Merge pull request #14105 from Jason2866/webcam_refactor

Webcam reduce lib
This commit is contained in:
Theo Arends 2021-12-19 14:26:05 +01:00 committed by GitHub
commit 12c3044148
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
80 changed files with 22 additions and 18381 deletions

2
.gitpod.Dockerfile vendored
View File

@ -2,4 +2,4 @@ FROM gitpod/workspace-full
USER gitpod
RUN pip3 install -U platformio && brew install uncrustify
RUN pip3 install -U platformio

View File

@ -0,0 +1,20 @@
{
"name": "esp32-camera-header",
"version": "1.0.0",
"keywords": "esp32, camera, espressif, esp32-cam",
"description": "ESP32 camera header files",
"repository": {
"type": "git",
"url": "https://github.com/espressif/esp32-camera"
},
"frameworks": "arduino",
"platforms": "espressif32",
"build": {
"flags": [
"-Idriver/include"
],
"includeDir": ".",
"srcDir": ".",
"srcFilter": ["-<*>", "+<driver>"]
}
}

View File

@ -1,64 +0,0 @@
if(IDF_TARGET STREQUAL "esp32" OR IDF_TARGET STREQUAL "esp32s2" OR IDF_TARGET STREQUAL "esp32s3")
set(COMPONENT_SRCS
driver/esp_camera.c
driver/cam_hal.c
driver/sccb.c
driver/sensor.c
sensors/ov2640.c
sensors/ov3660.c
sensors/ov5640.c
sensors/ov7725.c
sensors/ov7670.c
sensors/nt99141.c
sensors/gc0308.c
sensors/gc2145.c
sensors/gc032a.c
conversions/yuv.c
conversions/to_jpg.cpp
conversions/to_bmp.c
conversions/jpge.cpp
conversions/esp_jpg_decode.c
)
set(COMPONENT_ADD_INCLUDEDIRS
driver/include
conversions/include
)
set(COMPONENT_PRIV_INCLUDEDIRS
driver/private_include
sensors/private_include
conversions/private_include
target/private_include
)
if(IDF_TARGET STREQUAL "esp32")
list(APPEND COMPONENT_SRCS
target/xclk.c
target/esp32/ll_cam.c
)
endif()
if(IDF_TARGET STREQUAL "esp32s2")
list(APPEND COMPONENT_SRCS
target/xclk.c
target/esp32s2/ll_cam.c
target/esp32s2/tjpgd.c
)
list(APPEND COMPONENT_PRIV_INCLUDEDIRS
target/esp32s2/private_include
)
endif()
if(IDF_TARGET STREQUAL "esp32s3")
list(APPEND COMPONENT_SRCS
target/esp32s3/ll_cam.c
)
endif()
set(COMPONENT_REQUIRES driver)
set(COMPONENT_PRIV_REQUIRES freertos nvs_flash)
register_component()
endif()

View File

@ -1,114 +0,0 @@
menu "Camera configuration"
config OV7670_SUPPORT
bool "Support OV7670 VGA"
default y
help
Enable this option if you want to use the OV7670.
Disable this option to save memory.
config OV7725_SUPPORT
bool "Support OV7725 VGA"
default y
help
Enable this option if you want to use the OV7725.
Disable this option to save memory.
config NT99141_SUPPORT
bool "Support NT99141 HD"
default y
help
Enable this option if you want to use the NT99141.
Disable this option to save memory.
config OV2640_SUPPORT
bool "Support OV2640 2MP"
default y
help
Enable this option if you want to use the OV2640.
Disable this option to save memory.
config OV3660_SUPPORT
bool "Support OV3660 3MP"
default y
help
Enable this option if you want to use the OV3360.
Disable this option to save memory.
config OV5640_SUPPORT
bool "Support OV5640 5MP"
default y
help
Enable this option if you want to use the OV5640.
Disable this option to save memory.
config GC2145_SUPPORT
bool "Support GC2145 2MP"
default y
help
Enable this option if you want to use the GC2145.
Disable this option to save memory.
config GC032A_SUPPORT
bool "Support GC032A VGA"
default y
help
Enable this option if you want to use the GC032A.
Disable this option to save memory.
config GC0308_SUPPORT
bool "Support GC0308 VGA"
default y
help
Enable this option if you want to use the GC0308.
Disable this option to save memory.
choice SCCB_HARDWARE_I2C_PORT
bool "I2C peripheral to use for SCCB"
default SCCB_HARDWARE_I2C_PORT1
config SCCB_HARDWARE_I2C_PORT0
bool "I2C0"
config SCCB_HARDWARE_I2C_PORT1
bool "I2C1"
endchoice
choice GC_SENSOR_WINDOW_MODE
bool "GalaxyCore Sensor Window Mode"
depends on (GC2145_SUPPORT || GC032A_SUPPORT || GC0308_SUPPORT)
default GC_SENSOR_SUBSAMPLE_MODE
help
This option determines how to reduce the output size when the resolution you set is less than the maximum resolution.
SUBSAMPLE_MODE has a bigger perspective and WINDOWING_MODE has a higher frame rate.
config GC_SENSOR_WINDOWING_MODE
bool "Windowing Mode"
config GC_SENSOR_SUBSAMPLE_MODE
bool "Subsample Mode"
endchoice
choice CAMERA_TASK_PINNED_TO_CORE
bool "Camera task pinned to core"
default CAMERA_CORE0
help
Pin the camera handle task to a certain core(0/1). It can also be done automatically choosing NO_AFFINITY.
config CAMERA_CORE0
bool "CORE0"
config CAMERA_CORE1
bool "CORE1"
config CAMERA_NO_AFFINITY
bool "NO_AFFINITY"
endchoice
config CAMERA_DMA_BUFFER_SIZE_MAX
int "DMA buffer size"
range 8192 32768
default 32768
help
Maximum value of DMA buffer
Larger values may fail to allocate due to insufficient contiguous memory blocks, and smaller value may cause DMA interrupt to be too frequent
endmenu

View File

@ -1,4 +0,0 @@
COMPONENT_ADD_INCLUDEDIRS := driver/include conversions/include
COMPONENT_PRIV_INCLUDEDIRS := driver/private_include conversions/private_include sensors/private_include target/private_include
COMPONENT_SRCDIRS := driver conversions sensors target target/esp32
CXXFLAGS += -fno-rtti

View File

@ -1,132 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_jpg_decode.h"
#include "esp_system.h"
#if ESP_IDF_VERSION_MAJOR >= 4 // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/rom/tjpgd.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "tjpgd.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/tjpgd.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/tjpgd.h"
#endif
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#define TAG ""
#else
#include "esp_log.h"
static const char* TAG = "esp_jpg_decode";
#endif
typedef struct {
jpg_scale_t scale;
jpg_reader_cb reader;
jpg_writer_cb writer;
void * arg;
size_t len;
size_t index;
} esp_jpg_decoder_t;
static const char * jd_errors[] = {
"Succeeded",
"Interrupted by output function",
"Device error or wrong termination of input stream",
"Insufficient memory pool for the image",
"Insufficient stream input buffer",
"Parameter error",
"Data format error",
"Right format but not supported",
"Not supported JPEG standard"
};
static uint32_t _jpg_write(JDEC *decoder, void *bitmap, JRECT *rect)
{
uint16_t x = rect->left;
uint16_t y = rect->top;
uint16_t w = rect->right + 1 - x;
uint16_t h = rect->bottom + 1 - y;
uint8_t *data = (uint8_t *)bitmap;
esp_jpg_decoder_t * jpeg = (esp_jpg_decoder_t *)decoder->device;
if (jpeg->writer) {
return jpeg->writer(jpeg->arg, x, y, w, h, data);
}
return 0;
}
static uint32_t _jpg_read(JDEC *decoder, uint8_t *buf, uint32_t len)
{
esp_jpg_decoder_t * jpeg = (esp_jpg_decoder_t *)decoder->device;
if (jpeg->len && len > (jpeg->len - jpeg->index)) {
len = jpeg->len - jpeg->index;
}
if (len) {
len = jpeg->reader(jpeg->arg, jpeg->index, buf, len);
if (!len) {
ESP_LOGE(TAG, "Read Fail at %u/%u", jpeg->index, jpeg->len);
}
jpeg->index += len;
}
return len;
}
esp_err_t esp_jpg_decode(size_t len, jpg_scale_t scale, jpg_reader_cb reader, jpg_writer_cb writer, void * arg)
{
static uint8_t work[3100];
JDEC decoder;
esp_jpg_decoder_t jpeg;
jpeg.len = len;
jpeg.reader = reader;
jpeg.writer = writer;
jpeg.arg = arg;
jpeg.scale = scale;
jpeg.index = 0;
JRESULT jres = jd_prepare(&decoder, _jpg_read, work, 3100, &jpeg);
if(jres != JDR_OK){
ESP_LOGE(TAG, "JPG Header Parse Failed! %s", jd_errors[jres]);
return ESP_FAIL;
}
uint16_t output_width = decoder.width / (1 << (uint8_t)(jpeg.scale));
uint16_t output_height = decoder.height / (1 << (uint8_t)(jpeg.scale));
//output start
writer(arg, 0, 0, output_width, output_height, NULL);
//output write
jres = jd_decomp(&decoder, _jpg_write, (uint8_t)jpeg.scale);
//output end
writer(arg, output_width, output_height, output_width, output_height, NULL);
if (jres != JDR_OK) {
ESP_LOGE(TAG, "JPG Decompression Failed! %s", jd_errors[jres]);
return ESP_FAIL;
}
//check if all data has been consumed.
if (len && jpeg.index < len) {
_jpg_read(&decoder, NULL, len - jpeg.index);
}
return ESP_OK;
}

View File

@ -1,43 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP_JPG_DECODE_H_
#define _ESP_JPG_DECODE_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
typedef enum {
JPG_SCALE_NONE,
JPG_SCALE_2X,
JPG_SCALE_4X,
JPG_SCALE_8X,
JPG_SCALE_MAX = JPG_SCALE_8X
} jpg_scale_t;
typedef size_t (* jpg_reader_cb)(void * arg, size_t index, uint8_t *buf, size_t len);
typedef bool (* jpg_writer_cb)(void * arg, uint16_t x, uint16_t y, uint16_t w, uint16_t h, uint8_t *data);
esp_err_t esp_jpg_decode(size_t len, jpg_scale_t scale, jpg_reader_cb reader, jpg_writer_cb writer, void * arg);
#ifdef __cplusplus
}
#endif
#endif /* _ESP_JPG_DECODE_H_ */

View File

@ -1,130 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _IMG_CONVERTERS_H_
#define _IMG_CONVERTERS_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include "esp_camera.h"
#include "esp_jpg_decode.h"
typedef size_t (* jpg_out_cb)(void * arg, size_t index, const void* data, size_t len);
/**
* @brief Convert image buffer to JPEG
*
* @param src Source buffer in RGB565, RGB888, YUYV or GRAYSCALE format
* @param src_len Length in bytes of the source buffer
* @param width Width in pixels of the source image
* @param height Height in pixels of the source image
* @param format Format of the source image
* @param quality JPEG quality of the resulting image
* @param cp Callback to be called to write the bytes of the output JPEG
* @param arg Pointer to be passed to the callback
*
* @return true on success
*/
bool fmt2jpg_cb(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixformat_t format, uint8_t quality, jpg_out_cb cb, void * arg);
/**
* @brief Convert camera frame buffer to JPEG
*
* @param fb Source camera frame buffer
* @param quality JPEG quality of the resulting image
* @param cp Callback to be called to write the bytes of the output JPEG
* @param arg Pointer to be passed to the callback
*
* @return true on success
*/
bool frame2jpg_cb(camera_fb_t * fb, uint8_t quality, jpg_out_cb cb, void * arg);
/**
* @brief Convert image buffer to JPEG buffer
*
* @param src Source buffer in RGB565, RGB888, YUYV or GRAYSCALE format
* @param src_len Length in bytes of the source buffer
* @param width Width in pixels of the source image
* @param height Height in pixels of the source image
* @param format Format of the source image
* @param quality JPEG quality of the resulting image
* @param out Pointer to be populated with the address of the resulting buffer.
* You MUST free the pointer once you are done with it.
* @param out_len Pointer to be populated with the length of the output buffer
*
* @return true on success
*/
bool fmt2jpg(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixformat_t format, uint8_t quality, uint8_t ** out, size_t * out_len);
/**
* @brief Convert camera frame buffer to JPEG buffer
*
* @param fb Source camera frame buffer
* @param quality JPEG quality of the resulting image
* @param out Pointer to be populated with the address of the resulting buffer
* @param out_len Pointer to be populated with the length of the output buffer
*
* @return true on success
*/
bool frame2jpg(camera_fb_t * fb, uint8_t quality, uint8_t ** out, size_t * out_len);
/**
* @brief Convert image buffer to BMP buffer
*
* @param src Source buffer in JPEG, RGB565, RGB888, YUYV or GRAYSCALE format
* @param src_len Length in bytes of the source buffer
* @param width Width in pixels of the source image
* @param height Height in pixels of the source image
* @param format Format of the source image
* @param out Pointer to be populated with the address of the resulting buffer
* @param out_len Pointer to be populated with the length of the output buffer
*
* @return true on success
*/
bool fmt2bmp(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixformat_t format, uint8_t ** out, size_t * out_len);
/**
* @brief Convert camera frame buffer to BMP buffer
*
* @param fb Source camera frame buffer
* @param out Pointer to be populated with the address of the resulting buffer
* @param out_len Pointer to be populated with the length of the output buffer
*
* @return true on success
*/
bool frame2bmp(camera_fb_t * fb, uint8_t ** out, size_t * out_len);
/**
* @brief Convert image buffer to RGB888 buffer (used for face detection)
*
* @param src Source buffer in JPEG, RGB565, RGB888, YUYV or GRAYSCALE format
* @param src_len Length in bytes of the source buffer
* @param format Format of the source image
* @param rgb_buf Pointer to the output buffer (width * height * 3)
*
* @return true on success
*/
bool fmt2rgb888(const uint8_t *src_buf, size_t src_len, pixformat_t format, uint8_t * rgb_buf);
bool jpg2rgb565(const uint8_t *src, size_t src_len, uint8_t * out, jpg_scale_t scale);
#ifdef __cplusplus
}
#endif
#endif /* _IMG_CONVERTERS_H_ */

View File

@ -1,723 +0,0 @@
// jpge.cpp - C++ class for JPEG compression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// v1.01, Dec. 18, 2010 - Initial release
// v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
// v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
// Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
// v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
// Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
// Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
#include "jpge.h"
#include <stdint.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include "esp_heap_caps.h"
#define JPGE_MAX(a,b) (((a)>(b))?(a):(b))
#define JPGE_MIN(a,b) (((a)<(b))?(a):(b))
namespace jpge {
static inline void *jpge_malloc(size_t nSize) {
void * b = malloc(nSize);
if(b){
return b;
}
return heap_caps_malloc(nSize, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
}
static inline void jpge_free(void *p) { free(p); }
// Various JPEG enums and tables.
enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 };
enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 };
static const uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };
static const int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 };
static const int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 };
static const uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 };
static const uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
static const uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };
static const uint8 s_ac_lum_val[AC_LUM_CODES] = {
0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
0xf9,0xfa
};
static const uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };
static const uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
static const uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };
static const uint8 s_ac_chroma_val[AC_CHROMA_CODES] = {
0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
0xf9,0xfa
};
const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329;
static int32 m_last_quality = 0;
static int32 m_quantization_tables[2][64];
static bool m_huff_initialized = false;
static uint m_huff_codes[4][256];
static uint8 m_huff_code_sizes[4][256];
static uint8 m_huff_bits[4][17];
static uint8 m_huff_val[4][256];
static inline uint8 clamp(int i) {
if (i < 0) {
i = 0;
} else if (i > 255){
i = 255;
}
return static_cast<uint8>(i);
}
static void RGB_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels) {
for ( ; num_pixels; pDst += 3, pSrc += 3, num_pixels--) {
const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
}
}
static void RGB_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels) {
for ( ; num_pixels; pDst++, pSrc += 3, num_pixels--) {
pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
}
}
static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) {
for( ; num_pixels; pDst += 3, pSrc++, num_pixels--) {
pDst[0] = pSrc[0];
pDst[1] = 128;
pDst[2] = 128;
}
}
// Forward DCT - DCT derived from jfdctint.
enum { CONST_BITS = 13, ROW_BITS = 2 };
#define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n))
#define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c))
#define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \
int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \
int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \
int32 u1 = DCT_MUL(t12 + t13, 4433); \
s2 = u1 + DCT_MUL(t13, 6270); \
s6 = u1 + DCT_MUL(t12, -15137); \
u1 = t4 + t7; \
int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \
int32 z5 = DCT_MUL(u3 + u4, 9633); \
t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \
t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \
u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \
u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \
u3 += z5; u4 += z5; \
s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3;
static void DCT2D(int32 *p) {
int32 c, *q = p;
for (c = 7; c >= 0; c--, q += 8) {
int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
q[0] = s0 << ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS);
q[4] = s4 << ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS);
}
for (q = p, c = 7; c >= 0; c--, q++) {
int32 s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8];
DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3);
q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3);
}
}
// Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
static void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val)
{
int i, l, last_p, si;
static uint8 huff_size[257];
static uint huff_code[257];
uint code;
int p = 0;
for (l = 1; l <= 16; l++) {
for (i = 1; i <= bits[l]; i++) {
huff_size[p++] = (char)l;
}
}
huff_size[p] = 0;
last_p = p; // write sentinel
code = 0; si = huff_size[0]; p = 0;
while (huff_size[p]) {
while (huff_size[p] == si) {
huff_code[p++] = code++;
}
code <<= 1;
si++;
}
memset(codes, 0, sizeof(codes[0])*256);
memset(code_sizes, 0, sizeof(code_sizes[0])*256);
for (p = 0; p < last_p; p++) {
codes[val[p]] = huff_code[p];
code_sizes[val[p]] = huff_size[p];
}
}
void jpeg_encoder::flush_output_buffer()
{
if (m_out_buf_left != JPGE_OUT_BUF_SIZE) {
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left);
}
m_pOut_buf = m_out_buf;
m_out_buf_left = JPGE_OUT_BUF_SIZE;
}
void jpeg_encoder::emit_byte(uint8 i)
{
*m_pOut_buf++ = i;
if (--m_out_buf_left == 0) {
flush_output_buffer();
}
}
void jpeg_encoder::put_bits(uint bits, uint len)
{
uint8 c = 0;
m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len)));
while (m_bits_in >= 8) {
c = (uint8)((m_bit_buffer >> 16) & 0xFF);
emit_byte(c);
if (c == 0xFF) {
emit_byte(0);
}
m_bit_buffer <<= 8;
m_bits_in -= 8;
}
}
void jpeg_encoder::emit_word(uint i)
{
emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF));
}
// JPEG marker generation.
void jpeg_encoder::emit_marker(int marker)
{
emit_byte(uint8(0xFF)); emit_byte(uint8(marker));
}
// Emit JFIF marker
void jpeg_encoder::emit_jfif_app0()
{
emit_marker(M_APP0);
emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1);
emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
emit_byte(0);
emit_byte(1); /* Major version */
emit_byte(1); /* Minor version */
emit_byte(0); /* Density unit */
emit_word(1);
emit_word(1);
emit_byte(0); /* No thumbnail image */
emit_byte(0);
}
// Emit quantization tables
void jpeg_encoder::emit_dqt()
{
for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++)
{
emit_marker(M_DQT);
emit_word(64 + 1 + 2);
emit_byte(static_cast<uint8>(i));
for (int j = 0; j < 64; j++)
emit_byte(static_cast<uint8>(m_quantization_tables[i][j]));
}
}
// Emit start of frame marker
void jpeg_encoder::emit_sof()
{
emit_marker(M_SOF0); /* baseline */
emit_word(3 * m_num_components + 2 + 5 + 1);
emit_byte(8); /* precision */
emit_word(m_image_y);
emit_word(m_image_x);
emit_byte(m_num_components);
for (int i = 0; i < m_num_components; i++)
{
emit_byte(static_cast<uint8>(i + 1)); /* component ID */
emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */
emit_byte(i > 0); /* quant. table num */
}
}
// Emit Huffman table.
void jpeg_encoder::emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag)
{
emit_marker(M_DHT);
int length = 0;
for (int i = 1; i <= 16; i++)
length += bits[i];
emit_word(length + 2 + 1 + 16);
emit_byte(static_cast<uint8>(index + (ac_flag << 4)));
for (int i = 1; i <= 16; i++)
emit_byte(bits[i]);
for (int i = 0; i < length; i++)
emit_byte(val[i]);
}
// Emit all Huffman tables.
void jpeg_encoder::emit_dhts()
{
emit_dht(m_huff_bits[0+0], m_huff_val[0+0], 0, false);
emit_dht(m_huff_bits[2+0], m_huff_val[2+0], 0, true);
if (m_num_components == 3) {
emit_dht(m_huff_bits[0+1], m_huff_val[0+1], 1, false);
emit_dht(m_huff_bits[2+1], m_huff_val[2+1], 1, true);
}
}
// emit start of scan
void jpeg_encoder::emit_sos()
{
emit_marker(M_SOS);
emit_word(2 * m_num_components + 2 + 1 + 3);
emit_byte(m_num_components);
for (int i = 0; i < m_num_components; i++)
{
emit_byte(static_cast<uint8>(i + 1));
if (i == 0)
emit_byte((0 << 4) + 0);
else
emit_byte((1 << 4) + 1);
}
emit_byte(0); /* spectral selection */
emit_byte(63);
emit_byte(0);
}
void jpeg_encoder::load_block_8_8_grey(int x)
{
uint8 *pSrc;
sample_array_t *pDst = m_sample_array;
x <<= 3;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc = m_mcu_lines[i] + x;
pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128;
pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128;
}
}
void jpeg_encoder::load_block_8_8(int x, int y, int c)
{
uint8 *pSrc;
sample_array_t *pDst = m_sample_array;
x = (x * (8 * 3)) + c;
y <<= 3;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc = m_mcu_lines[y + i] + x;
pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128;
pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128;
}
}
void jpeg_encoder::load_block_16_8(int x, int c)
{
uint8 *pSrc1, *pSrc2;
sample_array_t *pDst = m_sample_array;
x = (x * (16 * 3)) + c;
int a = 0, b = 2;
for (int i = 0; i < 16; i += 2, pDst += 8)
{
pSrc1 = m_mcu_lines[i + 0] + x;
pSrc2 = m_mcu_lines[i + 1] + x;
pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3] + pSrc2[ 0 * 3] + pSrc2[ 1 * 3] + a) >> 2) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3] + pSrc2[ 2 * 3] + pSrc2[ 3 * 3] + b) >> 2) - 128;
pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3] + pSrc2[ 4 * 3] + pSrc2[ 5 * 3] + a) >> 2) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3] + pSrc2[ 6 * 3] + pSrc2[ 7 * 3] + b) >> 2) - 128;
pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3] + pSrc2[ 8 * 3] + pSrc2[ 9 * 3] + a) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + b) >> 2) - 128;
pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + a) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + b) >> 2) - 128;
int temp = a; a = b; b = temp;
}
}
void jpeg_encoder::load_block_16_8_8(int x, int c)
{
uint8 *pSrc1;
sample_array_t *pDst = m_sample_array;
x = (x * (16 * 3)) + c;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc1 = m_mcu_lines[i + 0] + x;
pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3]) >> 1) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3]) >> 1) - 128;
pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3]) >> 1) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3]) >> 1) - 128;
pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3]) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3]) >> 1) - 128;
pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3]) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3]) >> 1) - 128;
}
}
void jpeg_encoder::load_quantized_coefficients(int component_num)
{
int32 *q = m_quantization_tables[component_num > 0];
int16 *pDst = m_coefficient_array;
for (int i = 0; i < 64; i++)
{
sample_array_t j = m_sample_array[s_zag[i]];
if (j < 0)
{
if ((j = -j + (*q >> 1)) < *q)
*pDst++ = 0;
else
*pDst++ = static_cast<int16>(-(j / *q));
}
else
{
if ((j = j + (*q >> 1)) < *q)
*pDst++ = 0;
else
*pDst++ = static_cast<int16>((j / *q));
}
q++;
}
}
void jpeg_encoder::code_coefficients_pass_two(int component_num)
{
int i, j, run_len, nbits, temp1, temp2;
int16 *pSrc = m_coefficient_array;
uint *codes[2];
uint8 *code_sizes[2];
if (component_num == 0)
{
codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0];
code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0];
}
else
{
codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1];
code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1];
}
temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num];
m_last_dc_val[component_num] = pSrc[0];
if (temp1 < 0)
{
temp1 = -temp1; temp2--;
}
nbits = 0;
while (temp1)
{
nbits++; temp1 >>= 1;
}
put_bits(codes[0][nbits], code_sizes[0][nbits]);
if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits);
for (run_len = 0, i = 1; i < 64; i++)
{
if ((temp1 = m_coefficient_array[i]) == 0)
run_len++;
else
{
while (run_len >= 16)
{
put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
run_len -= 16;
}
if ((temp2 = temp1) < 0)
{
temp1 = -temp1;
temp2--;
}
nbits = 1;
while (temp1 >>= 1)
nbits++;
j = (run_len << 4) + nbits;
put_bits(codes[1][j], code_sizes[1][j]);
put_bits(temp2 & ((1 << nbits) - 1), nbits);
run_len = 0;
}
}
if (run_len)
put_bits(codes[1][0], code_sizes[1][0]);
}
void jpeg_encoder::code_block(int component_num)
{
DCT2D(m_sample_array);
load_quantized_coefficients(component_num);
code_coefficients_pass_two(component_num);
}
void jpeg_encoder::process_mcu_row()
{
if (m_num_components == 1)
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8_grey(i); code_block(0);
}
}
else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
}
}
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
}
}
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0);
load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
}
}
}
void jpeg_encoder::load_mcu(const void *pSrc)
{
const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc);
uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
if (m_num_components == 1) {
if (m_image_bpp == 3)
RGB_to_Y(pDst, Psrc, m_image_x);
else
memcpy(pDst, Psrc, m_image_x);
} else {
if (m_image_bpp == 3)
RGB_to_YCC(pDst, Psrc, m_image_x);
else
Y_to_YCC(pDst, Psrc, m_image_x);
}
// Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
if (m_num_components == 1)
memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x);
else
{
const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2];
uint8 *q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt;
for (int i = m_image_x; i < m_image_x_mcu; i++)
{
*q++ = y; *q++ = cb; *q++ = cr;
}
}
if (++m_mcu_y_ofs == m_mcu_y)
{
process_mcu_row();
m_mcu_y_ofs = 0;
}
}
// Quantization table generation.
void jpeg_encoder::compute_quant_table(int32 *pDst, const int16 *pSrc)
{
int32 q;
if (m_params.m_quality < 50)
q = 5000 / m_params.m_quality;
else
q = 200 - m_params.m_quality * 2;
for (int i = 0; i < 64; i++)
{
int32 j = *pSrc++; j = (j * q + 50L) / 100L;
*pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
}
}
// Higher-level methods.
bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels)
{
m_num_components = 3;
switch (m_params.m_subsampling)
{
case Y_ONLY:
{
m_num_components = 1;
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
m_mcu_x = 8; m_mcu_y = 8;
break;
}
case H1V1:
{
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 8; m_mcu_y = 8;
break;
}
case H2V1:
{
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 16; m_mcu_y = 8;
break;
}
case H2V2:
{
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 16; m_mcu_y = 16;
}
}
m_image_x = p_x_res; m_image_y = p_y_res;
m_image_bpp = src_channels;
m_image_bpl = m_image_x * src_channels;
m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1));
m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1));
m_image_bpl_xlt = m_image_x * m_num_components;
m_image_bpl_mcu = m_image_x_mcu * m_num_components;
m_mcus_per_row = m_image_x_mcu / m_mcu_x;
if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) {
return false;
}
for (int i = 1; i < m_mcu_y; i++)
m_mcu_lines[i] = m_mcu_lines[i-1] + m_image_bpl_mcu;
if(m_last_quality != m_params.m_quality){
m_last_quality = m_params.m_quality;
compute_quant_table(m_quantization_tables[0], s_std_lum_quant);
compute_quant_table(m_quantization_tables[1], s_std_croma_quant);
}
if(!m_huff_initialized){
m_huff_initialized = true;
memcpy(m_huff_bits[0+0], s_dc_lum_bits, 17); memcpy(m_huff_val[0+0], s_dc_lum_val, DC_LUM_CODES);
memcpy(m_huff_bits[2+0], s_ac_lum_bits, 17); memcpy(m_huff_val[2+0], s_ac_lum_val, AC_LUM_CODES);
memcpy(m_huff_bits[0+1], s_dc_chroma_bits, 17); memcpy(m_huff_val[0+1], s_dc_chroma_val, DC_CHROMA_CODES);
memcpy(m_huff_bits[2+1], s_ac_chroma_bits, 17); memcpy(m_huff_val[2+1], s_ac_chroma_val, AC_CHROMA_CODES);
compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0], m_huff_val[0+0]);
compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0], m_huff_val[2+0]);
compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1], m_huff_val[0+1]);
compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1], m_huff_val[2+1]);
}
m_out_buf_left = JPGE_OUT_BUF_SIZE;
m_pOut_buf = m_out_buf;
m_bit_buffer = 0;
m_bits_in = 0;
m_mcu_y_ofs = 0;
m_pass_num = 2;
memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0]));
// Emit all markers at beginning of image file.
emit_marker(M_SOI);
emit_jfif_app0();
emit_dqt();
emit_sof();
emit_dhts();
emit_sos();
return m_all_stream_writes_succeeded;
}
bool jpeg_encoder::process_end_of_image()
{
if (m_mcu_y_ofs) {
if (m_mcu_y_ofs < 16) { // check here just to shut up static analysis
for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) {
memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu);
}
}
process_mcu_row();
}
put_bits(0x7F, 7);
emit_marker(M_EOI);
flush_output_buffer();
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(NULL, 0);
m_pass_num++; // purposely bump up m_pass_num, for debugging
return true;
}
void jpeg_encoder::clear()
{
m_mcu_lines[0] = NULL;
m_pass_num = 0;
m_all_stream_writes_succeeded = true;
}
jpeg_encoder::jpeg_encoder()
{
clear();
}
jpeg_encoder::~jpeg_encoder()
{
deinit();
}
bool jpeg_encoder::init(output_stream *pStream, int width, int height, int src_channels, const params &comp_params)
{
deinit();
if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false;
m_pStream = pStream;
m_params = comp_params;
return jpg_open(width, height, src_channels);
}
void jpeg_encoder::deinit()
{
jpge_free(m_mcu_lines[0]);
clear();
}
bool jpeg_encoder::process_scanline(const void* pScanline)
{
if ((m_pass_num < 1) || (m_pass_num > 2)) {
return false;
}
if (m_all_stream_writes_succeeded) {
if (!pScanline) {
if (!process_end_of_image()) {
return false;
}
} else {
load_mcu(pScanline);
}
}
return m_all_stream_writes_succeeded;
}
} // namespace jpge

