEC_SIZE];
2019-10-26 21:58:04 +01:00
uint32_t flash_start = TasmotaSlave_FlashStart() * SPI_FLASH_SEC_SIZE;
2019-10-20 19:12:05 +01:00
while (reading) {
2019-10-21 11:25:22 +01:00
ESP.flashRead(flash_start + read, (uint32_t*)flash_buffer, SPI_FLASH_SEC_SIZE);
read = read + SPI_FLASH_SEC_SIZE;
2019-10-26 21:58:04 +01:00
if (read >= TSlave.spi_hex_size) {
2019-10-20 19:12:05 +01:00
reading = false;
}
2019-10-21 11:25:22 +01:00
for (uint32_t ca = 0; ca < SPI_FLASH_SEC_SIZE; ca++) {
2019-10-20 19:12:05 +01:00
processed++;
2019-10-26 21:58:04 +01:00
if ((processed <= TSlave.spi_hex_size) && (!hexParse.EndOfFile)) {
2019-10-20 19:12:05 +01:00
if (':' == flash_buffer[ca]) {
position = 0;
}
if (0x0D == flash_buffer[ca]) {
thishexline[position] = 0;
2019-10-26 21:58:04 +01:00
hexParse.parseLine(thishexline);
if (hexParse.PageIsReady) {
TasmotaSlave_FlashPage(hexParse.ptr_h, hexParse.ptr_l, hexParse.FlashPage);
hexParse.PageIsReady = false;
hexParse.FlashPageIdx = 0;
2019-10-20 19:12:05 +01:00
}
} else {
if (0x0A != flash_buffer[ca]) {
thishexline[position] = flash_buffer[ca];
position++;
}
}
}
}
}
2019-10-26 21:58:04 +01:00
TasmotaSlave_exitProgMode();
TSlave.flashing = false;
2019-10-20 19:12:05 +01:00
restart_flag = 2;
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_SetFlagFlashing(bool value)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
TSlave.flashing = value;
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
bool TasmotaSlave_GetFlagFlashing(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
return TSlave.flashing;
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_WriteBuffer(uint8_t *buf, size_t size)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
if (0 == TSlave.spi_sector_cursor) { // Starting a new sector write so we need to erase it first
ESP.flashEraseSector(TSlave.spi_sector_counter);
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
TSlave.spi_sector_cursor++;
ESP.flashWrite((TSlave.spi_sector_counter * SPI_FLASH_SEC_SIZE) + ((TSlave.spi_sector_cursor-1)*2048), (uint32_t*)buf, size);
TSlave.spi_hex_size = TSlave.spi_hex_size + size;
if (2 == TSlave.spi_sector_cursor) { // The web upload sends 2048 bytes at a time so keep track of the cursor position to reset it for the next flash sector erase
TSlave.spi_sector_cursor = 0;
TSlave.spi_sector_counter++;
2019-10-20 19:12:05 +01:00
}
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_Init(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
if (TSlave.type) {
2019-10-20 19:12:05 +01:00
return;
}
2019-10-26 21:58:04 +01:00
if (10 > TSlave.waitstate) {
TSlave.waitstate++;
return;
}
if (!TSlave.SerialEnabled) {
if ((pin[GPIO_TASMOTASLAVE_RXD] < 99) && (pin[GPIO_TASMOTASLAVE_TXD] < 99) && (pin[GPIO_TASMOTASLAVE_RST] < 99)) {
TasmotaSlave_Serial = new TasmotaSerial(pin[GPIO_TASMOTASLAVE_RXD], pin[GPIO_TASMOTASLAVE_TXD], 1, 0, 200);
if (TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_SERIAL_SPEED)) {
if (TasmotaSlave_Serial->hardwareSerial()) {
ClaimSerial();
}
pinMode(pin[GPIO_TASMOTASLAVE_RST], OUTPUT);
TasmotaSlave_Reset();
TSlave.SerialEnabled = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Enabled"));
2019-10-21 11:25:22 +01:00
}
2019-10-26 21:58:04 +01:00
}
}
if (TSlave.SerialEnabled) { // All go for hardware now we need to detect features if there are any
TasmotaSlave_sendCmnd(CMND_FEATURES, 0);
char buffer[32];
TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer));
uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer));
memcpy(&TSlaveSettings, &buffer, sizeof(TSlaveSettings));
if (20191026 <= TSlaveSettings.features_version) {
TSlave.type = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Version %u"), TSlaveSettings.features_version);
2019-10-20 19:12:05 +01:00
}
}
}
2019-10-26 21:58:04 +01:00
void TasmotaSlave_Show(void)
2019-10-20 19:12:05 +01:00
{
2019-10-26 21:58:04 +01:00
if ((TSlave.type) && (TSlaveSettings.features.json)) {
2019-10-21 11:25:22 +01:00
char buffer[100];
2019-10-26 21:58:04 +01:00
TasmotaSlave_sendCmnd(CMND_JSON, 0);
TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer)-1);
uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer)-1);
buffer[len] = '\0';
ResponseAppend_P(PSTR(",\"TasmotaSlave\":%s"), buffer);
}
}
void TasmotaSlave_sendCmnd(uint8_t cmnd, uint8_t param)
{
Command.command = cmnd;
Command.parameter = param;
char buffer[sizeof(Command)+2];
buffer[0] = CMND_START;
memcpy(&buffer[1], &Command, sizeof(Command));
buffer[sizeof(Command)+1] = CMND_END;
for (uint8_t ca = 0; ca < sizeof(buffer); ca++) {
TasmotaSlave_Serial->write(buffer[ca]);
2019-10-20 19:12:05 +01:00
}
}
2019-10-21 11:25:22 +01:00
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
2019-10-20 19:12:05 +01:00
bool Xdrv31(uint8_t function)
{
bool result = false;
2019-10-21 11:25:22 +01:00
2019-10-20 19:12:05 +01:00
switch (function) {
case FUNC_EVERY_SECOND:
2019-10-26 21:58:04 +01:00
TasmotaSlave_Init();
2019-10-20 19:12:05 +01:00
break;
case FUNC_JSON_APPEND:
2019-10-26 21:58:04 +01:00
TasmotaSlave_Show();
2019-10-20 19:12:05 +01:00
break;
}
2019-10-21 11:25:22 +01:00
return result;
2019-10-20 19:12:05 +01:00
}
2019-10-26 21:58:04 +01:00
#endif // USE_TASMOTA_SLAVE