View File

@ -1,142 +0,0 @@
// jpge.h - C++ class for JPEG compression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// Alex Evans: Added RGBA support, linear memory allocator.
#ifndef JPEG_ENCODER_H
#define JPEG_ENCODER_H
namespace jpge
{
typedef unsigned char uint8;
typedef signed short int16;
typedef signed int int32;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned int uint;
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
// JPEG compression parameters structure.
struct params {
inline params() : m_quality(85), m_subsampling(H2V2) { }
inline bool check() const {
if ((m_quality < 1) || (m_quality > 100)) {
return false;
}
if ((uint)m_subsampling > (uint)H2V2) {
return false;
}
return true;
}
// Quality: 1-100, higher is better. Typical values are around 50-95.
int m_quality;
// m_subsampling:
// 0 = Y (grayscale) only
// 1 = H1V1 subsampling (YCbCr 1x1x1, 3 blocks per MCU)
// 2 = H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
// 3 = H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
subsampling_t m_subsampling;
};
// Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
// put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
class output_stream {
public:
virtual ~output_stream() { };
virtual bool put_buf(const void* Pbuf, int len) = 0;
virtual uint get_size() const = 0;
};
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
class jpeg_encoder {
public:
jpeg_encoder();
~jpeg_encoder();
// Initializes the compressor.
// pStream: The stream object to use for writing compressed data.
// params - Compression parameters structure, defined above.
// width, height - Image dimensions.
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
// Returns false on out of memory or if a stream write fails.
bool init(output_stream *pStream, int width, int height, int src_channels, const params &comp_params = params());
// Call this method with each source scanline.
// width * src_channels bytes per scanline is expected (RGB or Y format).
// You must call with NULL after all scanlines are processed to finish compression.
// Returns false on out of memory or if a stream write fails.
bool process_scanline(const void* pScanline);
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
void deinit();
private:
jpeg_encoder(const jpeg_encoder &);
jpeg_encoder &operator =(const jpeg_encoder &);
typedef int32 sample_array_t;
enum { JPGE_OUT_BUF_SIZE = 512 };
output_stream *m_pStream;
params m_params;
uint8 m_num_components;
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
int m_image_x_mcu, m_image_y_mcu;
int m_image_bpl_xlt, m_image_bpl_mcu;
int m_mcus_per_row;
int m_mcu_x, m_mcu_y;
uint8 *m_mcu_lines[16];
uint8 m_mcu_y_ofs;
sample_array_t m_sample_array[64];
int16 m_coefficient_array[64];
int m_last_dc_val[3];
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
uint8 *m_pOut_buf;
uint m_out_buf_left;
uint32 m_bit_buffer;
uint m_bits_in;
uint8 m_pass_num;
bool m_all_stream_writes_succeeded;
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
void flush_output_buffer();
void put_bits(uint bits, uint len);
void emit_byte(uint8 i);
void emit_word(uint i);
void emit_marker(int marker);
void emit_jfif_app0();
void emit_dqt();
void emit_sof();
void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
void emit_dhts();
void emit_sos();
void compute_quant_table(int32 *dst, const int16 *src);
void load_quantized_coefficients(int component_num);
void load_block_8_8_grey(int x);
void load_block_8_8(int x, int y, int c);
void load_block_16_8(int x, int c);
void load_block_16_8_8(int x, int c);
void code_coefficients_pass_two(int component_num);
void code_block(int component_num);
void process_mcu_row();
bool process_end_of_image();
void load_mcu(const void* src);
void clear();
void init();
};
} // namespace jpge
#endif // JPEG_ENCODER

View File

@ -1,29 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _CONVERSIONS_YUV_H_
#define _CONVERSIONS_YUV_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
void yuv2rgb(uint8_t y, uint8_t u, uint8_t v, uint8_t *r, uint8_t *g, uint8_t *b);
#ifdef __cplusplus
}
#endif
#endif /* _CONVERSIONS_YUV_H_ */

View File

@ -1,393 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <string.h>
#include "img_converters.h"
#include "soc/efuse_reg.h"
#include "esp_heap_caps.h"
#include "yuv.h"
#include "sdkconfig.h"
#include "esp_jpg_decode.h"
#include "esp_system.h"
#if ESP_IDF_VERSION_MAJOR >= 4 // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/spiram.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/spiram.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/spiram.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "esp_spiram.h"
#endif
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#define TAG ""
#else
#include "esp_log.h"
static const char* TAG = "to_bmp";
#endif
static const int BMP_HEADER_LEN = 54;
typedef struct {
uint32_t filesize;
uint32_t reserved;
uint32_t fileoffset_to_pixelarray;
uint32_t dibheadersize;
int32_t width;
int32_t height;
uint16_t planes;
uint16_t bitsperpixel;
uint32_t compression;
uint32_t imagesize;
uint32_t ypixelpermeter;
uint32_t xpixelpermeter;
uint32_t numcolorspallette;
uint32_t mostimpcolor;
} bmp_header_t;
typedef struct {
uint16_t width;
uint16_t height;
uint16_t data_offset;
const uint8_t *input;
uint8_t *output;
} rgb_jpg_decoder;
static void *_malloc(size_t size)
{
return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
}
//output buffer and image width
static bool _rgb_write(void * arg, uint16_t x, uint16_t y, uint16_t w, uint16_t h, uint8_t *data)
{
rgb_jpg_decoder * jpeg = (rgb_jpg_decoder *)arg;
if(!data){
if(x == 0 && y == 0){
//write start
jpeg->width = w;
jpeg->height = h;
//if output is null, this is BMP
if(!jpeg->output){
jpeg->output = (uint8_t *)_malloc((w*h*3)+jpeg->data_offset);
if(!jpeg->output){
return false;
}
}
} else {
//write end
}
return true;
}
size_t jw = jpeg->width*3;
size_t t = y * jw;
size_t b = t + (h * jw);
size_t l = x * 3;
uint8_t *out = jpeg->output+jpeg->data_offset;
uint8_t *o = out;
size_t iy, ix;
w = w * 3;
for(iy=t; iy<b; iy+=jw) {
o = out+iy+l;
for(ix=0; ix<w; ix+= 3) {
o[ix] = data[ix+2];
o[ix+1] = data[ix+1];
o[ix+2] = data[ix];
}
data+=w;
}
return true;
}
static bool _rgb565_write(void * arg, uint16_t x, uint16_t y, uint16_t w, uint16_t h, uint8_t *data)
{
rgb_jpg_decoder * jpeg = (rgb_jpg_decoder *)arg;
if(!data){
if(x == 0 && y == 0){
//write start
jpeg->width = w;
jpeg->height = h;
//if output is null, this is BMP
if(!jpeg->output){
jpeg->output = (uint8_t *)_malloc((w*h*3)+jpeg->data_offset);
if(!jpeg->output){
return false;
}
}
} else {
//write end
}
return true;
}
size_t jw = jpeg->width*3;
size_t jw2 = jpeg->width*2;
size_t t = y * jw;
size_t t2 = y * jw2;
size_t b = t + (h * jw);
size_t l = x * 2;
uint8_t *out = jpeg->output+jpeg->data_offset;
uint8_t *o = out;
size_t iy, iy2, ix, ix2;
w = w * 3;
for(iy=t, iy2=t2; iy<b; iy+=jw, iy2+=jw2) {
o = out+iy2+l;
for(ix2=ix=0; ix<w; ix+= 3, ix2 +=2) {
uint16_t r = data[ix];
uint16_t g = data[ix+1];
uint16_t b = data[ix+2];
uint16_t c = ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
o[ix2+1] = c>>8;
o[ix2] = c&0xff;
}
data+=w;
}
return true;
}
//input buffer
static uint32_t _jpg_read(void * arg, size_t index, uint8_t *buf, size_t len)
{
rgb_jpg_decoder * jpeg = (rgb_jpg_decoder *)arg;
if(buf) {
memcpy(buf, jpeg->input + index, len);
}
return len;
}
static bool jpg2rgb888(const uint8_t *src, size_t src_len, uint8_t * out, jpg_scale_t scale)
{
rgb_jpg_decoder jpeg;
jpeg.width = 0;
jpeg.height = 0;
jpeg.input = src;
jpeg.output = out;
jpeg.data_offset = 0;
if(esp_jpg_decode(src_len, scale, _jpg_read, _rgb_write, (void*)&jpeg) != ESP_OK){
return false;
}
return true;
}
bool jpg2rgb565(const uint8_t *src, size_t src_len, uint8_t * out, jpg_scale_t scale)
{
rgb_jpg_decoder jpeg;
jpeg.width = 0;
jpeg.height = 0;
jpeg.input = src;
jpeg.output = out;
jpeg.data_offset = 0;
if(esp_jpg_decode(src_len, scale, _jpg_read, _rgb565_write, (void*)&jpeg) != ESP_OK){
return false;
}
return true;
}
bool jpg2bmp(const uint8_t *src, size_t src_len, uint8_t ** out, size_t * out_len)
{
rgb_jpg_decoder jpeg;
jpeg.width = 0;
jpeg.height = 0;
jpeg.input = src;
jpeg.output = NULL;
jpeg.data_offset = BMP_HEADER_LEN;
if(esp_jpg_decode(src_len, JPG_SCALE_NONE, _jpg_read, _rgb_write, (void*)&jpeg) != ESP_OK){
return false;
}
size_t output_size = jpeg.width*jpeg.height*3;
jpeg.output[0] = 'B';
jpeg.output[1] = 'M';
bmp_header_t * bitmap = (bmp_header_t*)&jpeg.output[2];
bitmap->reserved = 0;
bitmap->filesize = output_size+BMP_HEADER_LEN;
bitmap->fileoffset_to_pixelarray = BMP_HEADER_LEN;
bitmap->dibheadersize = 40;
bitmap->width = jpeg.width;
bitmap->height = -jpeg.height;//set negative for top to bottom
bitmap->planes = 1;
bitmap->bitsperpixel = 24;
bitmap->compression = 0;
bitmap->imagesize = output_size;
bitmap->ypixelpermeter = 0x0B13 ; //2835 , 72 DPI
bitmap->xpixelpermeter = 0x0B13 ; //2835 , 72 DPI
bitmap->numcolorspallette = 0;
bitmap->mostimpcolor = 0;
*out = jpeg.output;
*out_len = output_size+BMP_HEADER_LEN;
return true;
}
bool fmt2rgb888(const uint8_t *src_buf, size_t src_len, pixformat_t format, uint8_t * rgb_buf)
{
int pix_count = 0;
if(format == PIXFORMAT_JPEG) {
return jpg2rgb888(src_buf, src_len, rgb_buf, JPG_SCALE_NONE);
} else if(format == PIXFORMAT_RGB888) {
memcpy(rgb_buf, src_buf, src_len);
} else if(format == PIXFORMAT_RGB565) {
int i;
uint8_t hb, lb;
pix_count = src_len / 2;
for(i=0; i<pix_count; i++) {
hb = *src_buf++;
lb = *src_buf++;
*rgb_buf++ = (lb & 0x1F) << 3;
*rgb_buf++ = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
*rgb_buf++ = hb & 0xF8;
}
} else if(format == PIXFORMAT_GRAYSCALE) {
int i;
uint8_t b;
pix_count = src_len;
for(i=0; i<pix_count; i++) {
b = *src_buf++;
*rgb_buf++ = b;
*rgb_buf++ = b;
*rgb_buf++ = b;
}
} else if(format == PIXFORMAT_YUV422) {
pix_count = src_len / 2;
int i, maxi = pix_count / 2;
uint8_t y0, y1, u, v;
uint8_t r, g, b;
for(i=0; i<maxi; i++) {
y0 = *src_buf++;
u = *src_buf++;
y1 = *src_buf++;
v = *src_buf++;
yuv2rgb(y0, u, v, &r, &g, &b);
*rgb_buf++ = b;
*rgb_buf++ = g;
*rgb_buf++ = r;
yuv2rgb(y1, u, v, &r, &g, &b);
*rgb_buf++ = b;
*rgb_buf++ = g;
*rgb_buf++ = r;
}
}
return true;
}
bool fmt2bmp(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixformat_t format, uint8_t ** out, size_t * out_len)
{
if(format == PIXFORMAT_JPEG) {
return jpg2bmp(src, src_len, out, out_len);
}
*out = NULL;
*out_len = 0;
int pix_count = width*height;
size_t out_size = (pix_count * 3) + BMP_HEADER_LEN;
uint8_t * out_buf = (uint8_t *)_malloc(out_size);
if(!out_buf) {
ESP_LOGE(TAG, "_malloc failed! %u", out_size);
return false;
}
out_buf[0] = 'B';
out_buf[1] = 'M';
bmp_header_t * bitmap = (bmp_header_t*)&out_buf[2];
bitmap->reserved = 0;
bitmap->filesize = out_size;
bitmap->fileoffset_to_pixelarray = BMP_HEADER_LEN;
bitmap->dibheadersize = 40;
bitmap->width = width;
bitmap->height = -height;//set negative for top to bottom
bitmap->planes = 1;
bitmap->bitsperpixel = 24;
bitmap->compression = 0;
bitmap->imagesize = pix_count * 3;
bitmap->ypixelpermeter = 0x0B13 ; //2835 , 72 DPI
bitmap->xpixelpermeter = 0x0B13 ; //2835 , 72 DPI
bitmap->numcolorspallette = 0;
bitmap->mostimpcolor = 0;
uint8_t * rgb_buf = out_buf + BMP_HEADER_LEN;
uint8_t * src_buf = src;
//convert data to RGB888
if(format == PIXFORMAT_RGB888) {
memcpy(rgb_buf, src_buf, pix_count*3);
} else if(format == PIXFORMAT_RGB565) {
int i;
uint8_t hb, lb;
for(i=0; i<pix_count; i++) {
hb = *src_buf++;
lb = *src_buf++;
*rgb_buf++ = (lb & 0x1F) << 3;
*rgb_buf++ = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
*rgb_buf++ = hb & 0xF8;
}
} else if(format == PIXFORMAT_GRAYSCALE) {
int i;
uint8_t b;
for(i=0; i<pix_count; i++) {
b = *src_buf++;
*rgb_buf++ = b;
*rgb_buf++ = b;
*rgb_buf++ = b;
}
} else if(format == PIXFORMAT_YUV422) {
int i, maxi = pix_count / 2;
uint8_t y0, y1, u, v;
uint8_t r, g, b;
for(i=0; i<maxi; i++) {
y0 = *src_buf++;
u = *src_buf++;
y1 = *src_buf++;
v = *src_buf++;
yuv2rgb(y0, u, v, &r, &g, &b);
*rgb_buf++ = b;
*rgb_buf++ = g;
*rgb_buf++ = r;
yuv2rgb(y1, u, v, &r, &g, &b);
*rgb_buf++ = b;
*rgb_buf++ = g;
*rgb_buf++ = r;
}
}
*out = out_buf;
*out_len = out_size;
return true;
}
bool frame2bmp(camera_fb_t * fb, uint8_t ** out, size_t * out_len)
{
return fmt2bmp(fb->buf, fb->len, fb->width, fb->height, fb->format, out, out_len);
}

View File

@ -1,245 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <string.h>
#include "esp_attr.h"
#include "soc/efuse_reg.h"
#include "esp_heap_caps.h"
#include "esp_camera.h"
#include "img_converters.h"
#include "jpge.h"
#include "yuv.h"
#include "esp_system.h"
#if ESP_IDF_VERSION_MAJOR >= 4 // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/spiram.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/spiram.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/spiram.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "esp_spiram.h"
#endif
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#define TAG ""
#else
#include "esp_log.h"
static const char* TAG = "to_jpg";
#endif
static void *_malloc(size_t size)
{
void * res = malloc(size);
if(res) {
return res;
}
return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
}
static IRAM_ATTR void convert_line_format(uint8_t * src, pixformat_t format, uint8_t * dst, size_t width, size_t in_channels, size_t line)
{
int i=0, o=0, l=0;
if(format == PIXFORMAT_GRAYSCALE) {
memcpy(dst, src + line * width, width);
} else if(format == PIXFORMAT_RGB888) {
l = width * 3;
src += l * line;
for(i=0; i<l; i+=3) {
dst[o++] = src[i+2];
dst[o++] = src[i+1];
dst[o++] = src[i];
}
} else if(format == PIXFORMAT_RGB565) {
l = width * 2;
src += l * line;
for(i=0; i<l; i+=2) {
dst[o++] = src[i] & 0xF8;
dst[o++] = (src[i] & 0x07) << 5 | (src[i+1] & 0xE0) >> 3;
dst[o++] = (src[i+1] & 0x1F) << 3;
}
} else if(format == PIXFORMAT_YUV422) {
uint8_t y0, y1, u, v;
uint8_t r, g, b;
l = width * 2;
src += l * line;
for(i=0; i<l; i+=4) {
y0 = src[i];
u = src[i+1];
y1 = src[i+2];
v = src[i+3];
yuv2rgb(y0, u, v, &r, &g, &b);
dst[o++] = r;
dst[o++] = g;
dst[o++] = b;
yuv2rgb(y1, u, v, &r, &g, &b);
dst[o++] = r;
dst[o++] = g;
dst[o++] = b;
}
}
}
bool convert_image(uint8_t *src, uint16_t width, uint16_t height, pixformat_t format, uint8_t quality, jpge::output_stream *dst_stream)
{
int num_channels = 3;
jpge::subsampling_t subsampling = jpge::H2V2;
if(format == PIXFORMAT_GRAYSCALE) {
num_channels = 1;
subsampling = jpge::Y_ONLY;
}
if(!quality) {
quality = 1;
} else if(quality > 100) {
quality = 100;
}
jpge::params comp_params = jpge::params();
comp_params.m_subsampling = subsampling;
comp_params.m_quality = quality;
jpge::jpeg_encoder dst_image;
if (!dst_image.init(dst_stream, width, height, num_channels, comp_params)) {
ESP_LOGE(TAG, "JPG encoder init failed");
return false;
}
uint8_t* line = (uint8_t*)_malloc(width * num_channels);
if(!line) {
ESP_LOGE(TAG, "Scan line malloc failed");
return false;
}
for (int i = 0; i < height; i++) {
convert_line_format(src, format, line, width, num_channels, i);
if (!dst_image.process_scanline(line)) {
ESP_LOGE(TAG, "JPG process line %u failed", i);
free(line);
return false;
}
}
free(line);
if (!dst_image.process_scanline(NULL)) {
ESP_LOGE(TAG, "JPG image finish failed");
return false;
}
dst_image.deinit();
return true;
}
class callback_stream : public jpge::output_stream {
protected:
jpg_out_cb ocb;
void * oarg;
size_t index;
public:
callback_stream(jpg_out_cb cb, void * arg) : ocb(cb), oarg(arg), index(0) { }
virtual ~callback_stream() { }
virtual bool put_buf(const void* data, int len)
{
index += ocb(oarg, index, data, len);
return true;
}
virtual size_t get_size() const
{
return index;
}
};
bool fmt2jpg_cb(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixformat_t format, uint8_t quality, jpg_out_cb cb, void * arg)
{
callback_stream dst_stream(cb, arg);
return convert_image(src, width, height, format, quality, &dst_stream);
}
bool frame2jpg_cb(camera_fb_t * fb, uint8_t quality, jpg_out_cb cb, void * arg)
{
return fmt2jpg_cb(fb->buf, fb->len, fb->width, fb->height, fb->format, quality, cb, arg);
}
class memory_stream : public jpge::output_stream {
protected:
uint8_t *out_buf;
size_t max_len, index;
public:
memory_stream(void *pBuf, uint buf_size) : out_buf(static_cast<uint8_t*>(pBuf)), max_len(buf_size), index(0) { }
virtual ~memory_stream() { }
virtual bool put_buf(const void* pBuf, int len)
{
if (!pBuf) {
//end of image
return true;
}
if ((size_t)len > (max_len - index)) {
//ESP_LOGW(TAG, "JPG output overflow: %d bytes (%d,%d,%d)", len - (max_len - index), len, index, max_len);
len = max_len - index;
}
if (len) {
memcpy(out_buf + index, pBuf, len);
index += len;
}
return true;
}
virtual size_t get_size() const
{
return index;
}
};
bool fmt2jpg(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixformat_t format, uint8_t quality, uint8_t ** out, size_t * out_len)
{
//todo: allocate proper buffer for holding JPEG data
//this should be enough for CIF frame size
int jpg_buf_len = 128*1024;
uint8_t * jpg_buf = (uint8_t *)_malloc(jpg_buf_len);
if(jpg_buf == NULL) {
ESP_LOGE(TAG, "JPG buffer malloc failed");
return false;
}
memory_stream dst_stream(jpg_buf, jpg_buf_len);
if(!convert_image(src, width, height, format, quality, &dst_stream)) {
free(jpg_buf);
return false;
}
*out = jpg_buf;
*out_len = dst_stream.get_size();
return true;
}
bool frame2jpg(camera_fb_t * fb, uint8_t quality, uint8_t ** out, size_t * out_len)
{
return fmt2jpg(fb->buf, fb->len, fb->width, fb->height, fb->format, quality, out, out_len);
}

View File

@ -1,298 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "yuv.h"
#include "esp_attr.h"
typedef struct {
int16_t vY;
int16_t vVr;
int16_t vVg;
int16_t vUg;
int16_t vUb;
} yuv_table_row;
static const yuv_table_row yuv_table[256] = {
// Y Vr Vg Ug Ub // #
{ -18, -204, 50, 104, -258 }, // 0
{ -17, -202, 49, 103, -256 }, // 1
{ -16, -201, 49, 102, -254 }, // 2
{ -15, -199, 48, 101, -252 }, // 3
{ -13, -197, 48, 100, -250 }, // 4
{ -12, -196, 48, 99, -248 }, // 5
{ -11, -194, 47, 99, -246 }, // 6
{ -10, -193, 47, 98, -244 }, // 7
{ -9, -191, 46, 97, -242 }, // 8
{ -8, -189, 46, 96, -240 }, // 9
{ -6, -188, 46, 95, -238 }, // 10
{ -5, -186, 45, 95, -236 }, // 11
{ -4, -185, 45, 94, -234 }, // 12
{ -3, -183, 44, 93, -232 }, // 13
{ -2, -181, 44, 92, -230 }, // 14
{ -1, -180, 44, 91, -228 }, // 15
{ 0, -178, 43, 91, -226 }, // 16
{ 1, -177, 43, 90, -223 }, // 17
{ 2, -175, 43, 89, -221 }, // 18
{ 3, -173, 42, 88, -219 }, // 19
{ 4, -172, 42, 87, -217 }, // 20
{ 5, -170, 41, 86, -215 }, // 21
{ 6, -169, 41, 86, -213 }, // 22
{ 8, -167, 41, 85, -211 }, // 23
{ 9, -165, 40, 84, -209 }, // 24
{ 10, -164, 40, 83, -207 }, // 25
{ 11, -162, 39, 82, -205 }, // 26
{ 12, -161, 39, 82, -203 }, // 27
{ 13, -159, 39, 81, -201 }, // 28
{ 15, -158, 38, 80, -199 }, // 29
{ 16, -156, 38, 79, -197 }, // 30
{ 17, -154, 37, 78, -195 }, // 31
{ 18, -153, 37, 78, -193 }, // 32
{ 19, -151, 37, 77, -191 }, // 33
{ 20, -150, 36, 76, -189 }, // 34
{ 22, -148, 36, 75, -187 }, // 35
{ 23, -146, 35, 74, -185 }, // 36
{ 24, -145, 35, 73, -183 }, // 37
{ 25, -143, 35, 73, -181 }, // 38
{ 26, -142, 34, 72, -179 }, // 39
{ 27, -140, 34, 71, -177 }, // 40
{ 29, -138, 34, 70, -175 }, // 41
{ 30, -137, 33, 69, -173 }, // 42
{ 31, -135, 33, 69, -171 }, // 43
{ 32, -134, 32, 68, -169 }, // 44
{ 33, -132, 32, 67, -167 }, // 45
{ 34, -130, 32, 66, -165 }, // 46
{ 36, -129, 31, 65, -163 }, // 47
{ 37, -127, 31, 65, -161 }, // 48
{ 38, -126, 30, 64, -159 }, // 49
{ 39, -124, 30, 63, -157 }, // 50
{ 40, -122, 30, 62, -155 }, // 51
{ 41, -121, 29, 61, -153 }, // 52
{ 43, -119, 29, 60, -151 }, // 53
{ 44, -118, 28, 60, -149 }, // 54
{ 45, -116, 28, 59, -147 }, // 55
{ 46, -114, 28, 58, -145 }, // 56
{ 47, -113, 27, 57, -143 }, // 57
{ 48, -111, 27, 56, -141 }, // 58
{ 50, -110, 26, 56, -139 }, // 59
{ 51, -108, 26, 55, -137 }, // 60
{ 52, -106, 26, 54, -135 }, // 61
{ 53, -105, 25, 53, -133 }, // 62
{ 54, -103, 25, 52, -131 }, // 63
{ 55, -102, 25, 52, -129 }, // 64
{ 57, -100, 24, 51, -127 }, // 65
{ 58, -98, 24, 50, -125 }, // 66
{ 59, -97, 23, 49, -123 }, // 67
{ 60, -95, 23, 48, -121 }, // 68
{ 61, -94, 23, 47, -119 }, // 69
{ 62, -92, 22, 47, -117 }, // 70
{ 64, -90, 22, 46, -115 }, // 71
{ 65, -89, 21, 45, -113 }, // 72
{ 66, -87, 21, 44, -110 }, // 73
{ 67, -86, 21, 43, -108 }, // 74
{ 68, -84, 20, 43, -106 }, // 75
{ 69, -82, 20, 42, -104 }, // 76
{ 71, -81, 19, 41, -102 }, // 77
{ 72, -79, 19, 40, -100 }, // 78
{ 73, -78, 19, 39, -98 }, // 79
{ 74, -76, 18, 39, -96 }, // 80
{ 75, -75, 18, 38, -94 }, // 81
{ 76, -73, 17, 37, -92 }, // 82
{ 77, -71, 17, 36, -90 }, // 83
{ 79, -70, 17, 35, -88 }, // 84
{ 80, -68, 16, 34, -86 }, // 85
{ 81, -67, 16, 34, -84 }, // 86
{ 82, -65, 16, 33, -82 }, // 87
{ 83, -63, 15, 32, -80 }, // 88
{ 84, -62, 15, 31, -78 }, // 89
{ 86, -60, 14, 30, -76 }, // 90
{ 87, -59, 14, 30, -74 }, // 91
{ 88, -57, 14, 29, -72 }, // 92
{ 89, -55, 13, 28, -70 }, // 93
{ 90, -54, 13, 27, -68 }, // 94
{ 91, -52, 12, 26, -66 }, // 95
{ 93, -51, 12, 26, -64 }, // 96
{ 94, -49, 12, 25, -62 }, // 97
{ 95, -47, 11, 24, -60 }, // 98
{ 96, -46, 11, 23, -58 }, // 99
{ 97, -44, 10, 22, -56 }, // 100
{ 98, -43, 10, 21, -54 }, // 101
{ 100, -41, 10, 21, -52 }, // 102
{ 101, -39, 9, 20, -50 }, // 103
{ 102, -38, 9, 19, -48 }, // 104
{ 103, -36, 8, 18, -46 }, // 105
{ 104, -35, 8, 17, -44 }, // 106
{ 105, -33, 8, 17, -42 }, // 107
{ 107, -31, 7, 16, -40 }, // 108
{ 108, -30, 7, 15, -38 }, // 109
{ 109, -28, 7, 14, -36 }, // 110
{ 110, -27, 6, 13, -34 }, // 111
{ 111, -25, 6, 13, -32 }, // 112
{ 112, -23, 5, 12, -30 }, // 113
{ 114, -22, 5, 11, -28 }, // 114
{ 115, -20, 5, 10, -26 }, // 115
{ 116, -19, 4, 9, -24 }, // 116
{ 117, -17, 4, 8, -22 }, // 117
{ 118, -15, 3, 8, -20 }, // 118
{ 119, -14, 3, 7, -18 }, // 119
{ 121, -12, 3, 6, -16 }, // 120
{ 122, -11, 2, 5, -14 }, // 121
{ 123, -9, 2, 4, -12 }, // 122
{ 124, -7, 1, 4, -10 }, // 123
{ 125, -6, 1, 3, -8 }, // 124
{ 126, -4, 1, 2, -6 }, // 125
{ 128, -3, 0, 1, -4 }, // 126
{ 129, -1, 0, 0, -2 }, // 127
{ 130, 0, 0, 0, 0 }, // 128
{ 131, 1, 0, 0, 2 }, // 129
{ 132, 3, 0, -1, 4 }, // 130
{ 133, 4, -1, -2, 6 }, // 131
{ 135, 6, -1, -3, 8 }, // 132
{ 136, 7, -1, -4, 10 }, // 133
{ 137, 9, -2, -4, 12 }, // 134
{ 138, 11, -2, -5, 14 }, // 135
{ 139, 12, -3, -6, 16 }, // 136
{ 140, 14, -3, -7, 18 }, // 137
{ 142, 15, -3, -8, 20 }, // 138
{ 143, 17, -4, -8, 22 }, // 139
{ 144, 19, -4, -9, 24 }, // 140
{ 145, 20, -5, -10, 26 }, // 141
{ 146, 22, -5, -11, 28 }, // 142
{ 147, 23, -5, -12, 30 }, // 143
{ 148, 25, -6, -13, 32 }, // 144
{ 150, 27, -6, -13, 34 }, // 145
{ 151, 28, -7, -14, 36 }, // 146
{ 152, 30, -7, -15, 38 }, // 147
{ 153, 31, -7, -16, 40 }, // 148
{ 154, 33, -8, -17, 42 }, // 149
{ 155, 35, -8, -17, 44 }, // 150
{ 157, 36, -8, -18, 46 }, // 151
{ 158, 38, -9, -19, 48 }, // 152
{ 159, 39, -9, -20, 50 }, // 153
{ 160, 41, -10, -21, 52 }, // 154
{ 161, 43, -10, -21, 54 }, // 155
{ 162, 44, -10, -22, 56 }, // 156
{ 164, 46, -11, -23, 58 }, // 157
{ 165, 47, -11, -24, 60 }, // 158
{ 166, 49, -12, -25, 62 }, // 159
{ 167, 51, -12, -26, 64 }, // 160
{ 168, 52, -12, -26, 66 }, // 161
{ 169, 54, -13, -27, 68 }, // 162
{ 171, 55, -13, -28, 70 }, // 163
{ 172, 57, -14, -29, 72 }, // 164
{ 173, 59, -14, -30, 74 }, // 165
{ 174, 60, -14, -30, 76 }, // 166
{ 175, 62, -15, -31, 78 }, // 167
{ 176, 63, -15, -32, 80 }, // 168
{ 178, 65, -16, -33, 82 }, // 169
{ 179, 67, -16, -34, 84 }, // 170
{ 180, 68, -16, -34, 86 }, // 171
{ 181, 70, -17, -35, 88 }, // 172
{ 182, 71, -17, -36, 90 }, // 173
{ 183, 73, -17, -37, 92 }, // 174
{ 185, 75, -18, -38, 94 }, // 175
{ 186, 76, -18, -39, 96 }, // 176
{ 187, 78, -19, -39, 98 }, // 177
{ 188, 79, -19, -40, 100 }, // 178
{ 189, 81, -19, -41, 102 }, // 179
{ 190, 82, -20, -42, 104 }, // 180
{ 192, 84, -20, -43, 106 }, // 181
{ 193, 86, -21, -43, 108 }, // 182
{ 194, 87, -21, -44, 110 }, // 183
{ 195, 89, -21, -45, 113 }, // 184
{ 196, 90, -22, -46, 115 }, // 185
{ 197, 92, -22, -47, 117 }, // 186
{ 199, 94, -23, -47, 119 }, // 187
{ 200, 95, -23, -48, 121 }, // 188
{ 201, 97, -23, -49, 123 }, // 189
{ 202, 98, -24, -50, 125 }, // 190
{ 203, 100, -24, -51, 127 }, // 191
{ 204, 102, -25, -52, 129 }, // 192
{ 206, 103, -25, -52, 131 }, // 193
{ 207, 105, -25, -53, 133 }, // 194
{ 208, 106, -26, -54, 135 }, // 195
{ 209, 108, -26, -55, 137 }, // 196
{ 210, 110, -26, -56, 139 }, // 197
{ 211, 111, -27, -56, 141 }, // 198
{ 213, 113, -27, -57, 143 }, // 199
{ 214, 114, -28, -58, 145 }, // 200
{ 215, 116, -28, -59, 147 }, // 201
{ 216, 118, -28, -60, 149 }, // 202
{ 217, 119, -29, -60, 151 }, // 203
{ 218, 121, -29, -61, 153 }, // 204
{ 219, 122, -30, -62, 155 }, // 205
{ 221, 124, -30, -63, 157 }, // 206
{ 222, 126, -30, -64, 159 }, // 207
{ 223, 127, -31, -65, 161 }, // 208
{ 224, 129, -31, -65, 163 }, // 209
{ 225, 130, -32, -66, 165 }, // 210
{ 226, 132, -32, -67, 167 }, // 211
{ 228, 134, -32, -68, 169 }, // 212
{ 229, 135, -33, -69, 171 }, // 213
{ 230, 137, -33, -69, 173 }, // 214
{ 231, 138, -34, -70, 175 }, // 215
{ 232, 140, -34, -71, 177 }, // 216
{ 233, 142, -34, -72, 179 }, // 217
{ 235, 143, -35, -73, 181 }, // 218
{ 236, 145, -35, -73, 183 }, // 219
{ 237, 146, -35, -74, 185 }, // 220
{ 238, 148, -36, -75, 187 }, // 221
{ 239, 150, -36, -76, 189 }, // 222
{ 240, 151, -37, -77, 191 }, // 223
{ 242, 153, -37, -78, 193 }, // 224
{ 243, 154, -37, -78, 195 }, // 225
{ 244, 156, -38, -79, 197 }, // 226
{ 245, 158, -38, -80, 199 }, // 227
{ 246, 159, -39, -81, 201 }, // 228
{ 247, 161, -39, -82, 203 }, // 229
{ 249, 162, -39, -82, 205 }, // 230
{ 250, 164, -40, -83, 207 }, // 231
{ 251, 165, -40, -84, 209 }, // 232
{ 252, 167, -41, -85, 211 }, // 233
{ 253, 169, -41, -86, 213 }, // 234
{ 254, 170, -41, -86, 215 }, // 235
{ 256, 172, -42, -87, 217 }, // 236
{ 257, 173, -42, -88, 219 }, // 237
{ 258, 175, -43, -89, 221 }, // 238
{ 259, 177, -43, -90, 223 }, // 239
{ 260, 178, -43, -91, 226 }, // 240
{ 261, 180, -44, -91, 228 }, // 241
{ 263, 181, -44, -92, 230 }, // 242
{ 264, 183, -44, -93, 232 }, // 243
{ 265, 185, -45, -94, 234 }, // 244
{ 266, 186, -45, -95, 236 }, // 245
{ 267, 188, -46, -95, 238 }, // 246
{ 268, 189, -46, -96, 240 }, // 247
{ 270, 191, -46, -97, 242 }, // 248
{ 271, 193, -47, -98, 244 }, // 249
{ 272, 194, -47, -99, 246 }, // 250
{ 273, 196, -48, -99, 248 }, // 251
{ 274, 197, -48, -100, 250 }, // 252
{ 275, 199, -48, -101, 252 }, // 253
{ 277, 201, -49, -102, 254 }, // 254
{ 278, 202, -49, -103, 256 } // 255
};
#define YUYV_CONSTRAIN(v) ((v)<0)?0:(((v)>255)?255:(v))
void IRAM_ATTR yuv2rgb(uint8_t y, uint8_t u, uint8_t v, uint8_t *r, uint8_t *g, uint8_t *b)
{
int16_t ri, gi, bi;
ri = yuv_table[y].vY + yuv_table[v].vVr;
gi = yuv_table[y].vY + yuv_table[u].vUg + yuv_table[v].vVg;
bi = yuv_table[y].vY + yuv_table[u].vUb;
*r = YUYV_CONSTRAIN(ri);
*g = YUYV_CONSTRAIN(gi);
*b = YUYV_CONSTRAIN(bi);
}

View File

@ -1,483 +0,0 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "esp_heap_caps.h"
#include "ll_cam.h"
#include "cam_hal.h"
static const char *TAG = "cam_hal";
static cam_obj_t *cam_obj = NULL;
static const uint32_t JPEG_SOI_MARKER = 0xFFD8FF; // written in little-endian for esp32
static const uint16_t JPEG_EOI_MARKER = 0xD9FF; // written in little-endian for esp32
static int cam_verify_jpeg_soi(const uint8_t *inbuf, uint32_t length)
{
uint32_t sig = *((uint32_t *)inbuf) & 0xFFFFFF;
if(sig != JPEG_SOI_MARKER) {
for (uint32_t i = 0; i < length; i++) {
sig = *((uint32_t *)(&inbuf[i])) & 0xFFFFFF;
if (sig == JPEG_SOI_MARKER) {
ESP_LOGW(TAG, "SOI: %d", i);
return i;
}
}
ESP_LOGW(TAG, "NO-SOI");
return -1;
}
return 0;
}
static int cam_verify_jpeg_eoi(const uint8_t *inbuf, uint32_t length)
{
int offset = -1;
uint8_t *dptr = (uint8_t *)inbuf + length - 2;
while (dptr > inbuf) {
uint16_t sig = *((uint16_t *)dptr);
if (JPEG_EOI_MARKER == sig) {
offset = dptr - inbuf;
//ESP_LOGW(TAG, "EOI: %d", length - (offset + 2));
return offset;
}
dptr--;
}
return -1;
}
static bool cam_get_next_frame(int * frame_pos)
{
if(!cam_obj->frames[*frame_pos].en){
for (int x = 0; x < cam_obj->frame_cnt; x++) {
if (cam_obj->frames[x].en) {
*frame_pos = x;
return true;
}
}
} else {
return true;
}
return false;
}
static bool cam_start_frame(int * frame_pos)
{
if (cam_get_next_frame(frame_pos)) {
if(ll_cam_start(cam_obj, *frame_pos)){
// Vsync the frame manually
ll_cam_do_vsync(cam_obj);
uint64_t us = (uint64_t)esp_timer_get_time();
cam_obj->frames[*frame_pos].fb.timestamp.tv_sec = us / 1000000UL;
cam_obj->frames[*frame_pos].fb.timestamp.tv_usec = us % 1000000UL;
return true;
}
}
return false;
}
void IRAM_ATTR ll_cam_send_event(cam_obj_t *cam, cam_event_t cam_event, BaseType_t * HPTaskAwoken)
{
if (xQueueSendFromISR(cam->event_queue, (void *)&cam_event, HPTaskAwoken) != pdTRUE) {
ll_cam_stop(cam);
cam->state = CAM_STATE_IDLE;
ESP_EARLY_LOGE(TAG, "EV-%s-OVF", cam_event==CAM_IN_SUC_EOF_EVENT ? "EOF" : "VSYNC");
}
}
//Copy fram from DMA dma_buffer to fram dma_buffer
static void cam_task(void *arg)
{
int cnt = 0;
int frame_pos = 0;
cam_obj->state = CAM_STATE_IDLE;
cam_event_t cam_event = 0;
xQueueReset(cam_obj->event_queue);
while (1) {
xQueueReceive(cam_obj->event_queue, (void *)&cam_event, portMAX_DELAY);
DBG_PIN_SET(1);
switch (cam_obj->state) {
case CAM_STATE_IDLE: {
if (cam_event == CAM_VSYNC_EVENT) {
//DBG_PIN_SET(1);
if(cam_start_frame(&frame_pos)){
cam_obj->frames[frame_pos].fb.len = 0;
cam_obj->state = CAM_STATE_READ_BUF;
}
cnt = 0;
}
}
break;
case CAM_STATE_READ_BUF: {
camera_fb_t * frame_buffer_event = &cam_obj->frames[frame_pos].fb;
size_t pixels_per_dma = (cam_obj->dma_half_buffer_size * cam_obj->fb_bytes_per_pixel) / (cam_obj->dma_bytes_per_item * cam_obj->in_bytes_per_pixel);
if (cam_event == CAM_IN_SUC_EOF_EVENT) {
if(!cam_obj->psram_mode){
if (cam_obj->fb_size < (frame_buffer_event->len + pixels_per_dma)) {
ESP_LOGW(TAG, "FB-OVF");
ll_cam_stop(cam_obj);
DBG_PIN_SET(0);
continue;
}
frame_buffer_event->len += ll_cam_memcpy(cam_obj,
&frame_buffer_event->buf[frame_buffer_event->len],
&cam_obj->dma_buffer[(cnt % cam_obj->dma_half_buffer_cnt) * cam_obj->dma_half_buffer_size],
cam_obj->dma_half_buffer_size);
}
//Check for JPEG SOI in the first buffer. stop if not found
if (cam_obj->jpeg_mode && cnt == 0 && cam_verify_jpeg_soi(frame_buffer_event->buf, frame_buffer_event->len) != 0) {
ll_cam_stop(cam_obj);
cam_obj->state = CAM_STATE_IDLE;
}
cnt++;
} else if (cam_event == CAM_VSYNC_EVENT) {
//DBG_PIN_SET(1);
ll_cam_stop(cam_obj);
if (cnt || !cam_obj->jpeg_mode || cam_obj->psram_mode) {
if (cam_obj->jpeg_mode) {
if (!cam_obj->psram_mode) {
if (cam_obj->fb_size < (frame_buffer_event->len + pixels_per_dma)) {
ESP_LOGW(TAG, "FB-OVF");
cnt--;
} else {
frame_buffer_event->len += ll_cam_memcpy(cam_obj,
&frame_buffer_event->buf[frame_buffer_event->len],
&cam_obj->dma_buffer[(cnt % cam_obj->dma_half_buffer_cnt) * cam_obj->dma_half_buffer_size],
cam_obj->dma_half_buffer_size);
}
}
cnt++;
}
cam_obj->frames[frame_pos].en = 0;
if (cam_obj->psram_mode) {
if (cam_obj->jpeg_mode) {
frame_buffer_event->len = cnt * cam_obj->dma_half_buffer_size;
} else {
frame_buffer_event->len = cam_obj->recv_size;
}
} else if (!cam_obj->jpeg_mode) {
if (frame_buffer_event->len != cam_obj->fb_size) {
cam_obj->frames[frame_pos].en = 1;
ESP_LOGE(TAG, "FB-SIZE: %u != %u", frame_buffer_event->len, cam_obj->fb_size);
}
}
//send frame
if(!cam_obj->frames[frame_pos].en && xQueueSend(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, 0) != pdTRUE) {
//pop frame buffer from the queue
camera_fb_t * fb2 = NULL;
if(xQueueReceive(cam_obj->frame_buffer_queue, &fb2, 0) == pdTRUE) {
//push the new frame to the end of the queue
if (xQueueSend(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, 0) != pdTRUE) {
cam_obj->frames[frame_pos].en = 1;
ESP_LOGE(TAG, "FBQ-SND");
}
//free the popped buffer
cam_give(fb2);
} else {
//queue is full and we could not pop a frame from it
cam_obj->frames[frame_pos].en = 1;
ESP_LOGE(TAG, "FBQ-RCV");
}
}
}
if(!cam_start_frame(&frame_pos)){
cam_obj->state = CAM_STATE_IDLE;
} else {
cam_obj->frames[frame_pos].fb.len = 0;
}
cnt = 0;
}
}
break;
}
DBG_PIN_SET(0);
}
}
static lldesc_t * allocate_dma_descriptors(uint32_t count, uint16_t size, uint8_t * buffer)
{
lldesc_t *dma = (lldesc_t *)heap_caps_malloc(count * sizeof(lldesc_t), MALLOC_CAP_DMA);
if (dma == NULL) {
return dma;
}
for (int x = 0; x < count; x++) {
dma[x].size = size;
dma[x].length = 0;
dma[x].sosf = 0;
dma[x].eof = 0;
dma[x].owner = 1;
dma[x].buf = (buffer + size * x);
dma[x].empty = (uint32_t)&dma[(x + 1) % count];
}
return dma;
}
static esp_err_t cam_dma_config(const camera_config_t *config)
{
bool ret = ll_cam_dma_sizes(cam_obj);
if (0 == ret) {
return ESP_FAIL;
}
cam_obj->dma_node_cnt = (cam_obj->dma_buffer_size) / cam_obj->dma_node_buffer_size; // Number of DMA nodes
cam_obj->frame_copy_cnt = cam_obj->recv_size / cam_obj->dma_half_buffer_size; // Number of interrupted copies, ping-pong copy
ESP_LOGI(TAG, "buffer_size: %d, half_buffer_size: %d, node_buffer_size: %d, node_cnt: %d, total_cnt: %d",
cam_obj->dma_buffer_size, cam_obj->dma_half_buffer_size, cam_obj->dma_node_buffer_size, cam_obj->dma_node_cnt, cam_obj->frame_copy_cnt);
cam_obj->dma_buffer = NULL;
cam_obj->dma = NULL;
cam_obj->frames = (cam_frame_t *)heap_caps_calloc(1, cam_obj->frame_cnt * sizeof(cam_frame_t), MALLOC_CAP_DEFAULT);
CAM_CHECK(cam_obj->frames != NULL, "frames malloc failed", ESP_FAIL);
uint8_t dma_align = 0;
size_t fb_size = cam_obj->fb_size;
if (cam_obj->psram_mode) {
dma_align = ll_cam_get_dma_align(cam_obj);
if (cam_obj->fb_size < cam_obj->recv_size) {
fb_size = cam_obj->recv_size;
}
}
/* Allocate memeory for frame buffer */
size_t alloc_size = fb_size * sizeof(uint8_t) + dma_align;
uint32_t _caps = MALLOC_CAP_8BIT;
if (CAMERA_FB_IN_DRAM == config->fb_location) {
_caps |= MALLOC_CAP_INTERNAL;
} else {
_caps |= MALLOC_CAP_SPIRAM;
}
for (int x = 0; x < cam_obj->frame_cnt; x++) {
cam_obj->frames[x].dma = NULL;
cam_obj->frames[x].fb_offset = 0;
cam_obj->frames[x].en = 0;
ESP_LOGI(TAG, "Allocating %d Byte frame buffer in %s", alloc_size, _caps & MALLOC_CAP_SPIRAM ? "PSRAM" : "OnBoard RAM");
cam_obj->frames[x].fb.buf = (uint8_t *)heap_caps_malloc(alloc_size, _caps);
CAM_CHECK(cam_obj->frames[x].fb.buf != NULL, "frame buffer malloc failed", ESP_FAIL);
if (cam_obj->psram_mode) {
//align PSRAM buffer. TODO: save the offset so proper address can be freed later
cam_obj->frames[x].fb_offset = dma_align - ((uint32_t)cam_obj->frames[x].fb.buf & (dma_align - 1));
cam_obj->frames[x].fb.buf += cam_obj->frames[x].fb_offset;
ESP_LOGI(TAG, "Frame[%d]: Offset: %u, Addr: 0x%08X", x, cam_obj->frames[x].fb_offset, (uint32_t)cam_obj->frames[x].fb.buf);
cam_obj->frames[x].dma = allocate_dma_descriptors(cam_obj->dma_node_cnt, cam_obj->dma_node_buffer_size, cam_obj->frames[x].fb.buf);
CAM_CHECK(cam_obj->frames[x].dma != NULL, "frame dma malloc failed", ESP_FAIL);
}
cam_obj->frames[x].en = 1;
}
if (!cam_obj->psram_mode) {
cam_obj->dma_buffer = (uint8_t *)heap_caps_malloc(cam_obj->dma_buffer_size * sizeof(uint8_t), MALLOC_CAP_DMA);
if(NULL == cam_obj->dma_buffer) {
ESP_LOGE(TAG,"%s(%d): DMA buffer %d Byte malloc failed, the current largest free block:%d Byte", __FUNCTION__, __LINE__,
cam_obj->dma_buffer_size, heap_caps_get_largest_free_block(MALLOC_CAP_DMA));
return ESP_FAIL;
}
cam_obj->dma = allocate_dma_descriptors(cam_obj->dma_node_cnt, cam_obj->dma_node_buffer_size, cam_obj->dma_buffer);
CAM_CHECK(cam_obj->dma != NULL, "dma malloc failed", ESP_FAIL);
}
return ESP_OK;
}
esp_err_t cam_init(const camera_config_t *config)
{
CAM_CHECK(NULL != config, "config pointer is invalid", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
cam_obj = (cam_obj_t *)heap_caps_calloc(1, sizeof(cam_obj_t), MALLOC_CAP_DMA);
CAM_CHECK(NULL != cam_obj, "lcd_cam object malloc error", ESP_ERR_NO_MEM);
cam_obj->swap_data = 0;
cam_obj->vsync_pin = config->pin_vsync;
cam_obj->vsync_invert = true;
ll_cam_set_pin(cam_obj, config);
ret = ll_cam_config(cam_obj, config);
CAM_CHECK_GOTO(ret == ESP_OK, "ll_cam initialize failed", err);
#if CAMERA_DBG_PIN_ENABLE
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[DBG_PIN_NUM], PIN_FUNC_GPIO);
gpio_set_direction(DBG_PIN_NUM, GPIO_MODE_OUTPUT);
gpio_set_pull_mode(DBG_PIN_NUM, GPIO_FLOATING);
#endif
ESP_LOGI(TAG, "cam init ok");
return ESP_OK;
err:
free(cam_obj);
cam_obj = NULL;
return ESP_FAIL;
}
esp_err_t cam_config(const camera_config_t *config, framesize_t frame_size, uint16_t sensor_pid)
{
CAM_CHECK(NULL != config, "config pointer is invalid", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
ret = ll_cam_set_sample_mode(cam_obj, (pixformat_t)config->pixel_format, config->xclk_freq_hz, sensor_pid);
cam_obj->jpeg_mode = config->pixel_format == PIXFORMAT_JPEG;
#if CONFIG_IDF_TARGET_ESP32
cam_obj->psram_mode = false;
#else
cam_obj->psram_mode = (config->xclk_freq_hz == 16000000);
#endif
cam_obj->frame_cnt = config->fb_count;
cam_obj->width = resolution[frame_size].width;
cam_obj->height = resolution[frame_size].height;
if(cam_obj->jpeg_mode){
cam_obj->recv_size = cam_obj->width * cam_obj->height / 5;
cam_obj->fb_size = cam_obj->recv_size;
} else {
cam_obj->recv_size = cam_obj->width * cam_obj->height * cam_obj->in_bytes_per_pixel;
cam_obj->fb_size = cam_obj->width * cam_obj->height * cam_obj->fb_bytes_per_pixel;
}
ret = cam_dma_config(config);
CAM_CHECK_GOTO(ret == ESP_OK, "cam_dma_config failed", err);
cam_obj->event_queue = xQueueCreate(cam_obj->dma_half_buffer_cnt - 1, sizeof(cam_event_t));
CAM_CHECK_GOTO(cam_obj->event_queue != NULL, "event_queue create failed", err);
size_t frame_buffer_queue_len = cam_obj->frame_cnt;
if (config->grab_mode == CAMERA_GRAB_LATEST && cam_obj->frame_cnt > 1) {
frame_buffer_queue_len = cam_obj->frame_cnt - 1;
}
cam_obj->frame_buffer_queue = xQueueCreate(frame_buffer_queue_len, sizeof(camera_fb_t*));
CAM_CHECK_GOTO(cam_obj->frame_buffer_queue != NULL, "frame_buffer_queue create failed", err);
ret = ll_cam_init_isr(cam_obj);
CAM_CHECK_GOTO(ret == ESP_OK, "cam intr alloc failed", err);
#if CONFIG_CAMERA_CORE0
xTaskCreatePinnedToCore(cam_task, "cam_task", 2048, NULL, configMAX_PRIORITIES - 2, &cam_obj->task_handle, 0);
#elif CONFIG_CAMERA_CORE1
xTaskCreatePinnedToCore(cam_task, "cam_task", 2048, NULL, configMAX_PRIORITIES - 2, &cam_obj->task_handle, 1);
#else
xTaskCreate(cam_task, "cam_task", 2048, NULL, configMAX_PRIORITIES - 2, &cam_obj->task_handle);
#endif
ESP_LOGI(TAG, "cam config ok");
return ESP_OK;
err:
cam_deinit();
return ESP_FAIL;
}
esp_err_t cam_deinit(void)
{
if (!cam_obj) {
return ESP_FAIL;
}
cam_stop();
if (cam_obj->task_handle) {
vTaskDelete(cam_obj->task_handle);
}
if (cam_obj->event_queue) {
vQueueDelete(cam_obj->event_queue);
}
if (cam_obj->frame_buffer_queue) {
vQueueDelete(cam_obj->frame_buffer_queue);
}
if (cam_obj->dma) {
free(cam_obj->dma);
}
if (cam_obj->dma_buffer) {
free(cam_obj->dma_buffer);
}
if (cam_obj->frames) {
for (int x = 0; x < cam_obj->frame_cnt; x++) {
free(cam_obj->frames[x].fb.buf - cam_obj->frames[x].fb_offset);
if (cam_obj->frames[x].dma) {
free(cam_obj->frames[x].dma);
}
}
free(cam_obj->frames);
}
ll_cam_deinit(cam_obj);
free(cam_obj);
cam_obj = NULL;
return ESP_OK;
}
void cam_stop(void)
{
ll_cam_vsync_intr_enable(cam_obj, false);
ll_cam_stop(cam_obj);
}
void cam_start(void)
{
ll_cam_vsync_intr_enable(cam_obj, true);
}
camera_fb_t *cam_take(TickType_t timeout)
{
camera_fb_t *dma_buffer = NULL;
TickType_t start = xTaskGetTickCount();
xQueueReceive(cam_obj->frame_buffer_queue, (void *)&dma_buffer, timeout);
if (dma_buffer) {
if(cam_obj->jpeg_mode){
// find the end marker for JPEG. Data after that can be discarded
int offset_e = cam_verify_jpeg_eoi(dma_buffer->buf, dma_buffer->len);
if (offset_e >= 0) {
// adjust buffer length
dma_buffer->len = offset_e + sizeof(JPEG_EOI_MARKER);
return dma_buffer;
} else {
ESP_LOGW(TAG, "NO-EOI");
cam_give(dma_buffer);
return cam_take(timeout - (xTaskGetTickCount() - start));//recurse!!!!
}
} else if(cam_obj->psram_mode && cam_obj->in_bytes_per_pixel != cam_obj->fb_bytes_per_pixel){
//currently this is used only for YUV to GRAYSCALE
dma_buffer->len = ll_cam_memcpy(cam_obj, dma_buffer->buf, dma_buffer->buf, dma_buffer->len);
}
return dma_buffer;
} else {
ESP_LOGW(TAG, "Failed to get the frame on time!");
}
return NULL;
}
void cam_give(camera_fb_t *dma_buffer)
{
for (int x = 0; x < cam_obj->frame_cnt; x++) {
if (&cam_obj->frames[x].fb == dma_buffer) {
cam_obj->frames[x].en = 1;
break;
}
}
}

View File

@ -1,416 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "time.h"
#include "sys/time.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "sensor.h"
#include "sccb.h"
#include "cam_hal.h"
#include "esp_camera.h"
#include "xclk.h"
#if CONFIG_OV2640_SUPPORT
#include "ov2640.h"
#endif
#if CONFIG_OV7725_SUPPORT
#include "ov7725.h"
#endif
#if CONFIG_OV3660_SUPPORT
#include "ov3660.h"
#endif
#if CONFIG_OV5640_SUPPORT
#include "ov5640.h"
#endif
#if CONFIG_NT99141_SUPPORT
#include "nt99141.h"
#endif
#if CONFIG_OV7670_SUPPORT
#include "ov7670.h"
#endif
#if CONFIG_GC2145_SUPPORT
#include "gc2145.h"
#endif
#if CONFIG_GC032A_SUPPORT
#include "gc032a.h"
#endif
#if CONFIG_GC0308_SUPPORT
#include "gc0308.h"
#endif
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#define TAG ""
#else
#include "esp_log.h"
static const char *TAG = "camera";
#endif
typedef struct {
sensor_t sensor;
camera_fb_t fb;
} camera_state_t;
static const char *CAMERA_SENSOR_NVS_KEY = "sensor";
static const char *CAMERA_PIXFORMAT_NVS_KEY = "pixformat";
static camera_state_t *s_state = NULL;
#if CONFIG_IDF_TARGET_ESP32S3 // LCD_CAM module of ESP32-S3 will generate xclk
#define CAMERA_ENABLE_OUT_CLOCK(v)
#define CAMERA_DISABLE_OUT_CLOCK()
#else
#define CAMERA_ENABLE_OUT_CLOCK(v) camera_enable_out_clock((v))
#define CAMERA_DISABLE_OUT_CLOCK() camera_disable_out_clock()
#endif
typedef struct {
int (*detect)(int slv_addr, sensor_id_t *id);
int (*init)(sensor_t *sensor);
} sensor_func_t;
static const sensor_func_t g_sensors[] = {
#if CONFIG_OV7725_SUPPORT
{ov7725_detect, ov7725_init},
#endif
#if CONFIG_OV7670_SUPPORT
{ov7670_detect, ov7670_init},
#endif
#if CONFIG_OV2640_SUPPORT
{ov2640_detect, ov2640_init},
#endif
#if CONFIG_OV3660_SUPPORT
{ov3660_detect, ov3660_init},
#endif
#if CONFIG_OV5640_SUPPORT
{ov5640_detect, ov5640_init},
#endif
#if CONFIG_NT99141_SUPPORT
{nt99141_detect, nt99141_init},
#endif
#if CONFIG_GC2145_SUPPORT
{gc2145_detect, gc2145_init},
#endif
#if CONFIG_GC032A_SUPPORT
{gc032a_detect, gc032a_init},
#endif
#if CONFIG_GC0308_SUPPORT
{gc0308_detect, gc0308_init},
#endif
};
static esp_err_t camera_probe(const camera_config_t *config, camera_model_t *out_camera_model)
{
*out_camera_model = CAMERA_NONE;
if (s_state != NULL) {
return ESP_ERR_INVALID_STATE;
}
s_state = (camera_state_t *) calloc(sizeof(camera_state_t), 1);
if (!s_state) {
return ESP_ERR_NO_MEM;
}
if (config->pin_xclk >= 0) {
ESP_LOGD(TAG, "Enabling XCLK output");
CAMERA_ENABLE_OUT_CLOCK(config);
}
if (config->pin_sscb_sda != -1) {
ESP_LOGD(TAG, "Initializing SSCB");
SCCB_Init(config->pin_sscb_sda, config->pin_sscb_scl);
}
if (config->pin_pwdn >= 0) {
ESP_LOGD(TAG, "Resetting camera by power down line");
gpio_config_t conf = { 0 };
conf.pin_bit_mask = 1LL << config->pin_pwdn;
conf.mode = GPIO_MODE_OUTPUT;
gpio_config(&conf);
// carefull, logic is inverted compared to reset pin
gpio_set_level(config->pin_pwdn, 1);
vTaskDelay(10 / portTICK_PERIOD_MS);
gpio_set_level(config->pin_pwdn, 0);
vTaskDelay(10 / portTICK_PERIOD_MS);
}
if (config->pin_reset >= 0) {
ESP_LOGD(TAG, "Resetting camera");
gpio_config_t conf = { 0 };
conf.pin_bit_mask = 1LL << config->pin_reset;
conf.mode = GPIO_MODE_OUTPUT;
gpio_config(&conf);
gpio_set_level(config->pin_reset, 0);
vTaskDelay(10 / portTICK_PERIOD_MS);
gpio_set_level(config->pin_reset, 1);
vTaskDelay(10 / portTICK_PERIOD_MS);
}
ESP_LOGD(TAG, "Searching for camera address");
vTaskDelay(10 / portTICK_PERIOD_MS);
uint8_t slv_addr = SCCB_Probe();
if (slv_addr == 0) {
CAMERA_DISABLE_OUT_CLOCK();
return ESP_ERR_NOT_FOUND;
}
ESP_LOGI(TAG, "Detected camera at address=0x%02x", slv_addr);
s_state->sensor.slv_addr = slv_addr;
s_state->sensor.xclk_freq_hz = config->xclk_freq_hz;
/**
* Read sensor ID and then initialize sensor
* Attention: Some sensors have the same SCCB address. Therefore, several attempts may be made in the detection process
*/
sensor_id_t *id = &s_state->sensor.id;
for (size_t i = 0; i < sizeof(g_sensors) / sizeof(sensor_func_t); i++) {
if (g_sensors[i].detect(slv_addr, id)) {
camera_sensor_info_t *info = esp_camera_sensor_get_info(id);
if (NULL != info) {
*out_camera_model = info->model;
ESP_LOGI(TAG, "Detected %s camera", info->name);
g_sensors[i].init(&s_state->sensor);
break;
}
}
}
if (CAMERA_NONE == *out_camera_model) { //If no supported sensors are detected
CAMERA_DISABLE_OUT_CLOCK();
ESP_LOGE(TAG, "Detected camera not supported.");
return ESP_ERR_NOT_SUPPORTED;
}
ESP_LOGI(TAG, "Camera PID=0x%02x VER=0x%02x MIDL=0x%02x MIDH=0x%02x",
id->PID, id->VER, id->MIDH, id->MIDL);
ESP_LOGD(TAG, "Doing SW reset of sensor");
vTaskDelay(10 / portTICK_PERIOD_MS);
s_state->sensor.reset(&s_state->sensor);
return ESP_OK;
}
esp_err_t esp_camera_init(const camera_config_t *config)
{
esp_err_t err;
err = cam_init(config);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Camera init failed with error 0x%x", err);
return err;
}
camera_model_t camera_model = CAMERA_NONE;
err = camera_probe(config, &camera_model);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Camera probe failed with error 0x%x(%s)", err, esp_err_to_name(err));
goto fail;
}
framesize_t frame_size = (framesize_t) config->frame_size;
pixformat_t pix_format = (pixformat_t) config->pixel_format;
if (PIXFORMAT_JPEG == pix_format && (!camera_sensor[camera_model].support_jpeg)) {
ESP_LOGE(TAG, "JPEG format is not supported on this sensor");
err = ESP_ERR_NOT_SUPPORTED;
goto fail;
}
if (frame_size > camera_sensor[camera_model].max_size) {
ESP_LOGW(TAG, "The frame size exceeds the maximum for this sensor, it will be forced to the maximum possible value");
frame_size = camera_sensor[camera_model].max_size;
}
err = cam_config(config, frame_size, s_state->sensor.id.PID);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Camera config failed with error 0x%x", err);
goto fail;
}
s_state->sensor.status.framesize = frame_size;
s_state->sensor.pixformat = pix_format;
ESP_LOGD(TAG, "Setting frame size to %dx%d", resolution[frame_size].width, resolution[frame_size].height);
if (s_state->sensor.set_framesize(&s_state->sensor, frame_size) != 0) {
ESP_LOGE(TAG, "Failed to set frame size");
err = ESP_ERR_CAMERA_FAILED_TO_SET_FRAME_SIZE;
goto fail;
}
s_state->sensor.set_pixformat(&s_state->sensor, pix_format);
if (s_state->sensor.id.PID == OV2640_PID) {
s_state->sensor.set_gainceiling(&s_state->sensor, GAINCEILING_2X);
s_state->sensor.set_bpc(&s_state->sensor, false);
s_state->sensor.set_wpc(&s_state->sensor, true);
s_state->sensor.set_lenc(&s_state->sensor, true);
}
if (pix_format == PIXFORMAT_JPEG) {
s_state->sensor.set_quality(&s_state->sensor, config->jpeg_quality);
}
s_state->sensor.init_status(&s_state->sensor);
cam_start();
return ESP_OK;
fail:
esp_camera_deinit();
return err;
}
esp_err_t esp_camera_deinit()
{
esp_err_t ret = cam_deinit();
CAMERA_DISABLE_OUT_CLOCK();
if (s_state) {
SCCB_Deinit();
free(s_state);
s_state = NULL;
}
return ret;
}
#define FB_GET_TIMEOUT (4000 / portTICK_PERIOD_MS)
camera_fb_t *esp_camera_fb_get()
{
if (s_state == NULL) {
return NULL;
}
camera_fb_t *fb = cam_take(FB_GET_TIMEOUT);
//set the frame properties
if (fb) {
fb->width = resolution[s_state->sensor.status.framesize].width;
fb->height = resolution[s_state->sensor.status.framesize].height;
fb->format = s_state->sensor.pixformat;
}
return fb;
}
void esp_camera_fb_return(camera_fb_t *fb)
{
if (s_state == NULL) {
return;
}
cam_give(fb);
}
sensor_t *esp_camera_sensor_get()
{
if (s_state == NULL) {
return NULL;
}
return &s_state->sensor;
}
esp_err_t esp_camera_save_to_nvs(const char *key)
{
#if ESP_IDF_VERSION_MAJOR > 3
nvs_handle_t handle;
#else
nvs_handle handle;
#endif
esp_err_t ret = nvs_open(key, NVS_READWRITE, &handle);
if (ret == ESP_OK) {
sensor_t *s = esp_camera_sensor_get();
if (s != NULL) {
ret = nvs_set_blob(handle, CAMERA_SENSOR_NVS_KEY, &s->status, sizeof(camera_status_t));
if (ret == ESP_OK) {
uint8_t pf = s->pixformat;
ret = nvs_set_u8(handle, CAMERA_PIXFORMAT_NVS_KEY, pf);
}
return ret;
} else {
return ESP_ERR_CAMERA_NOT_DETECTED;
}
nvs_close(handle);
return ret;
} else {
return ret;
}
}
esp_err_t esp_camera_load_from_nvs(const char *key)
{
#if ESP_IDF_VERSION_MAJOR > 3
nvs_handle_t handle;
#else
nvs_handle handle;
#endif
uint8_t pf;
esp_err_t ret = nvs_open(key, NVS_READWRITE, &handle);
if (ret == ESP_OK) {
sensor_t *s = esp_camera_sensor_get();
camera_status_t st;
if (s != NULL) {
size_t size = sizeof(camera_status_t);
ret = nvs_get_blob(handle, CAMERA_SENSOR_NVS_KEY, &st, &size);
if (ret == ESP_OK) {
s->set_ae_level(s, st.ae_level);
s->set_aec2(s, st.aec2);
s->set_aec_value(s, st.aec_value);
s->set_agc_gain(s, st.agc_gain);
s->set_awb_gain(s, st.awb_gain);
s->set_bpc(s, st.bpc);
s->set_brightness(s, st.brightness);
s->set_colorbar(s, st.colorbar);
s->set_contrast(s, st.contrast);
s->set_dcw(s, st.dcw);
s->set_denoise(s, st.denoise);
s->set_exposure_ctrl(s, st.aec);
s->set_framesize(s, st.framesize);
s->set_gain_ctrl(s, st.agc);
s->set_gainceiling(s, st.gainceiling);
s->set_hmirror(s, st.hmirror);
s->set_lenc(s, st.lenc);
s->set_quality(s, st.quality);
s->set_raw_gma(s, st.raw_gma);
s->set_saturation(s, st.saturation);
s->set_sharpness(s, st.sharpness);
s->set_special_effect(s, st.special_effect);
s->set_vflip(s, st.vflip);
s->set_wb_mode(s, st.wb_mode);
s->set_whitebal(s, st.awb);
s->set_wpc(s, st.wpc);
}
ret = nvs_get_u8(handle, CAMERA_PIXFORMAT_NVS_KEY, &pf);
if (ret == ESP_OK) {
s->set_pixformat(s, pf);
}
} else {
return ESP_ERR_CAMERA_NOT_DETECTED;
}
nvs_close(handle);
return ret;
} else {
ESP_LOGW(TAG, "Error (%d) opening nvs key \"%s\"", ret, key);
return ret;
}
}

View File

@ -1,19 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* SCCB (I2C like) driver.
*
*/
#ifndef __SCCB_H__
#define __SCCB_H__
#include <stdint.h>
int SCCB_Init(int pin_sda, int pin_scl);
int SCCB_Deinit(void);
uint8_t SCCB_Probe();
uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg);
uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data);
uint8_t SCCB_Read16(uint8_t slv_addr, uint16_t reg);
uint8_t SCCB_Write16(uint8_t slv_addr, uint16_t reg, uint8_t data);
#endif // __SCCB_H__

View File

@ -1,184 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* SCCB (I2C like) driver.
*
*/
#include <stdbool.h>
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include "sccb.h"
#include "sensor.h"
#include <stdio.h>
#include "sdkconfig.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "sccb";
#endif
#define LITTLETOBIG(x) ((x<<8)|(x>>8))
#include "driver/i2c.h"
#define SCCB_FREQ 100000 /*!< I2C master frequency*/
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL 0x0 /*!< I2C ack value */
#define NACK_VAL 0x1 /*!< I2C nack value */
#if CONFIG_SCCB_HARDWARE_I2C_PORT1
const int SCCB_I2C_PORT = 1;
#else
const int SCCB_I2C_PORT = 0;
#endif
int SCCB_Init(int pin_sda, int pin_scl)
{
ESP_LOGI(TAG, "pin_sda %d pin_scl %d", pin_sda, pin_scl);
i2c_config_t conf;
memset(&conf, 0, sizeof(i2c_config_t));
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = pin_sda;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_io_num = pin_scl;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = SCCB_FREQ;
i2c_param_config(SCCB_I2C_PORT, &conf);
i2c_driver_install(SCCB_I2C_PORT, conf.mode, 0, 0, 0);
return 0;
}
int SCCB_Deinit(void)
{
return i2c_driver_delete(SCCB_I2C_PORT);
}
uint8_t SCCB_Probe(void)
{
uint8_t slave_addr = 0x0;
// for (size_t i = 1; i < 0x80; i++) {
// i2c_cmd_handle_t cmd = i2c_cmd_link_create();
// i2c_master_start(cmd);
// i2c_master_write_byte(cmd, ( i << 1 ) | WRITE_BIT, ACK_CHECK_EN);
// i2c_master_stop(cmd);
// esp_err_t ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
// i2c_cmd_link_delete(cmd);
// if( ret == ESP_OK) {
// ESP_LOGW(TAG, "Found I2C Device at 0x%02X", i);
// }
// }
for (size_t i = 0; i < CAMERA_MODEL_MAX; i++) {
if (slave_addr == camera_sensor[i].sccb_addr) {
continue;
}
slave_addr = camera_sensor[i].sccb_addr;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slave_addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if( ret == ESP_OK) {
return slave_addr;
}
}
return 0;
}
uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg)
{
uint8_t data=0;
esp_err_t ret = ESP_FAIL;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slv_addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) return -1;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slv_addr << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "SCCB_Read Failed addr:0x%02x, reg:0x%02x, data:0x%02x, ret:%d", slv_addr, reg, data, ret);
}
return data;
}
uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data)
{
esp_err_t ret = ESP_FAIL;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slv_addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_write_byte(cmd, data, ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "SCCB_Write Failed addr:0x%02x, reg:0x%02x, data:0x%02x, ret:%d", slv_addr, reg, data, ret);
}
return ret == ESP_OK ? 0 : -1;
}
uint8_t SCCB_Read16(uint8_t slv_addr, uint16_t reg)
{
uint8_t data=0;
esp_err_t ret = ESP_FAIL;
uint16_t reg_htons = LITTLETOBIG(reg);
uint8_t *reg_u8 = (uint8_t *)&reg_htons;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slv_addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[0], ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[1], ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) return -1;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slv_addr << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "W [%04x]=%02x fail\n", reg, data);
}
return data;
}
uint8_t SCCB_Write16(uint8_t slv_addr, uint16_t reg, uint8_t data)
{
static uint16_t i = 0;
esp_err_t ret = ESP_FAIL;
uint16_t reg_htons = LITTLETOBIG(reg);
uint8_t *reg_u8 = (uint8_t *)&reg_htons;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slv_addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[0], ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[1], ACK_CHECK_EN);
i2c_master_write_byte(cmd, data, ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "W [%04x]=%02x %d fail\n", reg, data, i++);
}
return ret == ESP_OK ? 0 : -1;
}

View File

@ -1,52 +0,0 @@
#include <stdio.h>
#include "sensor.h"
const camera_sensor_info_t camera_sensor[CAMERA_MODEL_MAX] = {
// The sequence must be consistent with camera_model_t
{CAMERA_OV7725, "OV7725", OV7725_SCCB_ADDR, OV7725_PID, FRAMESIZE_VGA, false},
{CAMERA_OV2640, "OV2640", OV2640_SCCB_ADDR, OV2640_PID, FRAMESIZE_UXGA, true},
{CAMERA_OV3660, "OV3660", OV3660_SCCB_ADDR, OV3660_PID, FRAMESIZE_QXGA, true},
{CAMERA_OV5640, "OV5640", OV5640_SCCB_ADDR, OV5640_PID, FRAMESIZE_QSXGA, true},
{CAMERA_OV7670, "OV7670", OV7670_SCCB_ADDR, OV7670_PID, FRAMESIZE_VGA, false},
{CAMERA_NT99141, "NT99141", NT99141_SCCB_ADDR, NT99141_PID, FRAMESIZE_HD, true},
{CAMERA_GC2145, "GC2145", GC2145_SCCB_ADDR, GC2145_PID, FRAMESIZE_UXGA, false},
{CAMERA_GC032A, "GC032A", GC032A_SCCB_ADDR, GC032A_PID, FRAMESIZE_VGA, false},
{CAMERA_GC0308, "GC0308", GC0308_SCCB_ADDR, GC0308_PID, FRAMESIZE_VGA, false},
};
const resolution_info_t resolution[FRAMESIZE_INVALID] = {
{ 96, 96, ASPECT_RATIO_1X1 }, /* 96x96 */
{ 160, 120, ASPECT_RATIO_4X3 }, /* QQVGA */
{ 176, 144, ASPECT_RATIO_5X4 }, /* QCIF */
{ 240, 176, ASPECT_RATIO_4X3 }, /* HQVGA */
{ 240, 240, ASPECT_RATIO_1X1 }, /* 240x240 */
{ 320, 240, ASPECT_RATIO_4X3 }, /* QVGA */
{ 400, 296, ASPECT_RATIO_4X3 }, /* CIF */
{ 480, 320, ASPECT_RATIO_3X2 }, /* HVGA */
{ 640, 480, ASPECT_RATIO_4X3 }, /* VGA */
{ 800, 600, ASPECT_RATIO_4X3 }, /* SVGA */
{ 1024, 768, ASPECT_RATIO_4X3 }, /* XGA */
{ 1280, 720, ASPECT_RATIO_16X9 }, /* HD */
{ 1280, 1024, ASPECT_RATIO_5X4 }, /* SXGA */
{ 1600, 1200, ASPECT_RATIO_4X3 }, /* UXGA */
// 3MP Sensors
{ 1920, 1080, ASPECT_RATIO_16X9 }, /* FHD */
{ 720, 1280, ASPECT_RATIO_9X16 }, /* Portrait HD */
{ 864, 1536, ASPECT_RATIO_9X16 }, /* Portrait 3MP */
{ 2048, 1536, ASPECT_RATIO_4X3 }, /* QXGA */
// 5MP Sensors
{ 2560, 1440, ASPECT_RATIO_16X9 }, /* QHD */
{ 2560, 1600, ASPECT_RATIO_16X10 }, /* WQXGA */
{ 1088, 1920, ASPECT_RATIO_9X16 }, /* Portrait FHD */
{ 2560, 1920, ASPECT_RATIO_4X3 }, /* QSXGA */
};
camera_sensor_info_t *esp_camera_sensor_get_info(sensor_id_t *id)
{
for (int i = 0; i < CAMERA_MODEL_MAX; i++) {
if (id->PID == camera_sensor[i].pid) {
return (camera_sensor_info_t *)&camera_sensor[i];
}
}
return NULL;
}

View File

@ -1,9 +0,0 @@
# The following lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
set(EXTRA_COMPONENT_DIRS "../")
add_compile_options(-fdiagnostics-color=always)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(camera_example)

View File

@ -1,11 +0,0 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := camera_example
EXTRA_COMPONENT_DIRS := ../
include $(IDF_PATH)/make/project.mk

View File

@ -1,3 +0,0 @@
set(COMPONENT_SRCS take_picture.c)
set(COMPONENT_ADD_INCLUDEDIRS .)
register_component()

View File

@ -1,5 +0,0 @@
#
# "main" pseudo-component makefile.
#
# (Uses default behaviour of compiling all source files in directory, adding 'include' to include path.)

View File

@ -1,155 +0,0 @@
/**
* This example takes a picture every 5s and print its size on serial monitor.
*/
// =============================== SETUP ======================================
// 1. Board setup (Uncomment):
// #define BOARD_WROVER_KIT
// #define BOARD_ESP32CAM_AITHINKER
/**
* 2. Kconfig setup
*
* If you have a Kconfig file, copy the content from
* https://github.com/espressif/esp32-camera/blob/master/Kconfig into it.
* In case you haven't, copy and paste this Kconfig file inside the src directory.
* This Kconfig file has definitions that allows more control over the camera and
* how it will be initialized.
*/
/**
* 3. Enable PSRAM on sdkconfig:
*
* CONFIG_ESP32_SPIRAM_SUPPORT=y
*
* More info on
* https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/kconfig.html#config-esp32-spiram-support
*/
// ================================ CODE ======================================
#include <esp_log.h>
#include <esp_system.h>
#include <nvs_flash.h>
#include <sys/param.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_camera.h"
#define BOARD_WROVER_KIT 1
// WROVER-KIT PIN Map
#ifdef BOARD_WROVER_KIT
#define CAM_PIN_PWDN -1 //power down is not used
#define CAM_PIN_RESET -1 //software reset will be performed
#define CAM_PIN_XCLK 21
#define CAM_PIN_SIOD 26
#define CAM_PIN_SIOC 27
#define CAM_PIN_D7 35
#define CAM_PIN_D6 34
#define CAM_PIN_D5 39
#define CAM_PIN_D4 36
#define CAM_PIN_D3 19
#define CAM_PIN_D2 18
#define CAM_PIN_D1 5
#define CAM_PIN_D0 4
#define CAM_PIN_VSYNC 25
#define CAM_PIN_HREF 23
#define CAM_PIN_PCLK 22
#endif
// ESP32Cam (AiThinker) PIN Map
#ifdef BOARD_ESP32CAM_AITHINKER
#define CAM_PIN_PWDN 32
#define CAM_PIN_RESET -1 //software reset will be performed
#define CAM_PIN_XCLK 0
#define CAM_PIN_SIOD 26
#define CAM_PIN_SIOC 27
#define CAM_PIN_D7 35
#define CAM_PIN_D6 34
#define CAM_PIN_D5 39
#define CAM_PIN_D4 36
#define CAM_PIN_D3 21
#define CAM_PIN_D2 19
#define CAM_PIN_D1 18
#define CAM_PIN_D0 5
#define CAM_PIN_VSYNC 25
#define CAM_PIN_HREF 23
#define CAM_PIN_PCLK 22
#endif
static const char *TAG = "example:take_picture";
static camera_config_t camera_config = {
.pin_pwdn = CAM_PIN_PWDN,
.pin_reset = CAM_PIN_RESET,
.pin_xclk = CAM_PIN_XCLK,
.pin_sscb_sda = CAM_PIN_SIOD,
.pin_sscb_scl = CAM_PIN_SIOC,
.pin_d7 = CAM_PIN_D7,
.pin_d6 = CAM_PIN_D6,
.pin_d5 = CAM_PIN_D5,
.pin_d4 = CAM_PIN_D4,
.pin_d3 = CAM_PIN_D3,
.pin_d2 = CAM_PIN_D2,
.pin_d1 = CAM_PIN_D1,
.pin_d0 = CAM_PIN_D0,
.pin_vsync = CAM_PIN_VSYNC,
.pin_href = CAM_PIN_HREF,
.pin_pclk = CAM_PIN_PCLK,
//XCLK 20MHz or 10MHz for OV2640 double FPS (Experimental)
.xclk_freq_hz = 20000000,
.ledc_timer = LEDC_TIMER_0,
.ledc_channel = LEDC_CHANNEL_0,
.pixel_format = PIXFORMAT_RGB565, //YUV422,GRAYSCALE,RGB565,JPEG
.frame_size = FRAMESIZE_QVGA, //QQVGA-UXGA Do not use sizes above QVGA when not JPEG
.jpeg_quality = 12, //0-63 lower number means higher quality
.fb_count = 1, //if more than one, i2s runs in continuous mode. Use only with JPEG
.grab_mode = CAMERA_GRAB_WHEN_EMPTY,
};
static esp_err_t init_camera()
{
//initialize the camera
esp_err_t err = esp_camera_init(&camera_config);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Camera Init Failed");
return err;
}
return ESP_OK;
}
void app_main()
{
if(ESP_OK != init_camera()) {
return;
}
while (1)
{
ESP_LOGI(TAG, "Taking picture...");
camera_fb_t *pic = esp_camera_fb_get();
// use pic->buf to access the image
ESP_LOGI(TAG, "Picture taken! Its size was: %zu bytes", pic->len);
esp_camera_fb_return(pic);
vTaskDelay(5000 / portTICK_RATE_MS);
}
}

View File

@ -1,17 +0,0 @@
CONFIG_ESP32_DEFAULT_CPU_FREQ_240=y
CONFIG_ESP32S2_DEFAULT_CPU_FREQ_240=y
CONFIG_ESP32S3_DEFAULT_CPU_FREQ_240=y
CONFIG_ESPTOOLPY_FLASHSIZE_4MB=y
CONFIG_PARTITION_TABLE_OFFSET=0x10000
CONFIG_FREERTOS_HZ=1000
CONFIG_ESPTOOLPY_FLASHFREQ_80M=y
CONFIG_ESPTOOLPY_FLASHMODE_QIO=y
CONFIG_SPIRAM_SUPPORT=y
CONFIG_ESP32_SPIRAM_SUPPORT=y
CONFIG_ESP32S2_SPIRAM_SUPPORT=y
CONFIG_ESP32S3_SPIRAM_SUPPORT=y
CONFIG_SPIRAM_SPEED_80M=y

View File

@ -1,25 +0,0 @@
{
"name": "esp32-camera",
"version": "1.0.0",
"keywords": "esp32, camera, espressif, esp32-cam",
"description": "ESP32 compatible driver for OV2640, OV3660, OV5640, OV7670 and OV7725 image sensors.",
"repository": {
"type": "git",
"url": "https://github.com/espressif/esp32-camera"
},
"frameworks": "arduino",
"platforms": "espressif32",
"build": {
"flags": [
"-Idriver/include",
"-Iconversions/include",
"-Idriver/private_include",
"-Iconversions/private_include",
"-Isensors/private_include",
"-Itarget/private_include"
],
"includeDir": ".",
"srcDir": ".",
"srcFilter": ["-<*>", "+<driver>", "+<conversions>", "+<sensors>"]
}
}

View File

@ -1,465 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sccb.h"
#include "gc0308.h"
#include "gc0308_regs.h"
#include "gc0308_settings.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "gc0308";
#endif
#define H8(v) ((v)>>8)
#define L8(v) ((v)&0xff)
//#define REG_DEBUG_ON
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write(slv_addr, reg, value);//maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static void print_regs(uint8_t slv_addr)
{
#ifdef DEBUG_PRINT_REG
ESP_LOGI(TAG, "REG list look ======================");
for (size_t i = 0xf0; i <= 0xfe; i++) {
ESP_LOGI(TAG, "reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
ESP_LOGI(TAG, "\npage 0 ===");
write_reg(slv_addr, 0xfe, 0x00); // page 0
for (size_t i = 0x03; i <= 0xa2; i++) {
ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
ESP_LOGI(TAG, "\npage 3 ===");
write_reg(slv_addr, 0xfe, 0x03); // page 3
for (size_t i = 0x01; i <= 0x43; i++) {
ESP_LOGI(TAG, "p3 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
#endif
}
static int reset(sensor_t *sensor)
{
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, RESET_RELATED, 0xf0);
if (ret) {
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, gc0308_sensor_default_regs);
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
vTaskDelay(100 / portTICK_PERIOD_MS);
write_reg(sensor->slv_addr, 0xfe, 0x00);
#ifdef CONFIG_IDF_TARGET_ESP32
set_reg_bits(sensor->slv_addr, 0x28, 4, 0x07, 1); //frequency division for esp32, ensure pclk <= 15MHz
#endif
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
switch (pixformat) {
case PIXFORMAT_RGB565:
write_reg(sensor->slv_addr, 0xfe, 0x00);
ret = set_reg_bits(sensor->slv_addr, 0x24, 0, 0x0f, 6); //RGB565
break;
case PIXFORMAT_YUV422:
write_reg(sensor->slv_addr, 0xfe, 0x00);
ret = set_reg_bits(sensor->slv_addr, 0x24, 0, 0x0f, 2); //yuv422 Y Cb Y Cr
break;
default:
ESP_LOGW(TAG, "unsupport format");
ret = -1;
break;
}
if (ret == 0) {
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
if (framesize > FRAMESIZE_VGA) {
ESP_LOGW(TAG, "Invalid framesize: %u", framesize);
framesize = FRAMESIZE_VGA;
}
sensor->status.framesize = framesize;
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
uint16_t row_s = (resolution[FRAMESIZE_VGA].height - h) / 2;
uint16_t col_s = (resolution[FRAMESIZE_VGA].width - w) / 2;
#if CONFIG_GC_SENSOR_SUBSAMPLE_MODE
struct subsample_cfg {
uint16_t ratio_numerator;
uint16_t ratio_denominator;
uint8_t reg0x54;
uint8_t reg0x56;
uint8_t reg0x57;
uint8_t reg0x58;
uint8_t reg0x59;
};
const struct subsample_cfg subsample_cfgs[] = { // define some subsample ratio
{84, 420, 0x55, 0x00, 0x00, 0x00, 0x00}, //1/5
{105, 420, 0x44, 0x00, 0x00, 0x00, 0x00},//1/4
{140, 420, 0x33, 0x00, 0x00, 0x00, 0x00},//1/3
{210, 420, 0x22, 0x00, 0x00, 0x00, 0x00},//1/2
{240, 420, 0x77, 0x02, 0x46, 0x02, 0x46},//4/7
{252, 420, 0x55, 0x02, 0x04, 0x02, 0x04},//3/5
{280, 420, 0x33, 0x02, 0x00, 0x02, 0x00},//2/3
{420, 420, 0x11, 0x00, 0x00, 0x00, 0x00},//1/1
};
uint16_t win_w = 640;
uint16_t win_h = 480;
const struct subsample_cfg *cfg = NULL;
/**
* Strategy: try to keep the maximum perspective
*/
for (size_t i = 0; i < sizeof(subsample_cfgs) / sizeof(struct subsample_cfg); i++) {
cfg = &subsample_cfgs[i];
if ((win_w * cfg->ratio_numerator / cfg->ratio_denominator >= w) && (win_h * cfg->ratio_numerator / cfg->ratio_denominator >= h)) {
win_w = w * cfg->ratio_denominator / cfg->ratio_numerator;
win_h = h * cfg->ratio_denominator / cfg->ratio_numerator;
row_s = (resolution[FRAMESIZE_VGA].height - win_h) / 2;
col_s = (resolution[FRAMESIZE_VGA].width - win_w) / 2;
ESP_LOGI(TAG, "subsample win:%dx%d, ratio:%f", win_w, win_h, (float)cfg->ratio_numerator / (float)cfg->ratio_denominator);
break;
}
}
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, 0x05, H8(row_s));
write_reg(sensor->slv_addr, 0x06, L8(row_s));
write_reg(sensor->slv_addr, 0x07, H8(col_s));
write_reg(sensor->slv_addr, 0x08, L8(col_s));
write_reg(sensor->slv_addr, 0x09, H8(win_h + 8));
write_reg(sensor->slv_addr, 0x0a, L8(win_h + 8));
write_reg(sensor->slv_addr, 0x0b, H8(win_w + 8));
write_reg(sensor->slv_addr, 0x0c, L8(win_w + 8));
write_reg(sensor->slv_addr, 0xfe, 0x01);
set_reg_bits(sensor->slv_addr, 0x53, 7, 0x01, 1);
set_reg_bits(sensor->slv_addr, 0x55, 0, 0x01, 1);
write_reg(sensor->slv_addr, 0x54, cfg->reg0x54);
write_reg(sensor->slv_addr, 0x56, cfg->reg0x56);
write_reg(sensor->slv_addr, 0x57, cfg->reg0x57);
write_reg(sensor->slv_addr, 0x58, cfg->reg0x58);
write_reg(sensor->slv_addr, 0x59, cfg->reg0x59);
write_reg(sensor->slv_addr, 0xfe, 0x00);
#elif CONFIG_GC_SENSOR_WINDOWING_MODE
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, 0xf7, col_s / 4);
write_reg(sensor->slv_addr, 0xf8, row_s / 4);
write_reg(sensor->slv_addr, 0xf9, (col_s + h) / 4);
write_reg(sensor->slv_addr, 0xfa, (row_s + w) / 4);
write_reg(sensor->slv_addr, 0x05, H8(row_s));
write_reg(sensor->slv_addr, 0x06, L8(row_s));
write_reg(sensor->slv_addr, 0x07, H8(col_s));
write_reg(sensor->slv_addr, 0x08, L8(col_s));
write_reg(sensor->slv_addr, 0x09, H8(h + 8));
write_reg(sensor->slv_addr, 0x0a, L8(h + 8));
write_reg(sensor->slv_addr, 0x0b, H8(w + 8));
write_reg(sensor->slv_addr, 0x0c, L8(w + 8));
#endif
if (ret == 0) {
ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h);
}
return 0;
}
static int set_contrast(sensor_t *sensor, int contrast)
{
if (contrast != 0) {
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, 0xb3, contrast);
}
return 0;
}
static int set_global_gain(sensor_t *sensor, int gain_level)
{
if (gain_level != 0) {
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, 0x50, gain_level);
}
return 0;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.hmirror = enable;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, 0x14, 0, 0x01, enable != 0);
if (ret == 0) {
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, 0x14, 1, 0x01, enable != 0);
if (ret == 0) {
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, 0x2e, 0, 0x01, enable);
if (ret == 0) {
sensor->status.colorbar = enable;
ESP_LOGD(TAG, "Set colorbar to: %d", enable);
}
return ret;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0;
if (mask > 0xFF) {
ESP_LOGE(TAG, "mask should not more than 0xff");
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0) {
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0;
if (mask > 0xFF) {
ESP_LOGE(TAG, "mask should not more than 0xff");
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0) {
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFF) {
} else {
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int init_status(sensor_t *sensor)
{
write_reg(sensor->slv_addr, 0xfe, 0x00);
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = 0;
sensor->status.denoise = 0;
sensor->status.ae_level = 0;
sensor->status.gainceiling = 0;
sensor->status.awb = 0;
sensor->status.dcw = 0;
sensor->status.agc = 0;
sensor->status.aec = 0;
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, 0x14, 0x01);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, 0x14, 0x02);
sensor->status.colorbar = 0;
sensor->status.bpc = 0;
sensor->status.wpc = 0;
sensor->status.raw_gma = 0;
sensor->status.lenc = 0;
sensor->status.quality = 0;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.awb_gain = 0;
sensor->status.agc_gain = 0;
sensor->status.aec_value = 0;
sensor->status.aec2 = 0;
print_regs(sensor->slv_addr);
return 0;
}
static int set_dummy(sensor_t *sensor, int val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
int gc0308_detect(int slv_addr, sensor_id_t *id)
{
if (GC0308_SCCB_ADDR == slv_addr) {
write_reg(slv_addr, 0xfe, 0x00);
uint8_t PID = SCCB_Read(slv_addr, 0x00);
if (GC0308_PID == PID) {
id->PID = PID;
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int gc0308_init(sensor_t *sensor)
{
sensor->init_status = init_status;
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness = set_dummy;
sensor->set_saturation = set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_denoise = set_dummy;
sensor->set_gainceiling = set_gainceiling_dummy;
sensor->set_quality = set_dummy;
sensor->set_colorbar = set_colorbar;
sensor->set_whitebal = set_dummy;
sensor->set_gain_ctrl = set_global_gain;
sensor->set_exposure_ctrl = set_dummy;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->set_aec2 = set_dummy;
sensor->set_awb_gain = set_dummy;
sensor->set_agc_gain = set_dummy;
sensor->set_aec_value = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->set_dcw = set_dummy;
sensor->set_bpc = set_dummy;
sensor->set_wpc = set_dummy;
sensor->set_raw_gma = set_dummy;
sensor->set_lenc = set_dummy;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = NULL;
sensor->set_pll = NULL;
sensor->set_xclk = NULL;
ESP_LOGD(TAG, "GC0308 Attached");
return 0;
}

View File

@ -1,391 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sccb.h"
#include "gc032a.h"
#include "gc032a_regs.h"
#include "gc032a_settings.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "gc032a";
#endif
#define H8(v) ((v)>>8)
#define L8(v) ((v)&0xff)
//#define REG_DEBUG_ON
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write(slv_addr, reg, value);//maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static void print_regs(uint8_t slv_addr)
{
#ifdef DEBUG_PRINT_REG
vTaskDelay(pdMS_TO_TICKS(100));
ESP_LOGI(TAG, "REG list look ======================");
for (size_t i = 0xf0; i <= 0xfe; i++) {
ESP_LOGI(TAG, "reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
ESP_LOGI(TAG, "\npage 0 ===");
write_reg(slv_addr, 0xfe, 0x00); // page 0
for (size_t i = 0x03; i <= 0x24; i++) {
ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
for (size_t i = 0x40; i <= 0x95; i++) {
ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
ESP_LOGI(TAG, "\npage 3 ===");
write_reg(slv_addr, 0xfe, 0x03); // page 3
for (size_t i = 0x01; i <= 0x43; i++) {
ESP_LOGI(TAG, "p3 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
#endif
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int reset(sensor_t *sensor)
{
int ret;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, RESET_RELATED, 0xf0);
if (ret) {
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, gc032a_default_regs);
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
vTaskDelay(100 / portTICK_PERIOD_MS);
write_reg(sensor->slv_addr, 0xfe, 0x00);
set_reg_bits(sensor->slv_addr, 0xf7, 1, 0x01, 1); // PLL_mode1:div2en
set_reg_bits(sensor->slv_addr, 0xf7, 7, 0x01, 1); // PLL_mode1:dvp mode
set_reg_bits(sensor->slv_addr, 0xf8, 0, 0x3f, 8); //PLL_mode2 :divx4
set_reg_bits(sensor->slv_addr, 0xfa, 4, 0x0f, 2); //vlk div mode :divide_by
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
switch (pixformat) {
case PIXFORMAT_RGB565:
write_reg(sensor->slv_addr, 0xfe, 0x00);
ret = set_reg_bits(sensor->slv_addr, 0x44, 0, 0x1f, 6); //RGB565
break;
case PIXFORMAT_YUV422:
write_reg(sensor->slv_addr, 0xfe, 0x00);
ret = set_reg_bits(sensor->slv_addr, 0x44, 0, 0x1f, 3);
break;
default:
ESP_LOGW(TAG, "unsupport format");
ret = -1;
break;
}
if (ret == 0) {
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
ESP_LOGI(TAG, "set_framesize");
int ret = 0;
if (framesize > FRAMESIZE_VGA) {
ESP_LOGW(TAG, "Invalid framesize: %u", framesize);
framesize = FRAMESIZE_VGA;
}
sensor->status.framesize = framesize;
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
uint16_t row_s = (resolution[FRAMESIZE_VGA].height - h) / 2;
uint16_t col_s = (resolution[FRAMESIZE_VGA].width - w) / 2;
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, P0_ROW_START_HIGH, H8(row_s)); // Row_start[8]
write_reg(sensor->slv_addr, P0_ROW_START_LOW, L8(row_s)); // Row_start[7:0]
write_reg(sensor->slv_addr, P0_COLUMN_START_HIGH, H8(col_s)); // Column_start[9:8]
write_reg(sensor->slv_addr, P0_COLUMN_START_LOW, L8(col_s)); // Column_start[7:0]
write_reg(sensor->slv_addr, P0_WINDOW_HEIGHT_HIGH, H8(h + 8)); //window_height [8]
write_reg(sensor->slv_addr, P0_WINDOW_HEIGHT_LOW, L8(h + 8)); //window_height [7:0]
write_reg(sensor->slv_addr, P0_WINDOW_WIDTH_HIGH, H8(w + 8)); //window_width [9:8]
write_reg(sensor->slv_addr, P0_WINDOW_WIDTH_LOW, L8(w + 8)); //window_width [7:0]
write_reg(sensor->slv_addr, P0_WIN_MODE, 0x01);
write_reg(sensor->slv_addr, P0_OUT_WIN_HEIGHT_HIGH, H8(h));
write_reg(sensor->slv_addr, P0_OUT_WIN_HEIGHT_LOW, L8(h));
write_reg(sensor->slv_addr, P0_OUT_WIN_WIDTH_HIGH, H8(w));
write_reg(sensor->slv_addr, P0_OUT_WIN_WIDTH_LOW, L8(w));
if (ret == 0) {
ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h);
}
print_regs(sensor->slv_addr);
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.hmirror = enable;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, P0_CISCTL_MODE1, 0, 0x01, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, P0_CISCTL_MODE1, 1, 0x01, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, P0_DEBUG_MODE2, 3, 0x01, enable);
if (ret == 0) {
sensor->status.colorbar = enable;
ESP_LOGD(TAG, "Set colorbar to: %d", enable);
}
return ret;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0;
if (mask > 0xFF) {
ESP_LOGE(TAG, "mask should not more than 0xff");
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0) {
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0;
if (mask > 0xFF) {
ESP_LOGE(TAG, "mask should not more than 0xff");
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0) {
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFF) {
} else {
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int init_status(sensor_t *sensor)
{
write_reg(sensor->slv_addr, 0xfe, 0x00);
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = 0;
sensor->status.denoise = 0;
sensor->status.ae_level = 0;
sensor->status.gainceiling = 0;
sensor->status.awb = 0;
sensor->status.dcw = 0;
sensor->status.agc = 0;
sensor->status.aec = 0;
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, P0_CISCTL_MODE1, 0x01);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, P0_CISCTL_MODE1, 0x02);
sensor->status.colorbar = 0;
sensor->status.bpc = 0;
sensor->status.wpc = 0;
sensor->status.raw_gma = 0;
sensor->status.lenc = 0;
sensor->status.quality = 0;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.awb_gain = 0;
sensor->status.agc_gain = 0;
sensor->status.aec_value = 0;
sensor->status.aec2 = 0;
return 0;
}
static int set_dummy(sensor_t *sensor, int val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
int gc032a_detect(int slv_addr, sensor_id_t *id)
{
if (GC032A_SCCB_ADDR == slv_addr) {
uint8_t MIDL = SCCB_Read(slv_addr, SENSOR_ID_LOW);
uint8_t MIDH = SCCB_Read(slv_addr, SENSOR_ID_HIGH);
uint16_t PID = MIDH << 8 | MIDL;
if (GC032A_PID == PID) {
id->PID = PID;
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int gc032a_init(sensor_t *sensor)
{
sensor->init_status = init_status;
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_dummy;
sensor->set_brightness = set_dummy;
sensor->set_saturation = set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_denoise = set_dummy;
sensor->set_gainceiling = set_gainceiling_dummy;
sensor->set_quality = set_dummy;
sensor->set_colorbar = set_colorbar;
sensor->set_whitebal = set_dummy;
sensor->set_gain_ctrl = set_dummy;
sensor->set_exposure_ctrl = set_dummy;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->set_aec2 = set_dummy;
sensor->set_awb_gain = set_dummy;
sensor->set_agc_gain = set_dummy;
sensor->set_aec_value = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->set_dcw = set_dummy;
sensor->set_bpc = set_dummy;
sensor->set_wpc = set_dummy;
sensor->set_raw_gma = set_dummy;
sensor->set_lenc = set_dummy;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = NULL;
sensor->set_pll = NULL;
sensor->set_xclk = NULL;
ESP_LOGD(TAG, "GC032A Attached");
return 0;
}

View File

@ -1,475 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sccb.h"
#include "gc2145.h"
#include "gc2145_regs.h"
#include "gc2145_settings.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "gc2145";
#endif
#define H8(v) ((v)>>8)
#define L8(v) ((v)&0xff)
//#define REG_DEBUG_ON
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write(slv_addr, reg, value);//maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static void print_regs(uint8_t slv_addr)
{
#ifdef DEBUG_PRINT_REG
vTaskDelay(pdMS_TO_TICKS(100));
ESP_LOGI(TAG, "REG list look ======================");
for (size_t i = 0xf0; i <= 0xfe; i++) {
ESP_LOGI(TAG, "reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
ESP_LOGI(TAG, "\npage 0 ===");
write_reg(slv_addr, 0xfe, 0x00); // page 0
for (size_t i = 0x03; i <= 0x24; i++) {
ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
for (size_t i = 0x80; i <= 0xa2; i++) {
ESP_LOGI(TAG, "p0 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
ESP_LOGI(TAG, "\npage 3 ===");
write_reg(slv_addr, 0xfe, 0x03); // page 3
for (size_t i = 0x01; i <= 0x43; i++) {
ESP_LOGI(TAG, "p3 reg[0x%02x] = 0x%02x", i, read_reg(slv_addr, i));
}
#endif
}
static int reset(sensor_t *sensor)
{
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, RESET_RELATED, 0xe0);
if (ret) {
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, gc2145_default_init_regs);
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
vTaskDelay(100 / portTICK_PERIOD_MS);
#ifdef CONFIG_IDF_TARGET_ESP32
write_reg(sensor->slv_addr, 0xfe, 0x00);
//ensure pclk <= 15MHz for esp32
set_reg_bits(sensor->slv_addr, 0xf8, 0, 0x3f, 2); // divx4
set_reg_bits(sensor->slv_addr, 0xfa, 4, 0x0f, 2); // divide_by
#endif
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
switch (pixformat) {
case PIXFORMAT_RGB565:
write_reg(sensor->slv_addr, 0xfe, 0x00);
ret = set_reg_bits(sensor->slv_addr, P0_OUTPUT_FORMAT, 0, 0x1f, 6); //RGB565
break;
case PIXFORMAT_YUV422:
write_reg(sensor->slv_addr, 0xfe, 0x00);
ret = set_reg_bits(sensor->slv_addr, P0_OUTPUT_FORMAT, 0, 0x1f, 2); //yuv422
break;
default:
ESP_LOGW(TAG, "unsupport format");
ret = -1;
break;
}
if (ret == 0) {
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
if (framesize > FRAMESIZE_UXGA) {
ESP_LOGW(TAG, "Invalid framesize: %u", framesize);
framesize = FRAMESIZE_UXGA;
}
sensor->status.framesize = framesize;
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
uint16_t row_s = (resolution[FRAMESIZE_UXGA].height - h) / 2;
uint16_t col_s = (resolution[FRAMESIZE_UXGA].width - w) / 2;
#if CONFIG_GC_SENSOR_SUBSAMPLE_MODE
struct subsample_cfg {
uint16_t ratio_numerator;
uint16_t ratio_denominator;
uint8_t reg0x99;
uint8_t reg0x9b;
uint8_t reg0x9c;
uint8_t reg0x9d;
uint8_t reg0x9e;
uint8_t reg0x9f;
uint8_t reg0xa0;
uint8_t reg0xa1;
uint8_t reg0xa2;
};
const struct subsample_cfg subsample_cfgs[] = { // define some subsample ratio
// {60, 420, 0x77, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, //1/7 // A smaller ratio brings a larger view, but it reduces the frame rate
// {84, 420, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, //1/5
// {105, 420, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/4
{140, 420, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/3
{210, 420, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/2
{240, 420, 0x77, 0x02, 0x46, 0x02, 0x46, 0x02, 0x46, 0x02, 0x46},//4/7
{252, 420, 0x55, 0x02, 0x04, 0x02, 0x04, 0x02, 0x04, 0x02, 0x04},//3/5
{280, 420, 0x33, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00},//2/3
{420, 420, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},//1/1
};
uint16_t win_w = resolution[FRAMESIZE_UXGA].width;
uint16_t win_h = resolution[FRAMESIZE_UXGA].height;
const struct subsample_cfg *cfg = NULL;
/**
* Strategy: try to keep the maximum perspective
*/
uint8_t i = 0;
if (framesize >= FRAMESIZE_QVGA) {
i = 1;
}
for (; i < sizeof(subsample_cfgs) / sizeof(struct subsample_cfg); i++) {
cfg = &subsample_cfgs[i];
if ((win_w * cfg->ratio_numerator / cfg->ratio_denominator >= w) && (win_h * cfg->ratio_numerator / cfg->ratio_denominator >= h)) {
win_w = w * cfg->ratio_denominator / cfg->ratio_numerator;
win_h = h * cfg->ratio_denominator / cfg->ratio_numerator;
row_s = (resolution[FRAMESIZE_UXGA].height - win_h) / 2;
col_s = (resolution[FRAMESIZE_UXGA].width - win_w) / 2;
ESP_LOGI(TAG, "subsample win:%dx%d, ratio:%f", win_w, win_h, (float)cfg->ratio_numerator / (float)cfg->ratio_denominator);
break;
}
}
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, P0_CROP_ENABLE, 0x01);
write_reg(sensor->slv_addr, 0x09, H8(row_s));
write_reg(sensor->slv_addr, 0x0a, L8(row_s));
write_reg(sensor->slv_addr, 0x0b, H8(col_s));
write_reg(sensor->slv_addr, 0x0c, L8(col_s));
write_reg(sensor->slv_addr, 0x0d, H8(win_h + 8));
write_reg(sensor->slv_addr, 0x0e, L8(win_h + 8));
write_reg(sensor->slv_addr, 0x0f, H8(win_w + 16));
write_reg(sensor->slv_addr, 0x10, L8(win_w + 16));
write_reg(sensor->slv_addr, 0x99, cfg->reg0x99);
write_reg(sensor->slv_addr, 0x9b, cfg->reg0x9b);
write_reg(sensor->slv_addr, 0x9c, cfg->reg0x9c);
write_reg(sensor->slv_addr, 0x9d, cfg->reg0x9d);
write_reg(sensor->slv_addr, 0x9e, cfg->reg0x9e);
write_reg(sensor->slv_addr, 0x9f, cfg->reg0x9f);
write_reg(sensor->slv_addr, 0xa0, cfg->reg0xa0);
write_reg(sensor->slv_addr, 0xa1, cfg->reg0xa1);
write_reg(sensor->slv_addr, 0xa2, cfg->reg0xa2);
write_reg(sensor->slv_addr, 0x95, H8(h));
write_reg(sensor->slv_addr, 0x96, L8(h));
write_reg(sensor->slv_addr, 0x97, H8(w));
write_reg(sensor->slv_addr, 0x98, L8(w));
#elif CONFIG_GC_SENSOR_WINDOWING_MODE
write_reg(sensor->slv_addr, 0xfe, 0x00);
write_reg(sensor->slv_addr, P0_CROP_ENABLE, 0x01);
// write_reg(sensor->slv_addr, 0xec, col_s / 8); //measure window
// write_reg(sensor->slv_addr, 0xed, row_s / 8);
// write_reg(sensor->slv_addr, 0xee, (col_s + h) / 8);
// write_reg(sensor->slv_addr, 0xef, (row_s + w) / 8);
write_reg(sensor->slv_addr, 0x09, H8(row_s));
write_reg(sensor->slv_addr, 0x0a, L8(row_s));
write_reg(sensor->slv_addr, 0x0b, H8(col_s));
write_reg(sensor->slv_addr, 0x0c, L8(col_s));
write_reg(sensor->slv_addr, 0x0d, H8(h + 8));
write_reg(sensor->slv_addr, 0x0e, L8(h + 8));
write_reg(sensor->slv_addr, 0x0f, H8(w + 8));
write_reg(sensor->slv_addr, 0x10, L8(w + 8));
write_reg(sensor->slv_addr, 0x95, H8(h));
write_reg(sensor->slv_addr, 0x96, L8(h));
write_reg(sensor->slv_addr, 0x97, H8(w));
write_reg(sensor->slv_addr, 0x98, L8(w));
#endif
if (ret == 0) {
ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h);
}
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.hmirror = enable;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, P0_ANALOG_MODE1, 0, 0x01, enable != 0);
if (ret == 0) {
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
ret |= set_reg_bits(sensor->slv_addr, P0_ANALOG_MODE1, 1, 0x01, enable != 0);
if (ret == 0) {
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
// ret = write_reg(sensor->slv_addr, 0xfe, 0x00);
// ret |= set_reg_bits(sensor->slv_addr, P0_DEBUG_MODE3, 3, 0x01, enable);
if (ret == 0) {
sensor->status.colorbar = enable;
ESP_LOGD(TAG, "Set colorbar to: %d", enable);
}
return ret;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0;
if (mask > 0xFF) {
ESP_LOGE(TAG, "mask should not more than 0xff");
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0) {
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0;
if (mask > 0xFF) {
ESP_LOGE(TAG, "mask should not more than 0xff");
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0) {
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFF) {
} else {
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int init_status(sensor_t *sensor)
{
write_reg(sensor->slv_addr, 0xfe, 0x00);
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = 0;
sensor->status.denoise = 0;
sensor->status.ae_level = 0;
sensor->status.gainceiling = 0;
sensor->status.awb = 0;
sensor->status.dcw = 0;
sensor->status.agc = 0;
sensor->status.aec = 0;
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, P0_ANALOG_MODE1, 0x01);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, P0_ANALOG_MODE1, 0x02);
sensor->status.colorbar = 0;
sensor->status.bpc = 0;
sensor->status.wpc = 0;
sensor->status.raw_gma = 0;
sensor->status.lenc = 0;
sensor->status.quality = 0;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.awb_gain = 0;
sensor->status.agc_gain = 0;
sensor->status.aec_value = 0;
sensor->status.aec2 = 0;
print_regs(sensor->slv_addr);
return 0;
}
static int set_dummy(sensor_t *sensor, int val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
int gc2145_detect(int slv_addr, sensor_id_t *id)
{
if (GC2145_SCCB_ADDR == slv_addr) {
uint8_t MIDL = SCCB_Read(slv_addr, CHIP_ID_LOW);
uint8_t MIDH = SCCB_Read(slv_addr, CHIP_ID_HIGH);
uint16_t PID = MIDH << 8 | MIDL;
if (GC2145_PID == PID) {
id->PID = PID;
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int gc2145_init(sensor_t *sensor)
{
sensor->init_status = init_status;
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_dummy;
sensor->set_brightness = set_dummy;
sensor->set_saturation = set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_denoise = set_dummy;
sensor->set_gainceiling = set_gainceiling_dummy;
sensor->set_quality = set_dummy;
sensor->set_colorbar = set_colorbar;
sensor->set_whitebal = set_dummy;
sensor->set_gain_ctrl = set_dummy;
sensor->set_exposure_ctrl = set_dummy;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->set_aec2 = set_dummy;
sensor->set_awb_gain = set_dummy;
sensor->set_agc_gain = set_dummy;
sensor->set_aec_value = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->set_dcw = set_dummy;
sensor->set_bpc = set_dummy;
sensor->set_wpc = set_dummy;
sensor->set_raw_gma = set_dummy;
sensor->set_lenc = set_dummy;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = NULL;
sensor->set_pll = NULL;
sensor->set_xclk = NULL;
ESP_LOGD(TAG, "GC2145 Attached");
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,612 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV2640 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "xclk.h"
#include "ov2640.h"
#include "ov2640_regs.h"
#include "ov2640_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "ov2640";
#endif
static volatile ov2640_bank_t reg_bank = BANK_MAX;
static int set_bank(sensor_t *sensor, ov2640_bank_t bank)
{
int res = 0;
if (bank != reg_bank) {
reg_bank = bank;
res = SCCB_Write(sensor->slv_addr, BANK_SEL, bank);
}
return res;
}
static int write_regs(sensor_t *sensor, const uint8_t (*regs)[2])
{
int i=0, res = 0;
while (regs[i][0]) {
if (regs[i][0] == BANK_SEL) {
res = set_bank(sensor, regs[i][1]);
} else {
res = SCCB_Write(sensor->slv_addr, regs[i][0], regs[i][1]);
}
if (res) {
return res;
}
i++;
}
return res;
}
static int write_reg(sensor_t *sensor, ov2640_bank_t bank, uint8_t reg, uint8_t value)
{
int ret = set_bank(sensor, bank);
if(!ret) {
ret = SCCB_Write(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = set_bank(sensor, bank);
if(ret) {
return ret;
}
c_value = SCCB_Read(sensor->slv_addr, reg);
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = SCCB_Write(sensor->slv_addr, reg, new_value);
return ret;
}
static int read_reg(sensor_t *sensor, ov2640_bank_t bank, uint8_t reg)
{
if(set_bank(sensor, bank)){
return 0;
}
return SCCB_Read(sensor->slv_addr, reg);
}
static uint8_t get_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t offset, uint8_t mask)
{
return (read_reg(sensor, bank, reg) >> offset) & mask;
}
static int write_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t mask, int enable)
{
return set_reg_bits(sensor, bank, reg, 0, mask, enable?mask:0);
}
#define WRITE_REGS_OR_RETURN(regs) ret = write_regs(sensor, regs); if(ret){return ret;}
#define WRITE_REG_OR_RETURN(bank, reg, val) ret = write_reg(sensor, bank, reg, val); if(ret){return ret;}
#define SET_REG_BITS_OR_RETURN(bank, reg, offset, mask, val) ret = set_reg_bits(sensor, bank, reg, offset, mask, val); if(ret){return ret;}
static int reset(sensor_t *sensor)
{
int ret = 0;
WRITE_REG_OR_RETURN(BANK_SENSOR, COM7, COM7_SRST);
vTaskDelay(10 / portTICK_PERIOD_MS);
WRITE_REGS_OR_RETURN(ov2640_settings_cif);
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
sensor->pixformat = pixformat;
switch (pixformat) {
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
WRITE_REGS_OR_RETURN(ov2640_settings_rgb565);
break;
case PIXFORMAT_YUV422:
case PIXFORMAT_GRAYSCALE:
WRITE_REGS_OR_RETURN(ov2640_settings_yuv422);
break;
case PIXFORMAT_JPEG:
WRITE_REGS_OR_RETURN(ov2640_settings_jpeg3);
break;
default:
ret = -1;
break;
}
if(!ret) {
vTaskDelay(10 / portTICK_PERIOD_MS);
}
return ret;
}
static int set_window(sensor_t *sensor, ov2640_sensor_mode_t mode, int offset_x, int offset_y, int max_x, int max_y, int w, int h){
int ret = 0;
const uint8_t (*regs)[2];
ov2640_clk_t c;
c.reserved = 0;
max_x /= 4;
max_y /= 4;
w /= 4;
h /= 4;
uint8_t win_regs[][2] = {
{BANK_SEL, BANK_DSP},
{HSIZE, max_x & 0xFF},
{VSIZE, max_y & 0xFF},
{XOFFL, offset_x & 0xFF},
{YOFFL, offset_y & 0xFF},
{VHYX, ((max_y >> 1) & 0X80) | ((offset_y >> 4) & 0X70) | ((max_x >> 5) & 0X08) | ((offset_x >> 8) & 0X07)},
{TEST, (max_x >> 2) & 0X80},
{ZMOW, (w)&0xFF},
{ZMOH, (h)&0xFF},
{ZMHH, ((h>>6)&0x04)|((w>>8)&0x03)},
{0, 0}
};
if (sensor->pixformat == PIXFORMAT_JPEG) {
c.clk_2x = 0;
c.clk_div = 0;
c.pclk_auto = 0;
c.pclk_div = 8;
if(mode == OV2640_MODE_UXGA) {
c.pclk_div = 12;
}
// if (sensor->xclk_freq_hz == 16000000) {
// c.pclk_div = c.pclk_div / 2;
// }
} else {
#if CONFIG_IDF_TARGET_ESP32
c.clk_2x = 0;
#else
c.clk_2x = 1;
#endif
c.clk_div = 7;
c.pclk_auto = 1;
c.pclk_div = 8;
if (mode == OV2640_MODE_CIF) {
c.clk_div = 3;
} else if(mode == OV2640_MODE_UXGA) {
c.pclk_div = 12;
}
}
ESP_LOGI(TAG, "Set PLL: clk_2x: %u, clk_div: %u, pclk_auto: %u, pclk_div: %u", c.clk_2x, c.clk_div, c.pclk_auto, c.pclk_div);
if (mode == OV2640_MODE_CIF) {
regs = ov2640_settings_to_cif;
} else if (mode == OV2640_MODE_SVGA) {
regs = ov2640_settings_to_svga;
} else {
regs = ov2640_settings_to_uxga;
}
WRITE_REG_OR_RETURN(BANK_DSP, R_BYPASS, R_BYPASS_DSP_BYPAS);
WRITE_REGS_OR_RETURN(regs);
WRITE_REGS_OR_RETURN(win_regs);
WRITE_REG_OR_RETURN(BANK_SENSOR, CLKRC, c.clk);
WRITE_REG_OR_RETURN(BANK_DSP, R_DVP_SP, c.pclk);
WRITE_REG_OR_RETURN(BANK_DSP, R_BYPASS, R_BYPASS_DSP_EN);
vTaskDelay(10 / portTICK_PERIOD_MS);
//required when changing resolution
set_pixformat(sensor, sensor->pixformat);
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
aspect_ratio_t ratio = resolution[framesize].aspect_ratio;
uint16_t max_x = ratio_table[ratio].max_x;
uint16_t max_y = ratio_table[ratio].max_y;
uint16_t offset_x = ratio_table[ratio].offset_x;
uint16_t offset_y = ratio_table[ratio].offset_y;
ov2640_sensor_mode_t mode = OV2640_MODE_UXGA;
sensor->status.framesize = framesize;
if (framesize <= FRAMESIZE_CIF) {
mode = OV2640_MODE_CIF;
max_x /= 4;
max_y /= 4;
offset_x /= 4;
offset_y /= 4;
if(max_y > 296){
max_y = 296;
}
} else if (framesize <= FRAMESIZE_SVGA) {
mode = OV2640_MODE_SVGA;
max_x /= 2;
max_y /= 2;
offset_x /= 2;
offset_y /= 2;
}
ret = set_window(sensor, mode, offset_x, offset_y, max_x, max_y, w, h);
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_CONTRAST_LEVELS) {
return -1;
}
sensor->status.contrast = level-3;
for (int i=0; i<7; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, contrast_regs[0][i], contrast_regs[level][i]);
}
return ret;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_BRIGHTNESS_LEVELS) {
return -1;
}
sensor->status.brightness = level-3;
for (int i=0; i<5; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, brightness_regs[0][i], brightness_regs[level][i]);
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_SATURATION_LEVELS) {
return -1;
}
sensor->status.saturation = level-3;
for (int i=0; i<5; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, saturation_regs[0][i], saturation_regs[level][i]);
}
return ret;
}
static int set_special_effect(sensor_t *sensor, int effect)
{
int ret=0;
effect++;
if (effect <= 0 || effect > NUM_SPECIAL_EFFECTS) {
return -1;
}
sensor->status.special_effect = effect-1;
for (int i=0; i<5; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, special_effects_regs[0][i], special_effects_regs[effect][i]);
}
return ret;
}
static int set_wb_mode(sensor_t *sensor, int mode)
{
int ret=0;
if (mode < 0 || mode > NUM_WB_MODES) {
return -1;
}
sensor->status.wb_mode = mode;
SET_REG_BITS_OR_RETURN(BANK_DSP, 0XC7, 6, 1, mode?1:0);
if(mode) {
for (int i=0; i<3; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, wb_modes_regs[0][i], wb_modes_regs[mode][i]);
}
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_AE_LEVELS) {
return -1;
}
sensor->status.ae_level = level-3;
for (int i=0; i<3; i++) {
WRITE_REG_OR_RETURN(BANK_SENSOR, ae_levels_regs[0][i], ae_levels_regs[level][i]);
}
return ret;
}
static int set_quality(sensor_t *sensor, int quality)
{
if(quality < 0) {
quality = 0;
} else if(quality > 63) {
quality = 63;
}
sensor->status.quality = quality;
return write_reg(sensor, BANK_DSP, QS, quality);
}
static int set_agc_gain(sensor_t *sensor, int gain)
{
if(gain < 0) {
gain = 0;
} else if(gain > 30) {
gain = 30;
}
sensor->status.agc_gain = gain;
return write_reg(sensor, BANK_SENSOR, GAIN, agc_gain_tbl[gain]);
}
static int set_gainceiling_sensor(sensor_t *sensor, gainceiling_t gainceiling)
{
sensor->status.gainceiling = gainceiling;
//return write_reg(sensor, BANK_SENSOR, COM9, COM9_AGC_SET(gainceiling));
return set_reg_bits(sensor, BANK_SENSOR, COM9, 5, 7, gainceiling);
}
static int set_aec_value(sensor_t *sensor, int value)
{
if(value < 0) {
value = 0;
} else if(value > 1200) {
value = 1200;
}
sensor->status.aec_value = value;
return set_reg_bits(sensor, BANK_SENSOR, REG04, 0, 3, value & 0x3)
|| write_reg(sensor, BANK_SENSOR, AEC, (value >> 2) & 0xFF)
|| set_reg_bits(sensor, BANK_SENSOR, REG45, 0, 0x3F, value >> 10);
}
static int set_aec2(sensor_t *sensor, int enable)
{
sensor->status.aec2 = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL0, 6, 1, enable?0:1);
}
static int set_colorbar(sensor_t *sensor, int enable)
{
sensor->status.colorbar = enable;
return write_reg_bits(sensor, BANK_SENSOR, COM7, COM7_COLOR_BAR, enable?1:0);
}
static int set_agc_sensor(sensor_t *sensor, int enable)
{
sensor->status.agc = enable;
return write_reg_bits(sensor, BANK_SENSOR, COM8, COM8_AGC_EN, enable?1:0);
}
static int set_aec_sensor(sensor_t *sensor, int enable)
{
sensor->status.aec = enable;
return write_reg_bits(sensor, BANK_SENSOR, COM8, COM8_AEC_EN, enable?1:0);
}
static int set_hmirror_sensor(sensor_t *sensor, int enable)
{
sensor->status.hmirror = enable;
return write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_HFLIP_IMG, enable?1:0);
}
static int set_vflip_sensor(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_VREF_EN, enable?1:0);
return ret & write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_VFLIP_IMG, enable?1:0);
}
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
sensor->status.raw_gma = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL1, 5, 1, enable?1:0);
}
static int set_awb_dsp(sensor_t *sensor, int enable)
{
sensor->status.awb = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL1, 3, 1, enable?1:0);
}
static int set_awb_gain_dsp(sensor_t *sensor, int enable)
{
sensor->status.awb_gain = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL1, 2, 1, enable?1:0);
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
sensor->status.lenc = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL1, 1, 1, enable?1:0);
}
static int set_dcw_dsp(sensor_t *sensor, int enable)
{
sensor->status.dcw = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL2, 5, 1, enable?1:0);
}
static int set_bpc_dsp(sensor_t *sensor, int enable)
{
sensor->status.bpc = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL3, 7, 1, enable?1:0);
}
static int set_wpc_dsp(sensor_t *sensor, int enable)
{
sensor->status.wpc = enable;
return set_reg_bits(sensor, BANK_DSP, CTRL3, 6, 1, enable?1:0);
}
//unsupported
static int set_sharpness(sensor_t *sensor, int level)
{
return -1;
}
static int set_denoise(sensor_t *sensor, int level)
{
return -1;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = read_reg(sensor, (reg >> 8) & 0x01, reg & 0xFF);
if(ret > 0){
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0;
ret = read_reg(sensor, (reg >> 8) & 0x01, reg & 0xFF);
if(ret < 0){
return ret;
}
value = (ret & ~mask) | (value & mask);
ret = write_reg(sensor, (reg >> 8) & 0x01, reg & 0xFF, value);
return ret;
}
static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning)
{
return set_window(sensor, (ov2640_sensor_mode_t)startX, offsetX, offsetY, totalX, totalY, outputX, outputY);
}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
{
return -1;
}
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
return ret;
}
static int init_status(sensor_t *sensor){
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.ae_level = 0;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.agc_gain = 30;
int agc_gain = read_reg(sensor, BANK_SENSOR, GAIN);
for (int i=0; i<30; i++){
if(agc_gain >= agc_gain_tbl[i] && agc_gain < agc_gain_tbl[i+1]){
sensor->status.agc_gain = i;
break;
}
}
sensor->status.aec_value = ((uint16_t)get_reg_bits(sensor, BANK_SENSOR, REG45, 0, 0x3F) << 10)
| ((uint16_t)read_reg(sensor, BANK_SENSOR, AEC) << 2)
| get_reg_bits(sensor, BANK_SENSOR, REG04, 0, 3);//0 - 1200
sensor->status.quality = read_reg(sensor, BANK_DSP, QS);
sensor->status.gainceiling = get_reg_bits(sensor, BANK_SENSOR, COM9, 5, 7);
sensor->status.awb = get_reg_bits(sensor, BANK_DSP, CTRL1, 3, 1);
sensor->status.awb_gain = get_reg_bits(sensor, BANK_DSP, CTRL1, 2, 1);
sensor->status.aec = get_reg_bits(sensor, BANK_SENSOR, COM8, 0, 1);
sensor->status.aec2 = get_reg_bits(sensor, BANK_DSP, CTRL0, 6, 1);
sensor->status.agc = get_reg_bits(sensor, BANK_SENSOR, COM8, 2, 1);
sensor->status.bpc = get_reg_bits(sensor, BANK_DSP, CTRL3, 7, 1);
sensor->status.wpc = get_reg_bits(sensor, BANK_DSP, CTRL3, 6, 1);
sensor->status.raw_gma = get_reg_bits(sensor, BANK_DSP, CTRL1, 5, 1);
sensor->status.lenc = get_reg_bits(sensor, BANK_DSP, CTRL1, 1, 1);
sensor->status.hmirror = get_reg_bits(sensor, BANK_SENSOR, REG04, 7, 1);
sensor->status.vflip = get_reg_bits(sensor, BANK_SENSOR, REG04, 6, 1);
sensor->status.dcw = get_reg_bits(sensor, BANK_DSP, CTRL2, 5, 1);
sensor->status.colorbar = get_reg_bits(sensor, BANK_SENSOR, COM7, 1, 1);
sensor->status.sharpness = 0;//not supported
sensor->status.denoise = 0;
return 0;
}
int ov2640_detect(int slv_addr, sensor_id_t *id)
{
if (OV2640_SCCB_ADDR == slv_addr) {
SCCB_Write(slv_addr, 0xFF, 0x01);//bank sensor
uint16_t PID = SCCB_Read(slv_addr, 0x0A);
if (OV2640_PID == PID) {
id->PID = PID;
id->VER = SCCB_Read(slv_addr, REG_VER);
id->MIDL = SCCB_Read(slv_addr, REG_MIDL);
id->MIDH = SCCB_Read(slv_addr, REG_MIDH);
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int ov2640_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->init_status = init_status;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness= set_brightness;
sensor->set_saturation= set_saturation;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gainceiling = set_gainceiling_sensor;
sensor->set_gain_ctrl = set_agc_sensor;
sensor->set_exposure_ctrl = set_aec_sensor;
sensor->set_hmirror = set_hmirror_sensor;
sensor->set_vflip = set_vflip_sensor;
sensor->set_whitebal = set_awb_dsp;
sensor->set_aec2 = set_aec2;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = set_special_effect;
sensor->set_wb_mode = set_wb_mode;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = set_dcw_dsp;
sensor->set_bpc = set_bpc_dsp;
sensor->set_wpc = set_wpc_dsp;
sensor->set_awb_gain = set_awb_gain_dsp;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
//not supported
sensor->set_sharpness = set_sharpness;
sensor->set_denoise = set_denoise;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = set_res_raw;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
ESP_LOGD(TAG, "OV2640 Attached");
return 0;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,457 +0,0 @@
/*
* This file is part of the OpenMV project.
* author: Juan Schiavoni <juanjoseschiavoni@hotmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV7725 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "ov7670.h"
#include "ov7670_regs.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <stdio.h>
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "ov7760";
#endif
static int ov7670_clkrc = 0x01;
/*
* The default register settings, as obtained from OmniVision. There
* is really no making sense of most of these - lots of "reserved" values
* and such.
*
* These settings give VGA YUYV.
*/
struct regval_list {
uint8_t reg_num;
uint8_t value;
};
static struct regval_list ov7670_default_regs[] = {
/* Sensor automatically sets output window when resolution changes. */
{TSLB, 0x04},
/* Frame rate 30 fps at 12 Mhz clock */
{CLKRC, 0x00},
{DBLV, 0x4A},
{COM10, COM10_VSYNC_NEG | COM10_PCLK_MASK},
/* Improve white balance */
{COM4, 0x40},
/* Improve color */
{RSVD_B0, 0x84},
/* Enable 50/60 Hz auto detection */
{COM11, COM11_EXP|COM11_HZAUTO},
/* Disable some delays */
{HSYST, 0},
{HSYEN, 0},
{MVFP, MVFP_SUN},
/* More reserved magic, some of which tweaks white balance */
{AWBC1, 0x0a},
{AWBC2, 0xf0},
{AWBC3, 0x34},
{AWBC4, 0x58},
{AWBC5, 0x28},
{AWBC6, 0x3a},
{AWBCTR3, 0x0a},
{AWBCTR2, 0x55},
{AWBCTR1, 0x11},
{AWBCTR0, 0x9e},
{COM8, COM8_FAST_AUTO|COM8_STEP_UNLIMIT|COM8_AGC_EN|COM8_AEC_EN|COM8_AWB_EN},
/* End marker is FF because in ov7670 the address of GAIN 0 and default value too. */
{0xFF, 0xFF},
};
static struct regval_list ov7670_fmt_yuv422[] = {
{ COM7, 0x0 }, /* Selects YUV mode */
{ RGB444, 0 }, /* No RGB444 please */
{ COM1, 0 }, /* CCIR601 */
{ COM15, COM15_R00FF },
{ MVFP, MVFP_SUN },
{ COM9, 0x6A }, /* 128x gain ceiling; 0x8 is reserved bit */
{ MTX1, 0x80 }, /* "matrix coefficient 1" */
{ MTX2, 0x80 }, /* "matrix coefficient 2" */
{ MTX3, 0 }, /* vb */
{ MTX4, 0x22 }, /* "matrix coefficient 4" */
{ MTX5, 0x5e }, /* "matrix coefficient 5" */
{ MTX6, 0x80 }, /* "matrix coefficient 6" */
{ COM13, COM13_UVSAT },
{ 0xff, 0xff }, /* END MARKER */
};
static struct regval_list ov7670_fmt_rgb565[] = {
{ COM7, COM7_FMT_RGB565 }, /* Selects RGB mode */
{ RGB444, 0 }, /* No RGB444 please */
{ COM1, 0x0 }, /* CCIR601 */
{ COM15, COM15_RGB565 |COM15_R00FF },
{ MVFP, MVFP_SUN },
{ COM9, 0x6A }, /* 128x gain ceiling; 0x8 is reserved bit */
{ MTX1, 0xb3 }, /* "matrix coefficient 1" */
{ MTX2, 0xb3 }, /* "matrix coefficient 2" */
{ MTX3, 0 }, /* vb */
{ MTX4, 0x3d }, /* "matrix coefficient 4" */
{ MTX5, 0xa7 }, /* "matrix coefficient 5" */
{ MTX6, 0xe4 }, /* "matrix coefficient 6" */
{ COM13, COM13_UVSAT },
{ 0xff, 0xff }, /* END MARKER */
};
static struct regval_list ov7670_vga[] = {
{ COM3, 0x00 },
{ COM14, 0x00 },
{ SCALING_XSC, 0x3A },
{ SCALING_YSC, 0x35 },
{ SCALING_DCWCTR, 0x11 },
{ SCALING_PCLK_DIV, 0xF0 },
{ SCALING_PCLK_DELAY, 0x02 },
{ 0xff, 0xff },
};
static struct regval_list ov7670_qvga[] = {
{ COM3, 0x04 },
{ COM14, 0x19 },
{ SCALING_XSC, 0x3A },
{ SCALING_YSC, 0x35 },
{ SCALING_DCWCTR, 0x11 },
{ SCALING_PCLK_DIV, 0xF1 },
{ SCALING_PCLK_DELAY, 0x02 },
{ 0xff, 0xff },
};
static struct regval_list ov7670_qqvga[] = {
{ COM3, 0x04 }, //DCW enable
{ COM14, 0x1a }, //pixel clock divided by 4, manual scaling enable, DCW and PCLK controlled by register
{ SCALING_XSC, 0x3a },
{ SCALING_YSC, 0x35 },
{ SCALING_DCWCTR, 0x22 }, //downsample by 4
{ SCALING_PCLK_DIV, 0xf2 }, //pixel clock divided by 4
{ SCALING_PCLK_DELAY, 0x02 },
{ 0xff, 0xff },
};
/*
* Write a list of register settings; ff/ff stops the process.
*/
static int ov7670_write_array(sensor_t *sensor, struct regval_list *vals)
{
int ret = 0;
while ( (vals->reg_num != 0xff || vals->value != 0xff) && (ret == 0) ) {
ret = SCCB_Write(sensor->slv_addr, vals->reg_num, vals->value);
ESP_LOGD(TAG, "reset reg %02X, W(%02X) R(%02X)", vals->reg_num,
vals->value, SCCB_Read(sensor->slv_addr, vals->reg_num) );
vals++;
}
return ret;
}
/*
* Calculate the frame control registers.
*/
static int ov7670_frame_control(sensor_t *sensor, int hstart, int hstop, int vstart, int vstop)
{
struct regval_list frame[7];
frame[0].reg_num = HSTART;
frame[0].value = (hstart >> 3);
frame[1].reg_num = HSTOP;
frame[1].value = (hstop >> 3);
frame[2].reg_num = HREF;
frame[2].value = (((hstop & 0x07) << 3) | (hstart & 0x07));
frame[3].reg_num = VSTART;
frame[3].value = (vstart >> 2);
frame[4].reg_num = VSTOP;
frame[4].value = (vstop >> 2);
frame[5].reg_num = VREF;
frame[5].value = (((vstop & 0x02) << 2) | (vstart & 0x02));
/* End mark */
frame[5].reg_num = 0xFF;
frame[5].value = 0xFF;
return ov7670_write_array(sensor, frame);
}
static int reset(sensor_t *sensor)
{
int ret;
// Reset all registers
SCCB_Write(sensor->slv_addr, COM7, COM7_RESET);
// Delay 10 ms
vTaskDelay(10 / portTICK_PERIOD_MS);
ret = ov7670_write_array(sensor, ov7670_default_regs);
// Delay
vTaskDelay(30 / portTICK_PERIOD_MS);
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret;
switch (pixformat) {
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
ret = ov7670_write_array(sensor, ov7670_fmt_rgb565);
break;
case PIXFORMAT_YUV422:
case PIXFORMAT_GRAYSCALE:
default:
ret = ov7670_write_array(sensor, ov7670_fmt_yuv422);
break;
}
vTaskDelay(30 / portTICK_PERIOD_MS);
/*
* If we're running RGB565, we must rewrite clkrc after setting
* the other parameters or the image looks poor. If we're *not*
* doing RGB565, we must not rewrite clkrc or the image looks
* *really* poor.
*
* (Update) Now that we retain clkrc state, we should be able
* to write it unconditionally, and that will make the frame
* rate persistent too.
*/
if (pixformat == PIXFORMAT_RGB565) {
ret = SCCB_Write(sensor->slv_addr, CLKRC, ov7670_clkrc);
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret;
// store clkrc before changing window settings...
ov7670_clkrc = SCCB_Read(sensor->slv_addr, CLKRC);
switch (framesize){
case FRAMESIZE_VGA:
if( (ret = ov7670_write_array(sensor, ov7670_vga)) == 0 ) {
/* These values from Omnivision */
ret = ov7670_frame_control(sensor, 158, 14, 10, 490);
}
break;
case FRAMESIZE_QVGA:
if( (ret = ov7670_write_array(sensor, ov7670_qvga)) == 0 ) {
/* These values from Omnivision */
ret = ov7670_frame_control(sensor, 158, 14, 10, 490);
}
break;
case FRAMESIZE_QQVGA:
if( (ret = ov7670_write_array(sensor, ov7670_qqvga)) == 0 ) {
/* These values from Omnivision */
ret = ov7670_frame_control(sensor, 158, 14, 10, 490);
}
break;
default:
ret = -1;
}
vTaskDelay(30 / portTICK_PERIOD_MS);
if (ret == 0) {
sensor->status.framesize = framesize;
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
uint8_t ret = 0;
// Read register scaling_xsc
uint8_t reg = SCCB_Read(sensor->slv_addr, SCALING_XSC);
// Pattern to set color bar bit[0]=0 in every case
reg = SCALING_XSC_CBAR(reg);
// Write pattern to SCALING_XSC
ret = SCCB_Write(sensor->slv_addr, SCALING_XSC, reg);
// Read register scaling_ysc
reg = SCCB_Read(sensor->slv_addr, SCALING_YSC);
// Pattern to set color bar bit[0]=0 in every case
reg = SCALING_YSC_CBAR(reg, enable);
// Write pattern to SCALING_YSC
ret = ret | SCCB_Write(sensor->slv_addr, SCALING_YSC, reg);
// return 0 or 0xFF
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
// Read register COM8
uint8_t reg = SCCB_Read(sensor->slv_addr, COM8);
// Set white bal on/off
reg = COM8_SET_AWB(reg, enable);
// Write back register COM8
return SCCB_Write(sensor->slv_addr, COM8, reg);
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
// Read register COM8
uint8_t reg = SCCB_Read(sensor->slv_addr, COM8);
// Set white bal on/off
reg = COM8_SET_AGC(reg, enable);
// Write back register COM8
return SCCB_Write(sensor->slv_addr, COM8, reg);
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
// Read register COM8
uint8_t reg = SCCB_Read(sensor->slv_addr, COM8);
// Set white bal on/off
reg = COM8_SET_AEC(reg, enable);
// Write back register COM8
return SCCB_Write(sensor->slv_addr, COM8, reg);
}
static int set_hmirror(sensor_t *sensor, int enable)
{
// Read register MVFP
uint8_t reg = SCCB_Read(sensor->slv_addr, MVFP);
// Set mirror on/off
reg = MVFP_SET_MIRROR(reg, enable);
// Write back register MVFP
return SCCB_Write(sensor->slv_addr, MVFP, reg);
}
static int set_vflip(sensor_t *sensor, int enable)
{
// Read register MVFP
uint8_t reg = SCCB_Read(sensor->slv_addr, MVFP);
// Set mirror on/off
reg = MVFP_SET_FLIP(reg, enable);
// Write back register MVFP
return SCCB_Write(sensor->slv_addr, MVFP, reg);
}
static int init_status(sensor_t *sensor)
{
sensor->status.awb = 0;
sensor->status.aec = 0;
sensor->status.agc = 0;
sensor->status.hmirror = 0;
sensor->status.vflip = 0;
sensor->status.colorbar = 0;
return 0;
}
static int set_dummy(sensor_t *sensor, int val){ return -1; }
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val){ return -1; }
int ov7670_detect(int slv_addr, sensor_id_t *id)
{
if (OV7670_SCCB_ADDR == slv_addr) {
SCCB_Write(slv_addr, 0xFF, 0x01);//bank sensor
uint16_t PID = SCCB_Read(slv_addr, 0x0A);
if (OV7670_PID == PID) {
id->PID = PID;
id->VER = SCCB_Read(slv_addr, REG_VER);
id->MIDL = SCCB_Read(slv_addr, REG_MIDL);
id->MIDH = SCCB_Read(slv_addr, REG_MIDH);
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int ov7670_init(sensor_t *sensor)
{
// Set function pointers
sensor->reset = reset;
sensor->init_status = init_status;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_colorbar = set_colorbar;
sensor->set_whitebal = set_whitebal;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
//not supported
sensor->set_brightness= set_dummy;
sensor->set_saturation= set_dummy;
sensor->set_quality = set_dummy;
sensor->set_gainceiling = set_gainceiling_dummy;
sensor->set_aec2 = set_dummy;
sensor->set_aec_value = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->set_dcw = set_dummy;
sensor->set_bpc = set_dummy;
sensor->set_wpc = set_dummy;
sensor->set_awb_gain = set_dummy;
sensor->set_agc_gain = set_dummy;
sensor->set_raw_gma = set_dummy;
sensor->set_lenc = set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_denoise = set_dummy;
// Retrieve sensor's signature
sensor->id.MIDH = SCCB_Read(sensor->slv_addr, REG_MIDH);
sensor->id.MIDL = SCCB_Read(sensor->slv_addr, REG_MIDL);
sensor->id.PID = SCCB_Read(sensor->slv_addr, REG_PID);
sensor->id.VER = SCCB_Read(sensor->slv_addr, REG_VER);
ESP_LOGD(TAG, "OV7670 Attached");
return 0;
}

View File

@ -1,575 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV7725 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "sccb.h"
#include "xclk.h"
#include "ov7725.h"
#include "ov7725_regs.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "ov7725";
#endif
static const uint8_t default_regs[][2] = {
{COM3, COM3_SWAP_YUV},
{COM7, COM7_RES_QVGA | COM7_FMT_YUV},
{COM4, 0x01 | 0x00}, /* bypass PLL (0x00:off, 0x40:4x, 0x80:6x, 0xC0:8x) */
{CLKRC, 0x80 | 0x03}, /* Res/Bypass pre-scalar (0x40:bypass, 0x00-0x3F:prescaler PCLK=XCLK/(prescaler + 1)/2 ) */
// QVGA Window Size
{HSTART, 0x3F},
{HSIZE, 0x50},
{VSTART, 0x03},
{VSIZE, 0x78},
{HREF, 0x00},
// Scale down to QVGA Resolution
{HOUTSIZE, 0x50},
{VOUTSIZE, 0x78},
{EXHCH, 0x00},
{COM12, 0x03},
{TGT_B, 0x7F},
{FIXGAIN, 0x09},
{AWB_CTRL0, 0xE0},
{DSP_CTRL1, 0xFF},
{DSP_CTRL2, DSP_CTRL2_VDCW_EN | DSP_CTRL2_HDCW_EN | DSP_CTRL2_HZOOM_EN | DSP_CTRL2_VZOOM_EN},
{DSP_CTRL3, 0x00},
{DSP_CTRL4, 0x00},
{DSPAUTO, 0xFF},
{COM8, 0xF0},
{COM6, 0xC5},
{COM9, 0x11},
{COM10, COM10_VSYNC_NEG | COM10_PCLK_MASK}, //Invert VSYNC and MASK PCLK
{BDBASE, 0x7F},
{DBSTEP, 0x03},
{AEW, 0x96},
{AEB, 0x64},
{VPT, 0xA1},
{EXHCL, 0x00},
{AWB_CTRL3, 0xAA},
{COM8, 0xFF},
//Gamma
{GAM1, 0x0C},
{GAM2, 0x16},
{GAM3, 0x2A},
{GAM4, 0x4E},
{GAM5, 0x61},
{GAM6, 0x6F},
{GAM7, 0x7B},
{GAM8, 0x86},
{GAM9, 0x8E},
{GAM10, 0x97},
{GAM11, 0xA4},
{GAM12, 0xAF},
{GAM13, 0xC5},
{GAM14, 0xD7},
{GAM15, 0xE8},
{SLOP, 0x20},
{EDGE1, 0x05},
{EDGE2, 0x03},
{EDGE3, 0x00},
{DNSOFF, 0x01},
{MTX1, 0xB0},
{MTX2, 0x9D},
{MTX3, 0x13},
{MTX4, 0x16},
{MTX5, 0x7B},
{MTX6, 0x91},
{MTX_CTRL, 0x1E},
{BRIGHTNESS, 0x08},
{CONTRAST, 0x30},
{UVADJ0, 0x81},
{SDE, (SDE_CONT_BRIGHT_EN | SDE_SATURATION_EN)},
// For 30 fps/60Hz
{DM_LNL, 0x00},
{DM_LNH, 0x00},
{BDBASE, 0x7F},
{DBSTEP, 0x03},
// Lens Correction, should be tuned with real camera module
{LC_RADI, 0x10},
{LC_COEF, 0x10},
{LC_COEFB, 0x14},
{LC_COEFR, 0x17},
{LC_CTR, 0x05},
{COM5, 0xF5}, //0x65
{0x00, 0x00},
};
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = SCCB_Read(sensor->slv_addr, reg & 0xFF);
if(ret > 0){
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0;
ret = SCCB_Read(sensor->slv_addr, reg & 0xFF);
if(ret < 0){
return ret;
}
value = (ret & ~mask) | (value & mask);
ret = SCCB_Write(sensor->slv_addr, reg & 0xFF, value);
return ret;
}
static int set_reg_bits(sensor_t *sensor, uint8_t reg, uint8_t offset, uint8_t length, uint8_t value)
{
int ret = 0;
ret = SCCB_Read(sensor->slv_addr, reg);
if(ret < 0){
return ret;
}
uint8_t mask = ((1 << length) - 1) << offset;
value = (ret & ~mask) | ((value << offset) & mask);
ret = SCCB_Write(sensor->slv_addr, reg & 0xFF, value);
return ret;
}
static int get_reg_bits(sensor_t *sensor, uint8_t reg, uint8_t offset, uint8_t length)
{
int ret = 0;
ret = SCCB_Read(sensor->slv_addr, reg);
if(ret < 0){
return ret;
}
uint8_t mask = ((1 << length) - 1) << offset;
return (ret & mask) >> offset;
}
static int reset(sensor_t *sensor)
{
int i=0;
const uint8_t (*regs)[2];
// Reset all registers
SCCB_Write(sensor->slv_addr, COM7, COM7_RESET);
// Delay 10 ms
vTaskDelay(10 / portTICK_PERIOD_MS);
// Write default regsiters
for (i=0, regs = default_regs; regs[i][0]; i++) {
SCCB_Write(sensor->slv_addr, regs[i][0], regs[i][1]);
}
// Delay
vTaskDelay(30 / portTICK_PERIOD_MS);
return 0;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret=0;
sensor->pixformat = pixformat;
// Read register COM7
uint8_t reg = SCCB_Read(sensor->slv_addr, COM7);
switch (pixformat) {
case PIXFORMAT_RGB565:
reg = COM7_SET_RGB(reg, COM7_FMT_RGB565);
break;
case PIXFORMAT_YUV422:
case PIXFORMAT_GRAYSCALE:
reg = COM7_SET_FMT(reg, COM7_FMT_YUV);
break;
default:
return -1;
}
// Write back register COM7
ret = SCCB_Write(sensor->slv_addr, COM7, reg);
// Delay
vTaskDelay(30 / portTICK_PERIOD_MS);
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret=0;
if (framesize > FRAMESIZE_VGA) {
return -1;
}
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
uint8_t reg = SCCB_Read(sensor->slv_addr, COM7);
sensor->status.framesize = framesize;
// Write MSBs
ret |= SCCB_Write(sensor->slv_addr, HOUTSIZE, w>>2);
ret |= SCCB_Write(sensor->slv_addr, VOUTSIZE, h>>1);
ret |= SCCB_Write(sensor->slv_addr, HSIZE, w>>2);
ret |= SCCB_Write(sensor->slv_addr, VSIZE, h>>1);
// Write LSBs
ret |= SCCB_Write(sensor->slv_addr, HREF, ((w&0x3) | ((h&0x1) << 2)));
if (framesize < FRAMESIZE_VGA) {
// Enable auto-scaling/zooming factors
ret |= SCCB_Write(sensor->slv_addr, DSPAUTO, 0xFF);
ret |= SCCB_Write(sensor->slv_addr, HSTART, 0x3F);
ret |= SCCB_Write(sensor->slv_addr, VSTART, 0x03);
ret |= SCCB_Write(sensor->slv_addr, COM7, reg | COM7_RES_QVGA);
ret |= SCCB_Write(sensor->slv_addr, CLKRC, 0x80 | 0x01);
} else {
// Disable auto-scaling/zooming factors
ret |= SCCB_Write(sensor->slv_addr, DSPAUTO, 0xF3);
// Clear auto-scaling/zooming factors
ret |= SCCB_Write(sensor->slv_addr, SCAL0, 0x00);
ret |= SCCB_Write(sensor->slv_addr, SCAL1, 0x00);
ret |= SCCB_Write(sensor->slv_addr, SCAL2, 0x00);
ret |= SCCB_Write(sensor->slv_addr, HSTART, 0x23);
ret |= SCCB_Write(sensor->slv_addr, VSTART, 0x07);
ret |= SCCB_Write(sensor->slv_addr, COM7, reg & ~COM7_RES_QVGA);
ret |= SCCB_Write(sensor->slv_addr, CLKRC, 0x80 | 0x03);
}
// Delay
vTaskDelay(30 / portTICK_PERIOD_MS);
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret=0;
uint8_t reg;
sensor->status.colorbar = enable;
// Read reg COM3
reg = SCCB_Read(sensor->slv_addr, COM3);
// Enable colorbar test pattern output
reg = COM3_SET_CBAR(reg, enable);
// Write back COM3
ret |= SCCB_Write(sensor->slv_addr, COM3, reg);
// Read reg DSP_CTRL3
reg = SCCB_Read(sensor->slv_addr, DSP_CTRL3);
// Enable DSP colorbar output
reg = DSP_CTRL3_SET_CBAR(reg, enable);
// Write back DSP_CTRL3
ret |= SCCB_Write(sensor->slv_addr, DSP_CTRL3, reg);
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
if(set_reg_bits(sensor, COM8, 1, 1, enable) >= 0){
sensor->status.awb = !!enable;
}
return sensor->status.awb;
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
if(set_reg_bits(sensor, COM8, 2, 1, enable) >= 0){
sensor->status.agc = !!enable;
}
return sensor->status.agc;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
if(set_reg_bits(sensor, COM8, 0, 1, enable) >= 0){
sensor->status.aec = !!enable;
}
return sensor->status.aec;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
if(set_reg_bits(sensor, COM3, 6, 1, enable) >= 0){
sensor->status.hmirror = !!enable;
}
return sensor->status.hmirror;
}
static int set_vflip(sensor_t *sensor, int enable)
{
if(set_reg_bits(sensor, COM3, 7, 1, enable) >= 0){
sensor->status.vflip = !!enable;
}
return sensor->status.vflip;
}
static int set_dcw_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, 0x65, 2, 1, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set dcw to: %d", enable);
sensor->status.dcw = enable;
}
return ret;
}
static int set_aec2(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, COM8, 7, 1, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set aec2 to: %d", enable);
sensor->status.aec2 = enable;
}
return ret;
}
static int set_bpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, 0x64, 1, 1, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set bpc to: %d", enable);
sensor->status.bpc = enable;
}
return ret;
}
static int set_wpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, 0x64, 0, 1, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set wpc to: %d", enable);
sensor->status.wpc = enable;
}
return ret;
}
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, 0x64, 2, 1, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
sensor->status.raw_gma = enable;
}
return ret;
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, LC_CTR, 0, 1, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set lenc to: %d", enable);
sensor->status.lenc = enable;
}
return ret;
}
//real gain
static int set_agc_gain(sensor_t *sensor, int gain)
{
int ret = 0;
ret = set_reg_bits(sensor, COM9, 4, 3, gain % 5);
if (ret == 0) {
ESP_LOGD(TAG, "Set gain to: %d", gain);
sensor->status.agc_gain = gain;
}
return ret;
}
static int set_aec_value(sensor_t *sensor, int value)
{
int ret = 0;
ret = SCCB_Write(sensor->slv_addr, AEC, value & 0xff) | SCCB_Write(sensor->slv_addr, AECH, value >> 8);
if (ret == 0) {
ESP_LOGD(TAG, "Set aec_value to: %d", value);
sensor->status.aec_value = value;
}
return ret;
}
static int set_awb_gain_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = set_reg_bits(sensor, 0x63, 7, 1, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set awb_gain to: %d", enable);
sensor->status.awb_gain = enable;
}
return ret;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret = 0;
ret = SCCB_Write(sensor->slv_addr, 0x9B, level);
if (ret == 0) {
ESP_LOGD(TAG, "Set brightness to: %d", level);
sensor->status.brightness = level;
}
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret = 0;
ret = SCCB_Write(sensor->slv_addr, 0x9C, level);
if (ret == 0) {
ESP_LOGD(TAG, "Set contrast to: %d", level);
sensor->status.contrast = level;
}
return ret;
}
static int init_status(sensor_t *sensor)
{
sensor->status.brightness = SCCB_Read(sensor->slv_addr, 0x9B);
sensor->status.contrast = SCCB_Read(sensor->slv_addr, 0x9C);
sensor->status.saturation = 0;
sensor->status.ae_level = 0;
sensor->status.special_effect = get_reg_bits(sensor, 0x64, 5, 1);
sensor->status.wb_mode = get_reg_bits(sensor, 0x6B, 7, 1);
sensor->status.agc_gain = get_reg_bits(sensor, COM9, 4, 3);
sensor->status.aec_value = SCCB_Read(sensor->slv_addr, AEC) | (SCCB_Read(sensor->slv_addr, AECH) << 8);
sensor->status.gainceiling = SCCB_Read(sensor->slv_addr, 0x00);
sensor->status.awb = get_reg_bits(sensor, COM8, 1, 1);
sensor->status.awb_gain = get_reg_bits(sensor, 0x63, 7, 1);
sensor->status.aec = get_reg_bits(sensor, COM8, 0, 1);
sensor->status.aec2 = get_reg_bits(sensor, COM8, 7, 1);
sensor->status.agc = get_reg_bits(sensor, COM8, 2, 1);
sensor->status.bpc = get_reg_bits(sensor, 0x64, 1, 1);
sensor->status.wpc = get_reg_bits(sensor, 0x64, 0, 1);
sensor->status.raw_gma = get_reg_bits(sensor, 0x64, 2, 1);
sensor->status.lenc = get_reg_bits(sensor, LC_CTR, 0, 1);
sensor->status.hmirror = get_reg_bits(sensor, COM3, 6, 1);
sensor->status.vflip = get_reg_bits(sensor, COM3, 7, 1);
sensor->status.dcw = get_reg_bits(sensor, 0x65, 2, 1);
sensor->status.colorbar = get_reg_bits(sensor, COM3, 0, 1);
sensor->status.sharpness = get_reg_bits(sensor, EDGE0, 0, 5);
sensor->status.denoise = SCCB_Read(sensor->slv_addr, 0x8E);
return 0;
}
static int set_dummy(sensor_t *sensor, int val){ return -1; }
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val){ return -1; }
static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning){return -1;}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div){return -1;}
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
return ret;
}
int ov7725_detect(int slv_addr, sensor_id_t *id)
{
if (OV7725_SCCB_ADDR == slv_addr) {
SCCB_Write(slv_addr, 0xFF, 0x01);//bank sensor
uint16_t PID = SCCB_Read(slv_addr, 0x0A);
if (OV7725_PID == PID) {
id->PID = PID;
id->VER = SCCB_Read(slv_addr, REG_VER);
id->MIDL = SCCB_Read(slv_addr, REG_MIDL);
id->MIDH = SCCB_Read(slv_addr, REG_MIDH);
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int ov7725_init(sensor_t *sensor)
{
// Set function pointers
sensor->reset = reset;
sensor->init_status = init_status;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_colorbar = set_colorbar;
sensor->set_whitebal = set_whitebal;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->set_brightness = set_brightness;
sensor->set_contrast = set_contrast;
sensor->set_aec2 = set_aec2;
sensor->set_aec_value = set_aec_value;
sensor->set_awb_gain = set_awb_gain_dsp;
sensor->set_agc_gain = set_agc_gain;
sensor->set_dcw = set_dcw_dsp;
sensor->set_bpc = set_bpc_dsp;
sensor->set_wpc = set_wpc_dsp;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
//not supported
sensor->set_saturation= set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_denoise = set_dummy;
sensor->set_quality = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->set_gainceiling = set_gainceiling_dummy;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = set_res_raw;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
// Retrieve sensor's signature
sensor->id.MIDH = SCCB_Read(sensor->slv_addr, REG_MIDH);
sensor->id.MIDL = SCCB_Read(sensor->slv_addr, REG_MIDL);
sensor->id.PID = SCCB_Read(sensor->slv_addr, REG_PID);
sensor->id.VER = SCCB_Read(sensor->slv_addr, REG_VER);
ESP_LOGD(TAG, "OV7725 Attached");
return 0;
}

View File

@ -1,31 +0,0 @@
#pragma once
#include "sensor.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int gc0308_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int gc0308_init(sensor_t *sensor);
#ifdef __cplusplus
}
#endif

View File

@ -1,25 +0,0 @@
/*
* GC0308 register definitions.
*/
#ifndef __GC0308_REG_REGS_H__
#define __GC0308_REG_REGS_H__
#define RESET_RELATED 0xfe // Bit[7]: Software reset
// Bit[6:5]: NA
// Bit[4]: CISCTL_restart_n
// Bit[3:1]: NA
// Bit[0]: page select
// 0:page0
// 1:page1
// page0:
/**
* @brief register value
*/
#endif // __GC0308_REG_REGS_H__

View File

@ -1,245 +0,0 @@
#ifndef _GC0308_SETTINGS_H_
#define _GC0308_SETTINGS_H_
#include <stdint.h>
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000 /* Array end token */
static const uint16_t gc0308_sensor_default_regs[][2] = {
{0xfe, 0x00},
{0xec, 0x20},
{0x05, 0x00},
{0x06, 0x00},
{0x07, 0x00},
{0x08, 0x00},
{0x09, 0x01},
{0x0a, 0xe8},
{0x0b, 0x02},
{0x0c, 0x88},
{0x0d, 0x02},
{0x0e, 0x02},
{0x10, 0x26},
{0x11, 0x0d},
{0x12, 0x2a},
{0x13, 0x00},
{0x14, 0x11},
{0x15, 0x0a},
{0x16, 0x05},
{0x17, 0x01},
{0x18, 0x44},
{0x19, 0x44},
{0x1a, 0x2a},
{0x1b, 0x00},
{0x1c, 0x49},
{0x1d, 0x9a},
{0x1e, 0x61},
{0x1f, 0x00}, //pad drv <=24MHz, use 0x00 is ok
{0x20, 0x7f},
{0x21, 0xfa},
{0x22, 0x57},
{0x24, 0xa2}, //YCbYCr
{0x25, 0x0f},
{0x26, 0x03}, // 0x01
{0x28, 0x00},
{0x2d, 0x0a},
{0x2f, 0x01},
{0x30, 0xf7},
{0x31, 0x50},
{0x32, 0x00},
{0x33, 0x28},
{0x34, 0x2a},
{0x35, 0x28},
{0x39, 0x04},
{0x3a, 0x20},
{0x3b, 0x20},
{0x3c, 0x00},
{0x3d, 0x00},
{0x3e, 0x00},
{0x3f, 0x00},
{0x50, 0x14}, // 0x14
{0x52, 0x41},
{0x53, 0x80},
{0x54, 0x80},
{0x55, 0x80},
{0x56, 0x80},
{0x8b, 0x20},
{0x8c, 0x20},
{0x8d, 0x20},
{0x8e, 0x14},
{0x8f, 0x10},
{0x90, 0x14},
{0x91, 0x3c},
{0x92, 0x50},
//{0x8b,0x10},
//{0x8c,0x10},
//{0x8d,0x10},
//{0x8e,0x10},
//{0x8f,0x10},
//{0x90,0x10},
//{0x91,0x3c},
//{0x92,0x50},
{0x5d, 0x12},
{0x5e, 0x1a},
{0x5f, 0x24},
{0x60, 0x07},
{0x61, 0x15},
{0x62, 0x08}, // 0x08
{0x64, 0x03}, // 0x03
{0x66, 0xe8},
{0x67, 0x86},
{0x68, 0x82},
{0x69, 0x18},
{0x6a, 0x0f},
{0x6b, 0x00},
{0x6c, 0x5f},
{0x6d, 0x8f},
{0x6e, 0x55},
{0x6f, 0x38},
{0x70, 0x15},
{0x71, 0x33},
{0x72, 0xdc},
{0x73, 0x00},
{0x74, 0x02},
{0x75, 0x3f},
{0x76, 0x02},
{0x77, 0x38}, // 0x47
{0x78, 0x88},
{0x79, 0x81},
{0x7a, 0x81},
{0x7b, 0x22},
{0x7c, 0xff},
{0x93, 0x48}, //color matrix default
{0x94, 0x02},
{0x95, 0x07},
{0x96, 0xe0},
{0x97, 0x40},
{0x98, 0xf0},
{0xb1, 0x40},
{0xb2, 0x40},
{0xb3, 0x40}, //0x40
{0xb6, 0xe0},
{0xbd, 0x38},
{0xbe, 0x36},
{0xd0, 0xCB},
{0xd1, 0x10},
{0xd2, 0x90},
{0xd3, 0x48},
{0xd5, 0xF2},
{0xd6, 0x16},
{0xdb, 0x92},
{0xdc, 0xA5},
{0xdf, 0x23},
{0xd9, 0x00},
{0xda, 0x00},
{0xe0, 0x09},
{0xed, 0x04},
{0xee, 0xa0},
{0xef, 0x40},
{0x80, 0x03},
{0x9F, 0x10},
{0xA0, 0x20},
{0xA1, 0x38},
{0xA2, 0x4e},
{0xA3, 0x63},
{0xA4, 0x76},
{0xA5, 0x87},
{0xA6, 0xa2},
{0xA7, 0xb8},
{0xA8, 0xca},
{0xA9, 0xd8},
{0xAA, 0xe3},
{0xAB, 0xeb},
{0xAC, 0xf0},
{0xAD, 0xF8},
{0xAE, 0xFd},
{0xAF, 0xFF},
{0xc0, 0x00},
{0xc1, 0x10},
{0xc2, 0x1c},
{0xc3, 0x30},
{0xc4, 0x43},
{0xc5, 0x54},
{0xc6, 0x65},
{0xc7, 0x75},
{0xc8, 0x93},
{0xc9, 0xB0},
{0xca, 0xCB},
{0xcb, 0xE6},
{0xcc, 0xFF},
{0xf0, 0x02},
{0xf1, 0x01},
{0xf2, 0x02},
{0xf3, 0x30},
{0xf7, 0x04},
{0xf8, 0x02},
{0xf9, 0x9f},
{0xfa, 0x78},
{0xfe, 0x01},
{0x00, 0xf5},
{0x02, 0x20},
{0x04, 0x10},
{0x05, 0x08},
{0x06, 0x20},
{0x08, 0x0a},
{0x0a, 0xa0},
{0x0b, 0x60},
{0x0c, 0x08},
{0x0e, 0x44},
{0x0f, 0x32},
{0x10, 0x41},
{0x11, 0x37},
{0x12, 0x22},
{0x13, 0x19},
{0x14, 0x44},
{0x15, 0x44},
{0x16, 0xc2},
{0x17, 0xA8},
{0x18, 0x18},
{0x19, 0x50},
{0x1a, 0xd8},
{0x1b, 0xf5},
{0x70, 0x40},
{0x71, 0x58},
{0x72, 0x30},
{0x73, 0x48},
{0x74, 0x20},
{0x75, 0x60},
{0x77, 0x20},
{0x78, 0x32},
{0x30, 0x03},
{0x31, 0x40},
{0x32, 0x10},
{0x33, 0xe0},
{0x34, 0xe0},
{0x35, 0x00},
{0x36, 0x80},
{0x37, 0x00},
{0x38, 0x04},
{0x39, 0x09},
{0x3a, 0x12},
{0x3b, 0x1C},
{0x3c, 0x28},
{0x3d, 0x31},
{0x3e, 0x44},
{0x3f, 0x57},
{0x40, 0x6C},
{0x41, 0x81},
{0x42, 0x94},
{0x43, 0xA7},
{0x44, 0xB8},
{0x45, 0xD6},
{0x46, 0xEE},
{0x47, 0x0d},
{0x62, 0xf7},
{0x63, 0x68},
{0x64, 0xd3},
{0x65, 0xd3},
{0x66, 0x60},
{0xfe, 0x00},
{REGLIST_TAIL, 0x00},
};
#endif

View File

@ -1,31 +0,0 @@
/*
*
* GC032A driver.
*
*/
#ifndef __GC032A_H__
#define __GC032A_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int gc032a_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int gc032a_init(sensor_t *sensor);
#endif // __GC032A_H__

View File

@ -1,82 +0,0 @@
/*
* GC032A register definitions.
*/
#ifndef __GC032A_REG_REGS_H__
#define __GC032A_REG_REGS_H__
#define SENSOR_ID_HIGH 0XF0
#define SENSOR_ID_LOW 0XF1
#define PAD_VB_HIZ_MODE 0XF2
#define SYNC_OUTPUT 0XF3
#define I2C_CONFIG 0XF4
#define PLL_MODE1 0XF7
#define PLL_MODE2 0XF8
#define CM_MODE 0XF9
#define ISP_DIV_MODE 0XFA
#define I2C_DEVICE_ID 0XFB
#define ANALOG_PWC 0XFC
#define ISP_DIV_MODE2 0XFD
#define RESET_RELATED 0XFE // Bit[7]: Software reset
// Bit[6]: cm reset
// Bit[5]: spi reset
// Bit[4]: CISCTL_restart_n
// Bit[3]: PLL_rst
// Bit[2:0]: page select
// 000:page0
// 001:page1
// 010:page2
// 011:page3
//----page0-----------------------------
#define P0_EXPOSURE_HIGH 0X03
#define P0_EXPOSURE_LOW 0X04
#define P0_HB_HIGH 0X05
#define P0_HB_LOW 0X06
#define P0_VB_HIGH 0X07
#define P0_VB_LOW 0X08
#define P0_ROW_START_HIGH 0X09
#define P0_ROW_START_LOW 0X0A
#define P0_COLUMN_START_HIGH 0X0B
#define P0_COLUMN_START_LOW 0X0C
#define P0_WINDOW_HEIGHT_HIGH 0X0D
#define P0_WINDOW_HEIGHT_LOW 0X0E
#define P0_WINDOW_WIDTH_HIGH 0X0F
#define P0_WINDOW_WIDTH_LOW 0X10
#define P0_SH_DELAY 0X11
#define P0_VS_ST 0X12
#define P0_VS_ET 0X13
#define P0_CISCTL_MODE1 0X17
#define P0_BLOCK_ENABLE_1 0X40
#define P0_AAAA_ENABLE 0X42
#define P0_SPECIAL_EFFECT 0X43
#define P0_SYNC_MODE 0X46
#define P0_GAIN_CODE 0X48
#define P0_DEBUG_MODE2 0X4C
#define P0_WIN_MODE 0X50
#define P0_OUT_WIN_Y1_HIGH 0X51
#define P0_OUT_WIN_Y1_LOW 0X52
#define P0_OUT_WIN_X1_HIGH 0X53
#define P0_OUT_WIN_X1_LOW 0X54
#define P0_OUT_WIN_HEIGHT_HIGH 0X55
#define P0_OUT_WIN_HEIGHT_LOW 0X56
#define P0_OUT_WIN_WIDTH_HIGH 0X57
#define P0_OUT_WIN_WIDTH_LOW 0X58
#define P0_GLOBAL_SATURATION 0XD0
#define P0_SATURATION_CB 0XD1
#define P0_SATURATION_CR 0XD2
#define P0_LUMA_CONTRAST 0XD3
#define P0_CONTRAST_CENTER 0XD4
#define P0_LUMA_OFFSET 0XD5
#define P0_FIXED_CB 0XDA
#define P0_FIXED_CR 0XDB
//----page3-----------------------------
#define P3_IMAGE_WIDTH_LOW 0X5B
#define P3_IMAGE_WIDTH_HIGH 0X5C
#define P3_IMAGE_HEIGHT_LOW 0X5D
#define P3_IMAGE_HEIGHT_HIGH 0X5E
#endif //__GC032A_REG_REGS_H__

View File

@ -1,401 +0,0 @@
#ifndef _GC032A_SETTINGS_H_
#define _GC032A_SETTINGS_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "gc032a_regs.h"
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000
/*
* The default register settings, as obtained from OmniVision. There
* is really no making sense of most of these - lots of "reserved" values
* and such.
*
*/
static const uint16_t gc032a_default_regs[][2] = {
/*System*/
{0xf3, 0xff},
{0xf5, 0x06},
{0xf7, 0x01},
{0xf8, 0x03},
{0xf9, 0xce},
{0xfa, 0x00},
{0xfc, 0x02},
{0xfe, 0x02},
{0x81, 0x03},
{0xfe, 0x00},
{0x77, 0x64},
{0x78, 0x40},
{0x79, 0x60},
/*ANALOG & CISCTL*/
{0xfe, 0x00},
{0x03, 0x01},
{0x04, 0xce},
{0x05, 0x01},
{0x06, 0xad},
{0x07, 0x00},
{0x08, 0x10},
{0x0a, 0x00},
{0x0c, 0x00},
{0x0d, 0x01},
{0x0e, 0xe8}, // height 488
{0x0f, 0x02},
{0x10, 0x88}, // width 648
{0x17, 0x54},
{0x19, 0x08},
{0x1a, 0x0a},
{0x1f, 0x40},
{0x20, 0x30},
{0x2e, 0x80},
{0x2f, 0x2b},
{0x30, 0x1a},
{0xfe, 0x02},
{0x03, 0x02},
{0x05, 0xd7},
{0x06, 0x60},
{0x08, 0x80},
{0x12, 0x89},
/*blk*/
{0xfe, 0x00},
{0x18, 0x02},
{0xfe, 0x02},
{0x40, 0x22},
{0x45, 0x00},
{0x46, 0x00},
{0x49, 0x20},
{0x4b, 0x3c},
{0x50, 0x20},
{0x42, 0x10},
/*isp*/
{0xfe, 0x01},
{0x0a, 0xc5},
{0x45, 0x00},
{0xfe, 0x00},
{0x40, 0xff},
{0x41, 0x25},
{0x42, 0xcf},
{0x43, 0x10},
{0x44, 0x83},
{0x46, 0x23},
{0x49, 0x03},
{0x52, 0x02},
{0x54, 0x00},
{0xfe, 0x02},
{0x22, 0xf6},
/*Shading*/
{0xfe, 0x01},
{0xc1, 0x38},
{0xc2, 0x4c},
{0xc3, 0x00},
{0xc4, 0x32},
{0xc5, 0x24},
{0xc6, 0x16},
{0xc7, 0x08},
{0xc8, 0x08},
{0xc9, 0x00},
{0xca, 0x20},
{0xdc, 0x8a},
{0xdd, 0xa0},
{0xde, 0xa6},
{0xdf, 0x75},
/*AWB*/
{0xfe, 0x01},
{0x7c, 0x09},
{0x65, 0x06},
{0x7c, 0x08},
{0x56, 0xf4},
{0x66, 0x0f},
{0x67, 0x84},
{0x6b, 0x80},
{0x6d, 0x12},
{0x6e, 0xb0},
{0x86, 0x00},
{0x87, 0x00},
{0x88, 0x00},
{0x89, 0x00},
{0x8a, 0x00},
{0x8b, 0x00},
{0x8c, 0x00},
{0x8d, 0x00},
{0x8e, 0x00},
{0x8f, 0x00},
{0x90, 0x00},
{0x91, 0x00},
{0x92, 0xf4},
{0x93, 0xd5},
{0x94, 0x50},
{0x95, 0x0f},
{0x96, 0xf4},
{0x97, 0x2d},
{0x98, 0x0f},
{0x99, 0xa6},
{0x9a, 0x2d},
{0x9b, 0x0f},
{0x9c, 0x59},
{0x9d, 0x2d},
{0x9e, 0xaa},
{0x9f, 0x67},
{0xa0, 0x59},
{0xa1, 0x00},
{0xa2, 0x00},
{0xa3, 0x0a},
{0xa4, 0x00},
{0xa5, 0x00},
{0xa6, 0xd4},
{0xa7, 0x9f},
{0xa8, 0x55},
{0xa9, 0xd4},
{0xaa, 0x9f},
{0xab, 0xac},
{0xac, 0x9f},
{0xad, 0x55},
{0xae, 0xd4},
{0xaf, 0xac},
{0xb0, 0xd4},
{0xb1, 0xa3},
{0xb2, 0x55},
{0xb3, 0xd4},
{0xb4, 0xac},
{0xb5, 0x00},
{0xb6, 0x00},
{0xb7, 0x05},
{0xb8, 0xd6},
{0xb9, 0x8c},
/*CC*/
{0xfe, 0x01},
{0xd0, 0x40},
{0xd1, 0xf8},
{0xd2, 0x00},
{0xd3, 0xfa},
{0xd4, 0x45},
{0xd5, 0x02},
{0xd6, 0x30},
{0xd7, 0xfa},
{0xd8, 0x08},
{0xd9, 0x08},
{0xda, 0x58},
{0xdb, 0x02},
{0xfe, 0x00},
/*Gamma*/
{0xfe, 0x00},
{0xba, 0x00},
{0xbb, 0x04},
{0xbc, 0x0a},
{0xbd, 0x0e},
{0xbe, 0x22},
{0xbf, 0x30},
{0xc0, 0x3d},
{0xc1, 0x4a},
{0xc2, 0x5d},
{0xc3, 0x6b},
{0xc4, 0x7a},
{0xc5, 0x85},
{0xc6, 0x90},
{0xc7, 0xa5},
{0xc8, 0xb5},
{0xc9, 0xc2},
{0xca, 0xcc},
{0xcb, 0xd5},
{0xcc, 0xde},
{0xcd, 0xea},
{0xce, 0xf5},
{0xcf, 0xff},
/*Auto Gamma*/
{0xfe, 0x00},
{0x5a, 0x08},
{0x5b, 0x0f},
{0x5c, 0x15},
{0x5d, 0x1c},
{0x5e, 0x28},
{0x5f, 0x36},
{0x60, 0x45},
{0x61, 0x51},
{0x62, 0x6a},
{0x63, 0x7d},
{0x64, 0x8d},
{0x65, 0x98},
{0x66, 0xa2},
{0x67, 0xb5},
{0x68, 0xc3},
{0x69, 0xcd},
{0x6a, 0xd4},
{0x6b, 0xdc},
{0x6c, 0xe3},
{0x6d, 0xf0},
{0x6e, 0xf9},
{0x6f, 0xff},
/*Gain*/
{0xfe, 0x00},
{0x70, 0x50},
/*AEC*/
{0xfe, 0x00},
{0x4f, 0x01},
{0xfe, 0x01},
{0x0d, 0x00},
{0x12, 0xa0},
{0x13, 0x3a},
{0x44, 0x04},
{0x1f, 0x30},
{0x20, 0x40},
{0x26, 0x9a},
{0x3e, 0x20},
{0x3f, 0x2d},
{0x40, 0x40},
{0x41, 0x5b},
{0x42, 0x82},
{0x43, 0xb7},
{0x04, 0x0a},
{0x02, 0x79},
{0x03, 0xc0},
/*measure window*/
{0xfe, 0x01},
{0xcc, 0x08},
{0xcd, 0x08},
{0xce, 0xa4},
{0xcf, 0xec},
/*DNDD*/
{0xfe, 0x00},
{0x81, 0xb8},
{0x82, 0x12},
{0x83, 0x0a},
{0x84, 0x01},
{0x86, 0x50},
{0x87, 0x18},
{0x88, 0x10},
{0x89, 0x70},
{0x8a, 0x20},
{0x8b, 0x10},
{0x8c, 0x08},
{0x8d, 0x0a},
/*Intpee*/
{0xfe, 0x00},
{0x8f, 0xaa},
{0x90, 0x9c},
{0x91, 0x52},
{0x92, 0x03},
{0x93, 0x03},
{0x94, 0x08},
{0x95, 0x44},
{0x97, 0x00},
{0x98, 0x00},
/*ASDE*/
{0xfe, 0x00},
{0xa1, 0x30},
{0xa2, 0x41},
{0xa4, 0x30},
{0xa5, 0x20},
{0xaa, 0x30},
{0xac, 0x32},
/*YCP*/
{0xfe, 0x00},
{0xd1, 0x3c},
{0xd2, 0x3c},
{0xd3, 0x38},
{0xd6, 0xf4},
{0xd7, 0x1d},
{0xdd, 0x73},
{0xde, 0x84},
/*Banding*/
{0xfe, 0x00},
{0x05, 0x01},
{0x06, 0xad},
{0x07, 0x00},
{0x08, 0x10},
{0xfe, 0x01},
{0x25, 0x00},
{0x26, 0x9a},
{0x27, 0x01},
{0x28, 0xce},
{0x29, 0x02},
{0x2a, 0x68},
{0x2b, 0x02},
{0x2c, 0x68},
{0x2d, 0x07},
{0x2e, 0xd2},
{0x2f, 0x0b},
{0x30, 0x6e},
{0x31, 0x0e},
{0x32, 0x70},
{0x33, 0x12},
{0x34, 0x0c},
{0x3c, 0x30},
/*Analog&Cisctl*/
{0xfe, 0x00},
{0x05, 0x01},
{0x06, 0xa0},
{0x07, 0x00},
{0x08, 0x20},
{0x0a, 0x78},
{0x0c, 0xa0},
{0x0d, 0x00}, //window_height [8]
{0x0e, 0xf8}, //window_height [7:0] 248
{0x0f, 0x01}, //window_width [9:8]
{0x10, 0x48}, //window_width [7:0] 328
{0x55, 0x00},
{0x56, 0xf0}, // 240
{0x57, 0x01},
{0x58, 0x40}, // 320
/*SPI*/
{0xfe, 0x03},
{0x5b, 0x40},
{0x5c, 0x01},
{0x5d, 0xf0},
{0x5e, 0x00},
/*AEC*/
{0xfe, 0x01},
{0x25, 0x00}, //step
{0x26, 0x63},
{0x27, 0x01},
{0x28, 0x29},
{0x29, 0x01},
{0x2a, 0x29},
{0x2b, 0x01},
{0x2c, 0x29},
{0x2d, 0x01},
{0x2e, 0x29},
{0x2f, 0x01},
{0x30, 0x29},
{0x31, 0x01},
{0x32, 0x29},
{0x33, 0x01},
{0x34, 0x29},
{0x3c, 0x00},
/*measure window*/
{0xfe, 0x01},
{0xcc, 0x04},
{0xcd, 0x04},
{0xce, 0x72},
{0xcf, 0x52},
{REGLIST_TAIL, 0x00},
};
#endif

View File

@ -1,27 +0,0 @@
#ifndef __GC2145_H__
#define __GC2145_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int gc2145_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int gc2145_init(sensor_t *sensor);
#endif // __GC2145_H__

View File

@ -1,85 +0,0 @@
/*
* GC2145 register definitions.
*/
#ifndef __GC2145_REG_REGS_H__
#define __GC2145_REG_REGS_H__
#define CHIP_ID_HIGH 0XF0
#define CHIP_ID_LOW 0XF1
#define PLL_MODE1 0XF7
#define PLL_MODE2 0XF8
#define CM_MODE 0XF9
#define CLK_DIV_MODE 0XFA
#define RESET_RELATED 0xfe // Bit[7]: Software reset
// Bit[6]: cm reset
// Bit[5]: mipi reset
// Bit[4]: CISCTL_restart_n
// Bit[3]: NA
// Bit[2:0]: page select
// 000:page0
// 001:page1
// 010:page2
// 011:page3
//-page0----------------
#define P0_EXPOSURE_HIGH 0X03
#define P0_EXPOSURE_LOW 0X04
#define P0_HB_HIGH 0X05
#define P0_HB_LOW 0X06
#define P0_VB_HIGH 0X07
#define P0_VB_LOW 0X08
#define P0_ROW_START_HIGH 0X09
#define P0_ROW_START_LOW 0X0A
#define P0_COL_START_HIGH 0X0B
#define P0_COL_START_LOW 0X0C
#define P0_WIN_HEIGHT_HIGH 0X0D
#define P0_WIN_HEIGHT_LOW 0X0E
#define P0_WIN_WIDTH_HIGH 0X0F
#define P0_WIN_WIDTH_LOW 0X10
#define P0_ANALOG_MODE1 0X17
#define P0_ANALOG_MODE2 0X18
#define P0_SPECIAL_EFFECT 0X83
#define P0_OUTPUT_FORMAT 0x84 // Format select
// Bit[7]:YUV420 row switch
// Bit[6]:YUV420 col switch
// Bit[7]:YUV420_legacy
// Bit[4:0]:output data mode
// 5h00 Cb Y Cr Y
// 5h01 Cr Y Cb Y
// 5h02 Y Cb Y Cr
// 5h03 Y Cr Y Cb
// 5h04 LSC bypass, C/Y
// 5h05 LSC bypass, Y/C
// 5h06 RGB 565
// 5h0f bypass 10bits
// 5h17 switch odd/even column /row to controls output Bayer pattern
// 00 RGBG
// 01 RGGB
// 10 BGGR
// 11 GBRG
// 5'h18 DNDD out mode
// 5'h19 LSC out mode
// 5;h1b EEINTP out mode
#define P0_FRAME_START 0X85
#define P0_SYNC_MODE 0X86
#define P0_MODULE_GATING 0X88
#define P0_BYPASS_MODE 0X89
#define P0_DEBUG_MODE2 0X8C
#define P0_DEBUG_MODE3 0X8D
#define P0_CROP_ENABLE 0X90
#define P0_OUT_WIN_Y1_HIGH 0X91
#define P0_OUT_WIN_Y1_LOW 0X92
#define P0_OUT_WIN_X1_HIGH 0X93
#define P0_OUT_WIN_X1_LOW 0X94
#define P0_OUT_WIN_HEIGHT_HIGH 0X95
#define P0_OUT_WIN_HEIGHT_LOW 0X96
#define P0_OUT_WIN_WIDTH_HIGH 0X97
#define P0_OUT_WIN_WIDTH_LOW 0X98
#define P0_SUBSAMPLE 0X99
#define P0_SUBSAMPLE_MODE 0X9A
#endif // __GC2145_REG_REGS_H__

View File

@ -1,719 +0,0 @@
#include <stdint.h>
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000 /* Array end token */
static const uint16_t gc2145_default_init_regs[][2] = {
{0xfe, 0xf0},
{0xfe, 0xf0},
{0xfe, 0xf0},
{0xfc, 0x06},
{0xf6, 0x00},
{0xf7, 0x1d}, //37 //17 //37 //1d//05
{0xf8, 0x83}, //87 //83 //82
{0xfa, 0x00},
{0xf9, 0xfe}, //ff
{0xfd, 0x00},
{0xc2, 0x00},
{0xf2, 0x0f},
//////////////////////////////////////////////////////
//////////////////// Analog & Cisctl ////////////////
//////////////////////////////////////////////////////
{0xfe, 0x00},
{0x03, 0x04}, //exp time
{0x04, 0x62}, //exp time
{0x05, 0x01}, //00 //hb[11:8]
{0x06, 0x3b}, //0b //hb
{0x09, 0x00}, //row start
{0x0a, 0x00}, //
{0x0b, 0x00}, //col start
{0x0c, 0x00},
{0x0d, 0x04}, //height
{0x0e, 0xc0},
{0x0f, 0x06}, //width
{0x10, 0x52},
{0x12, 0x2e}, //sh_delay 太短 YUV出图异常
{0x17, 0x14}, //CISCTL Mode1 [1:0]mirror flip
{0x18, 0x22}, //sdark mode
{0x19, 0x0f}, // AD pipe number
{0x1a, 0x01}, //AD manual switch mode
{0x1b, 0x4b}, //48 restg Width,SH width
{0x1c, 0x07}, //06 帧率快后,横条纹 //12 //TX Width,Space Width
{0x1d, 0x10}, //double reset
{0x1e, 0x88}, //90//98 //fix 竖线//Analog Mode1,TX high,Coln_r
{0x1f, 0x78}, //78 //38 //18 //Analog Mode2,txlow
{0x20, 0x03}, //07 //Analog Mode3,comv,ad_clk mode
{0x21, 0x40}, //10//20//40 //fix 灯管横条纹
{0x22, 0xa0}, //d0//f0 //a2 //Vref vpix FPN严重
{0x24, 0x1e},
{0x25, 0x01}, //col sel
{0x26, 0x10}, //Analog PGA gain1
{0x2d, 0x60}, //40//40 //txl drv mode
{0x30, 0x01}, //Analog Mode4
{0x31, 0x90}, //b0//70 // Analog Mode7 [7:5]rsgh_r灯管横条纹[4:3]isp_g
{0x33, 0x06}, //03//02//01 //EQ_hstart_width
{0x34, 0x01},
//
///////////////////////////////////////////////////
//////////////////// ISP reg //////////////////////
//////////////////////////////////////////////////////
{0x80, 0xff}, //outdoor gamma_en, GAMMA_en, CC_en, EE_en, INTP_en, DN_en, DD_en,LSC_en
{0x81, 0x24}, //26//24 //BLK dither mode, ll_y_en ,skin_en, edge SA, new_skin_mode, autogray_en,ll_gamma_en,BFF test image
{0x82, 0xfa}, //FA //auto_SA, auto_EE, auto_DN, auto_DD, auto_LSC, ABS_en, AWB_en, NA
{0x83, 0x00}, //special_effect
{0x84, 0x02}, //output format
{0x86, 0x03}, //c2 //46 //c2 //sync mode
{0x88, 0x03}, //[1]ctl_auto_gating [0]out_auto_gating
{0x89, 0x03}, //bypass disable
{0x85, 0x30}, //60//frame start cut
{0x8a, 0x00}, //ISP_quiet_mode,close aaa pclk,BLK gate mode,exception,close first pipe clock,close dndd clock,close intp clock,DIV_gatedclk_en
{0x8b, 0x00}, //[7:6]BFF_gate_mode,[5]BLK switch gain,[4]protect exp,[3:2]pipe gate mode,[1]not split sram,[0]dark current update
{0xb0, 0x55}, //60 //global gain
{0xc3, 0x00}, //[7:4]auto_exp_gamma_th1[11:8],[3:0]auto_exp_gamma_th2[11:8]
{0xc4, 0x80}, //auto_exp_gamma_th1[7:0] into
{0xc5, 0x90}, //auto_exp_gamma_th2[7:0] out //outdoor gamma
{0xc6, 0x38}, //auto_gamma_th1
{0xc7, 0x40}, //auto_gamma_th2
{0xec, 0x06}, //measure window
{0xed, 0x04},
{0xee, 0x60}, //16 col
{0xef, 0x90}, //8 row
{0xb6, 0x01}, //[0]aec en
{0x90, 0x01}, //crop
{0x91, 0x00},
{0x92, 0x00},
{0x93, 0x00},
{0x94, 0x00}, //08
{0x95, 0x04},
{0x96, 0xb0},
{0x97, 0x06},
{0x98, 0x40},
///////////////////////////////////////////////
/////////// BLK ////////////////////////
///////////////////////////////////////////////
{0x18, 0x02},
{0x40, 0x42}, //2b //27
{0x41, 0x00}, //80 //dark row sel
{0x43, 0x54}, //[7:4]BLK start not smooth [3:0]output start frame
{0x5e, 0x00}, //00//10 //18
{0x5f, 0x00}, //00//10 //18
{0x60, 0x00}, //00//10 //18
{0x61, 0x00}, //00///10 //18
{0x62, 0x00}, //00//10 //18
{0x63, 0x00}, //00//10 //18
{0x64, 0x00}, //00/10 //18
{0x65, 0x00}, //00//10 //18
{0x66, 0x20}, //1e
{0x67, 0x20}, //1e
{0x68, 0x20}, //1e
{0x69, 0x20}, //1e
{0x76, 0x00}, //0f
{0x6a, 0x00}, //06
{0x6b, 0x00}, //06
{0x6c, 0x3e}, //06
{0x6d, 0x3e}, //06
{0x6e, 0x3f}, //06
{0x6f, 0x3f}, //06
{0x70, 0x00}, //06
{0x71, 0x00}, //06 //manual offset
{0x76, 0x00}, //1f//add offset
{0x72, 0xf0}, //[7:4]BLK DD th [3:0]BLK various th
{0x7e, 0x3c}, //ndark
{0x7f, 0x00},
{0xfe, 0x02},
{0x48, 0x15},
{0x49, 0x00}, //04//04 //ASDE OFFSET SLOPE
{0x4b, 0x0b}, //ASDE y OFFSET SLOPE
{0xfe, 0x00},
///////////////////////////////////////////////
/////////// AEC ////////////////////////
///////////////////////////////////////////////
{0xfe, 0x01},
{0x01, 0x04}, //AEC X1
{0x02, 0xc0}, //AEC X2
{0x03, 0x04}, //AEC Y1
{0x04, 0x90}, //AEC Y2
{0x05, 0x30}, //20 //AEC center X1
{0x06, 0x90}, //40 //AEC center X2
{0x07, 0x20}, //30 //AEC center Y1
{0x08, 0x70}, //60 //AEC center Y2
{0x09, 0x00}, //AEC show mode
{0x0a, 0xc2}, //[7]col gain enable
{0x0b, 0x11}, //AEC every N
{0x0c, 0x10}, //AEC_mode3 center weight
{0x13, 0x40}, //2a //AEC Y target
{0x17, 0x00}, //AEC ignore mode
{0x1c, 0x11}, //
{0x1e, 0x61}, //
{0x1f, 0x30}, //40//50 //max pre gain
{0x20, 0x40}, //60//40 //max post gain
{0x22, 0x80}, //AEC outdoor THD
{0x23, 0x20}, //target_Y_low_limit
{0xfe, 0x02},
{0x0f, 0x04}, //05
{0xfe, 0x01},
{0x12, 0x35}, //35 //[5:4]group_size [3]slope_disable [2]outdoor_enable [0]histogram_enable
{0x15, 0x50}, //target_Y_high_limit
{0x10, 0x31}, //num_thd_high
{0x3e, 0x28}, //num_thd_low
{0x3f, 0xe0}, //luma_thd
{0x40, 0x20}, //luma_slope
{0x41, 0x0f}, //color_diff
{0xfe, 0x02},
{0x0f, 0x05}, //max_col_level
///////////////////////////
////// INTPEE /////////////
///////////////////////////
{0xfe, 0x02}, //page2
{0x90, 0x6c}, //ac //eeintp mode1
{0x91, 0x03}, //02 ////eeintp mode2
{0x92, 0xc8}, //44 //low criteria for direction
{0x94, 0x66},
{0x95, 0xb5},
{0x97, 0x64}, //78 ////edge effect
{0xa2, 0x11}, //fix direction
{0xfe, 0x00},
/////////////////////////////
//////// DNDD///////////////
/////////////////////////////
{0xfe, 0x02},
{0x80, 0xc1}, //c1 //[7]share mode [6]skin mode [5]is 5x5 mode [1:0]noise value select 0:2 1:2.5 2:3 3:4
{0x81, 0x08}, //
{0x82, 0x08}, //signal a 0.6
{0x83, 0x08}, //04 //signal b 2.5
{0x84, 0x0a}, //10 //05 dark_DD_TH
{0x86, 0xf0}, //a0 Y_value_dd_th2
{0x87, 0x50}, //90 Y_value_dd_th3
{0x88, 0x15}, //60 Y_value_dd_th4
{0x89, 0x50}, //80 // asde th2
{0x8a, 0x30}, //60 // asde th3
{0x8b, 0x10}, //30 // asde th4
/////////////////////////////////////////////////
///////////// ASDE ////////////////////////
/////////////////////////////////////////////////
{0xfe, 0x01}, //page 1
{0x21, 0x14}, //luma_value_div_sel(分频与0xef呈2倍关系增大10xef的值减小1倍)
//ff ef luma_value read_only
{0xfe, 0x02}, //page2
{0xa3, 0x40}, //ASDE_low_luma_value_LSC_th_H
{0xa4, 0x20}, //ASDE_low_luma_value_LSC_th_L
{0xa5, 0x40}, //80 //ASDE_LSC_gain_dec_slope_H
{0xa6, 0x80}, // 80 //ASDE_LSC_gain_dec_slope_L
//ff a7 ASDE_LSC_gain_dec //read only
{0xab, 0x40}, //50 //ASDE_low_luma_value_OT_th
{0xae, 0x0c}, //[3]EE1_effect_inc_or_dec_high,[2]EE2_effect_inc_or_dec_high,
//[1]EE1_effect_inc_or_dec_low,[0]EE2_effect_inc_or_dec_low, 1:inc 0:dec
{0xb3, 0x34}, //44 //ASDE_EE1_effect_slope_low,ASDE_EE2_effect_slope_low
{0xb4, 0x44}, //12 //ASDE_EE1_effect_slope_high,ASDE_EE2_effect_slope_high
{0xb6, 0x38}, //40//40 //ASDE_auto_saturation_dec_slope
{0xb7, 0x02}, //04 //ASDE_sub_saturation_slope
{0xb9, 0x30}, //[7:0]ASDE_auto_saturation_low_limit
{0x3c, 0x08}, //[3:0]auto gray_dec_slope
{0x3d, 0x30}, //[7:0]auto gray_dec_th
{0x4b, 0x0d}, //y offset slope
{0x4c, 0x20}, //y offset limit
{0xfe, 0x00},
//
///////////////////gamma1////////////////////
////Gamma
{0xfe, 0x02},
{0x10, 0x10},
{0x11, 0x15},
{0x12, 0x1a},
{0x13, 0x1f},
{0x14, 0x2c},
{0x15, 0x39},
{0x16, 0x45},
{0x17, 0x54},
{0x18, 0x69},
{0x19, 0x7d},
{0x1a, 0x8f},
{0x1b, 0x9d},
{0x1c, 0xa9},
{0x1d, 0xbd},
{0x1e, 0xcd},
{0x1f, 0xd9},
{0x20, 0xe3},
{0x21, 0xea},
{0x22, 0xef},
{0x23, 0xf5},
{0x24, 0xf9},
{0x25, 0xff},
/////auto gamma/////
{0xfe, 0x02},
{0x26, 0x0f},
{0x27, 0x14},
{0x28, 0x19},
{0x29, 0x1e},
{0x2a, 0x27},
{0x2b, 0x33},
{0x2c, 0x3b},
{0x2d, 0x45},
{0x2e, 0x59},
{0x2f, 0x69},
{0x30, 0x7c},
{0x31, 0x89},
{0x32, 0x98},
{0x33, 0xae},
{0x34, 0xc0},
{0x35, 0xcf},
{0x36, 0xda},
{0x37, 0xe2},
{0x38, 0xe9},
{0x39, 0xf3},
{0x3a, 0xf9},
{0x3b, 0xff},
///////////////////////////////////////////////
/////////// YCP ///////////////////////
///////////////////////////////////////////////
{0xfe, 0x02},
{0xd1, 0x30}, //32 //
{0xd2, 0x30}, //32 //
{0xd3, 0x45},
{0xdd, 0x14}, //edge sa
{0xde, 0x86}, //asde auto gray
{0xed, 0x01}, //
{0xee, 0x28},
{0xef, 0x30},
{0xd8, 0xd8}, //autogray protecy
////////////////////////////
//////// LSC 0.8///////////////
////////////////////////////
{0xfe, 0x01},
{0xa1, 0x80}, // center_row
{0xa2, 0x80}, // center_col
{0xa4, 0x00}, // sign of b1
{0xa5, 0x00}, // sign of b1
{0xa6, 0x70}, // sign of b4
{0xa7, 0x00}, // sign of b4
{0xa8, 0x77}, // sign of b22
{0xa9, 0x77}, // sign of b22
{0xaa, 0x1f}, // Q1_b1 of R
{0xab, 0x0d}, // Q1_b1 of G
{0xac, 0x19}, // Q1_b1 of B
{0xad, 0x24}, // Q2_b1 of R
{0xae, 0x0e}, // Q2_b1 of G
{0xaf, 0x1d}, // Q2_b1 of B
{0xb0, 0x12}, // Q3_b1 of R
{0xb1, 0x0c}, // Q3_b1 of G
{0xb2, 0x06}, // Q3_b1 of B
{0xb3, 0x13}, // Q4_b1 of R
{0xb4, 0x10}, // Q4_b1 of G
{0xb5, 0x0c}, // Q4_b1 of B
{0xb6, 0x6a}, // right_b2 of R
{0xb7, 0x46}, // right_b2 of G
{0xb8, 0x40}, // right_b2 of B
{0xb9, 0x0b}, // right_b4 of R
{0xba, 0x04}, // right_b4 of G
{0xbb, 0x00}, // right_b4 of B
{0xbc, 0x53}, // left_b2 of R
{0xbd, 0x37}, // left_b2 of G
{0xbe, 0x2d}, // left_b2 of B
{0xbf, 0x0a}, // left_b4 of R
{0xc0, 0x0a}, // left_b4 of G
{0xc1, 0x14}, // left_b4 of B
{0xc2, 0x34}, // up_b2 of R
{0xc3, 0x22}, // up_b2 of G
{0xc4, 0x18}, // up_b2 of B
{0xc5, 0x23}, // up_b4 of R
{0xc6, 0x0f}, // up_b4 of G
{0xc7, 0x3c}, // up_b4 of B
{0xc8, 0x20}, // down_b2 of R
{0xc9, 0x1f}, // down_b2 of G
{0xca, 0x17}, // down_b2 of B
{0xcb, 0x2d}, // down_b4 of R
{0xcc, 0x12}, // down_b4 of G
{0xcd, 0x20}, // down_b4 of B
{0xd0, 0x61}, // right_up_b22 of R
{0xd1, 0x2f}, // right_up_b22 of G
{0xd2, 0x39}, // right_up_b22 of B
{0xd3, 0x45}, // right_down_b22 of R
{0xd4, 0x2c}, // right_down_b22 of G
{0xd5, 0x21}, // right_down_b22 of B
{0xd6, 0x64}, // left_up_b22 of R
{0xd7, 0x2d}, // left_up_b22 of G
{0xd8, 0x30}, // left_up_b22 of B
{0xd9, 0x42}, // left_down_b22 of R
{0xda, 0x27}, // left_down_b22 of G
{0xdb, 0x13}, // left_down_b22 of B
{0xfe, 0x00},
/////////////////////////////////////////////////
///////////// AWB ////////////////////////
/////////////////////////////////////////////////
{0xfe, 0x01},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4b, 0x01},
{0x4f, 0x00},
{0x4c, 0x01},
{0x4d, 0x6f},
{0x4e, 0x02},
{0x4c, 0x01},
{0x4d, 0x70},
{0x4e, 0x02},
{0x4c, 0x01},
{0x4d, 0x8f},
{0x4e, 0x02},
{0x4c, 0x01},
{0x4d, 0x90},
{0x4e, 0x02}, //light
{0x4c, 0x01},
{0x4d, 0xed},
{0x4e, 0x33}, //light
{0x4c, 0x01},
{0x4d, 0xcd},
{0x4e, 0x33}, //light
{0x4c, 0x01},
{0x4d, 0xec},
{0x4e, 0x03}, //light
{0x4c, 0x01},
{0x4d, 0x6c},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0x6d},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0x6e},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0x8c},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0x8d},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0x8e},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xab},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xac},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xad},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xae},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xcb},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xcc},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xce},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xeb},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xec},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xee},
{0x4e, 0x03},
{0x4c, 0x02},
{0x4d, 0x0c},
{0x4e, 0x03},
{0x4c, 0x02},
{0x4d, 0x0d},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xea},
{0x4e, 0x03},
{0x4c, 0x01},
{0x4d, 0xaf},
{0x4e, 0x03}, //dark
{0x4c, 0x01},
{0x4d, 0xcf},
{0x4e, 0x03}, //dark
{0x4c, 0x01},
{0x4d, 0xca},
{0x4e, 0x04}, //light
{0x4c, 0x02},
{0x4d, 0x0b},
{0x4e, 0x05}, //light
{0x4c, 0x02},
{0x4d, 0xc8},
{0x4e, 0x06}, //light 100lux
{0x4c, 0x02},
{0x4d, 0xa8},
{0x4e, 0x06}, //light
{0x4c, 0x02},
{0x4d, 0xa9},
{0x4e, 0x06}, //light
{0x4c, 0x02},
{0x4d, 0x89},
{0x4e, 0x06}, //400lux
{0x4c, 0x02},
{0x4d, 0x69},
{0x4e, 0x06}, //f12
{0x4c, 0x02},
{0x4d, 0x6a},
{0x4e, 0x06}, //f12
{0x4c, 0x02},
{0x4d, 0xc7},
{0x4e, 0x07},
{0x4c, 0x02},
{0x4d, 0xe7},
{0x4e, 0x07}, //100lux
{0x4c, 0x03},
{0x4d, 0x07},
{0x4e, 0x07}, //light
{0x4c, 0x02},
{0x4d, 0xe8},
{0x4e, 0x07},
{0x4c, 0x02},
{0x4d, 0xe9},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x08},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x09},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x27},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x28},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x29},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x47},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x48},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x49},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x67},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x68},
{0x4e, 0x07},
{0x4c, 0x03},
{0x4d, 0x69},
{0x4e, 0x07},
{0x4f, 0x01},
{0xfe, 0x01},
{0x50, 0x80}, //AWB_PRE_mode
{0x51, 0xa8}, //AWB_pre_THD_min[7:0]
{0x52, 0x57}, //AWB_pre_THD_min[15:8] Dominiate luma 0.25=639c 0.22=57a8
{0x53, 0x38}, //AWB_pre_THD_min_MIX[7:0]
{0x54, 0xc7}, //AWB_pre_THD_min_MIX[15:8] Mix luma 0.5
{0x56, 0x0e}, //AWB_tone mode
{0x58, 0x08}, //AWB_C_num_sel,AWB_D_num_sel
{0x5b, 0x00}, //AWB_mix_mode
{0x5c, 0x74}, //green_num0[7:0]
{0x5d, 0x8b}, //green_num0[15:8] 0.35
{0x61, 0xd3}, //R2G_stand0
{0x62, 0xb5}, //B2G_stand0
{0x63, 0x00}, //88//a4 //AWB gray mode [7]enable
{0x65, 0x04}, //AWB margin
{0x67, 0xb2}, //R2G_stand3[7:0] FF/CWF
{0x68, 0xac}, //B2G_stand3[7:0]
{0x69, 0x00}, //R2G_stand4[9:8] B2G_stand4[9:8] R2G_stand3[9:8] B2G_stand3[9:8]
{0x6a, 0xb2}, //R2G_stand4[7:0] TL84/TL84&CWF
{0x6b, 0xac}, //B2G_stand4[7:0]
{0x6c, 0xb2}, //R2G_stand5[7:0] A
{0x6d, 0xac}, //B2G_stand5[7:0]
{0x6e, 0x40}, //AWB_skin_weight R2G_stand5[9:8] B2G_stand5[9:8]
{0x6f, 0x18}, //AWB_indoor_THD (0x21=17 caculate)
{0x73, 0x00}, //AWB_indoor_mode
{0x70, 0x10}, //AWB low luma TH
{0x71, 0xe8}, //AWB outdoor TH
{0x72, 0xc0}, //outdoor mode
{0x74, 0x01}, //[2:0]AWB skip mode 2x2,4x4,4x8,8x8
{0x75, 0x01}, //[1:0]AWB_every_N
{0x7f, 0x08}, //[3]gray world frame start
{0x76, 0x70}, //R limit
{0x77, 0x58}, //G limit
{0x78, 0xa0}, //d8 //B limit
{0xfe, 0x00},
//
//////////////////////////////////////////
/////////// CC ////////////////////////
//////////////////////////////////////////
{0xfe, 0x02},
{0xc0, 0x01}, //[5:4] CC mode [0]CCT enable
{0xC1, 0x50}, //D50/D65
{0xc2, 0xF9},
{0xc3, 0x00}, //0
{0xc4, 0xe8}, //e0
{0xc5, 0x48},
{0xc6, 0xf0},
{0xC7, 0x50},
{0xc8, 0xf2},
{0xc9, 0x00},
{0xcA, 0xE0},
{0xcB, 0x45},
{0xcC, 0xec},
{0xCd, 0x45},
{0xce, 0xf0},
{0xcf, 0x00},
{0xe3, 0xf0},
{0xe4, 0x45},
{0xe5, 0xe8},
{0xfe, 0x00},
{0xf2, 0x0f},
//////////////frame rate 50Hz
{0xfe, 0x00},
{0xf7, 0x1d},
{0xf8, 0x84},
{0xfa, 0x00},
{0x05, 0x01}, //hb
{0x06, 0x3b},
{0x07, 0x01}, //Vb
{0x08, 0x0b},
{0xfe, 0x01},
{0x25, 0x01},
{0x26, 0x32}, //step
{0x27, 0x03}, //8.15fps
{0x28, 0x96},
{0x29, 0x03}, //8.15fps
{0x2a, 0x96},
{0x2b, 0x03}, //8.15fps
{0x2c, 0x96},
{0x2d, 0x04}, //8.15fps
{0x2e, 0x62},
{0x3c, 0x00},
{0xfe, 0x00},
/////////dark sun//////
{0xfe, 0x00},
{0x18, 0x22},
{0xfe, 0x02},
{0x40, 0xbf},
{0x46, 0xcf},
{0xfe, 0x00},
{0xfe, 0x00},
{0xf7, 0x1d},
{0xf8, 0x84},
{0xfa, 0x10},
{0x05, 0x01}, //hb
{0x06, 0x18},
{0x07, 0x00}, //Vb
{0x08, 0x2e},
{0xfe, 0x01},
{0x25, 0x00},
{0x26, 0xa2}, //step
{0x27, 0x01},
{0x28, 0xe6},
{0x29, 0x01},
{0x2a, 0xe6},
{0x2b, 0x01},
{0x2c, 0xe6},
{0x2d, 0x04}, // AEC_exp_level4[12:8]
{0x2e, 0x62}, // AEC_exp_level4[7:0]
{0x3c, 0x00},
{0xfe, 0x00},
{0x09, 0x01}, //row start
{0x0a, 0xd0}, //
{0x0b, 0x02}, //col start
{0x0c, 0x70},
{0x0d, 0x01}, //height
{0x0e, 0x00},
{0x0f, 0x01}, //width
{0x10, 0x50},
{0x90, 0x01}, //crop
{0x91, 0x00},
{0x92, 0x00},
{0x93, 0x00},
{0x94, 0x00},
{0x95, 0x00},
{0x96, 0xf0},
{0x97, 0x01},
{0x98, 0x40},
{REGLIST_TAIL, 0x00},
};

View File

@ -1,34 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* NT99141 driver.
*
*/
#ifndef __NT99141_H__
#define __NT99141_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int nt99141_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int nt99141_init(sensor_t *sensor);
#endif // __NT99141_H__

View File

@ -1,211 +0,0 @@
/*
* NT99141 register definitions.
*/
#ifndef __NT99141_REG_REGS_H__
#define __NT99141_REG_REGS_H__
/* system control registers */
#define SYSTEM_CTROL0 0x3021 // Bit[7]: Software reset
// Bit[6]: Software power down
// Bit[5]: Reserved
// Bit[4]: SRB clock SYNC enable
// Bit[3]: Isolation suspend select
// Bit[2:0]: Not used
/* output format control registers */
#define FORMAT_CTRL 0x501F // Format select
// Bit[2:0]:
// 000: YUV422
// 001: RGB
// 010: Dither
// 011: RAW after DPC
// 101: RAW after CIP
/* format control registers */
#define FORMAT_CTRL00 0x4300
/* frame control registers */
#define FRAME_CTRL01 0x4201 // Control Passed Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// Bit[3:0]: Frame ON number
#define FRAME_CTRL02 0x4202 // Control Masked Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// BIT[3:0]: Frame OFF number
/* ISP top control registers */
#define PRE_ISP_TEST_SETTING_1 0x3025 // Bit[7]: Test enable
// 0: Test disable
// 1: Color bar enable
// Bit[6]: Rolling
// Bit[5]: Transparent
// Bit[4]: Square black and white
// Bit[3:2]: Color bar style
// 00: Standard 8 color bar
// 01: Gradual change at vertical mode 1
// 10: Gradual change at horizontal
// 11: Gradual change at vertical mode 2
// Bit[1:0]: Test select
// 00: Color bar
// 01: Random data
// 10: Square data
// 11: Black image
//exposure = {0x3500[3:0], 0x3501[7:0], 0x3502[7:0]} / 16 × tROW
/* AEC/AGC control functions */
#define AEC_PK_MANUAL 0x3201 // AEC Manual Mode Control
// Bit[7:6]: Reserved
// Bit[5]: Gain delay option
// Valid when 0x3503[4]=1b0
// 0: Delay one frame latch
// 1: One frame latch
// Bit[4:2]: Reserved
// Bit[1]: AGC manual
// 0: Auto enable
// 1: Manual enable
// Bit[0]: AEC manual
// 0: Auto enable
// 1: Manual enable
//gain = {0x350A[1:0], 0x350B[7:0]} / 16
/* mirror and flip registers */
#define TIMING_TC_REG20 0x3022 // Timing Control Register
// Bit[2:1]: Vertical flip enable
// 00: Normal
// 11: Vertical flip
// Bit[0]: Vertical binning enable
#define TIMING_TC_REG21 0x3022 // Timing Control Register
// Bit[5]: Compression Enable
// Bit[2:1]: Horizontal mirror enable
// 00: Normal
// 11: Horizontal mirror
// Bit[0]: Horizontal binning enable
#define CLOCK_POL_CONTROL 0x3024// Bit[5]: PCLK polarity 0: active low
// 1: active high
// Bit[3]: Gate PCLK under VSYNC
// Bit[2]: Gate PCLK under HREF
// Bit[1]: HREF polarity
// 0: active low
// 1: active high
// Bit[0] VSYNC polarity
// 0: active low
// 1: active high
#define DRIVE_CAPABILITY 0x306a // Bit[7:6]:
// 00: 1x
// 01: 2x
// 10: 3x
// 11: 4x
#define X_ADDR_ST_H 0x3800 //Bit[3:0]: X address start[11:8]
#define X_ADDR_ST_L 0x3801 //Bit[7:0]: X address start[7:0]
#define Y_ADDR_ST_H 0x3802 //Bit[2:0]: Y address start[10:8]
#define Y_ADDR_ST_L 0x3803 //Bit[7:0]: Y address start[7:0]
#define X_ADDR_END_H 0x3804 //Bit[3:0]: X address end[11:8]
#define X_ADDR_END_L 0x3805 //Bit[7:0]:
#define Y_ADDR_END_H 0x3806 //Bit[2:0]: Y address end[10:8]
#define Y_ADDR_END_L 0x3807 //Bit[7:0]:
// Size after scaling
#define X_OUTPUT_SIZE_H 0x3808 //Bit[3:0]: DVP output horizontal width[11:8]
#define X_OUTPUT_SIZE_L 0x3809 //Bit[7:0]:
#define Y_OUTPUT_SIZE_H 0x380a //Bit[2:0]: DVP output vertical height[10:8]
#define Y_OUTPUT_SIZE_L 0x380b //Bit[7:0]:
#define X_TOTAL_SIZE_H 0x380c //Bit[3:0]: Total horizontal size[11:8]
#define X_TOTAL_SIZE_L 0x380d //Bit[7:0]:
#define Y_TOTAL_SIZE_H 0x380e //Bit[7:0]: Total vertical size[15:8]
#define Y_TOTAL_SIZE_L 0x380f //Bit[7:0]:
#define X_OFFSET_H 0x3810 //Bit[3:0]: ISP horizontal offset[11:8]
#define X_OFFSET_L 0x3811 //Bit[7:0]:
#define Y_OFFSET_H 0x3812 //Bit[2:0]: ISP vertical offset[10:8]
#define Y_OFFSET_L 0x3813 //Bit[7:0]:
#define X_INCREMENT 0x3814 //Bit[7:4]: Horizontal odd subsample increment
//Bit[3:0]: Horizontal even subsample increment
#define Y_INCREMENT 0x3815 //Bit[7:4]: Vertical odd subsample increment
//Bit[3:0]: Vertical even subsample increment
// Size before scaling
//#define X_INPUT_SIZE (X_ADDR_END - X_ADDR_ST + 1 - (2 * X_OFFSET))
//#define Y_INPUT_SIZE (Y_ADDR_END - Y_ADDR_ST + 1 - (2 * Y_OFFSET))
#define ISP_CONTROL_01 0x3021 // Bit[5]: Scale enable
// 0: Disable
// 1: Enable
#define SCALE_CTRL_1 0x5601 // Bit[6:4]: HDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
// Bit[2:0]: VDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
#define SCALE_CTRL_2 0x5602 // X_SCALE High Bits
#define SCALE_CTRL_3 0x5603 // X_SCALE Low Bits
#define SCALE_CTRL_4 0x5604 // Y_SCALE High Bits
#define SCALE_CTRL_5 0x5605 // Y_SCALE Low Bits
#define SCALE_CTRL_6 0x5606 // Bit[3:0]: V Offset
#define PCLK_RATIO 0x3824 // Bit[4:0]: PCLK ratio manual
#define VFIFO_CTRL0C 0x460C // Bit[1]: PCLK manual enable
// 0: Auto
// 1: Manual by PCLK_RATIO
#define VFIFO_X_SIZE_H 0x4602
#define VFIFO_X_SIZE_L 0x4603
#define VFIFO_Y_SIZE_H 0x4604
#define VFIFO_Y_SIZE_L 0x4605
#define SC_PLLS_CTRL0 0x303a // Bit[7]: PLLS bypass
#define SC_PLLS_CTRL1 0x303b // Bit[4:0]: PLLS multiplier
#define SC_PLLS_CTRL2 0x303c // Bit[6:4]: PLLS charge pump control
// Bit[3:0]: PLLS system divider
#define SC_PLLS_CTRL3 0x303d // Bit[5:4]: PLLS pre-divider
// 00: 1
// 01: 1.5
// 10: 2
// 11: 3
// Bit[2]: PLLS root-divider - 1
// Bit[1:0]: PLLS seld5
// 00: 1
// 01: 1
// 10: 2
// 11: 2.5
#define COMPRESSION_CTRL00 0x4400 //
#define COMPRESSION_CTRL01 0x4401 //
#define COMPRESSION_CTRL02 0x4402 //
#define COMPRESSION_CTRL03 0x4403 //
#define COMPRESSION_CTRL04 0x4404 //
#define COMPRESSION_CTRL05 0x4405 //
#define COMPRESSION_CTRL06 0x4406 //
#define COMPRESSION_CTRL07 0x3401 // Bit[5:0]: QS
#define COMPRESSION_ISI_CTRL 0x4408 //
#define COMPRESSION_CTRL09 0x4409 //
#define COMPRESSION_CTRL0a 0x440a //
#define COMPRESSION_CTRL0b 0x440b //
#define COMPRESSION_CTRL0c 0x440c //
#define COMPRESSION_CTRL0d 0x440d //
#define COMPRESSION_CTRL0E 0x440e //
/**
* @brief register value
*/
#define TEST_COLOR_BAR 0x02 /* Enable Color Bar roling Test */
#define AEC_PK_MANUAL_AGC_MANUALEN 0x02 /* Enable AGC Manual enable */
#define AEC_PK_MANUAL_AEC_MANUALEN 0x01 /* Enable AEC Manual enable */
#define TIMING_TC_REG20_VFLIP 0x01 /* Vertical flip enable */
#define TIMING_TC_REG21_HMIRROR 0x02 /* Horizontal mirror enable */
#endif // __NT99141_REG_REGS_H__

View File

@ -1,825 +0,0 @@
#ifndef _NT99141_SETTINGS_H_
#define _NT99141_SETTINGS_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "nt99141_regs.h"
static const ratio_settings_t ratio_table[] = {
// mw, mh, sx, sy, ex, ey, ox, oy, tx, ty
{ 1280, 720, 0, 4, 1283, 723, 0, 4, 1660, 963 },
};
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000
static const DRAM_ATTR uint16_t sensor_default_regs[][2] = {
//initial
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x3109, 0x04},
{0x3040, 0x04},
{0x3041, 0x02},
{0x3042, 0xFF},
{0x3043, 0x08},
{0x3052, 0xE0},
{0x305F, 0x33},
{0x3100, 0x07},
{0x3106, 0x03},
{0x3105, 0x01},
{0x3108, 0x05},
{0x3110, 0x22},
{0x3111, 0x57},
{0x3112, 0x22},
{0x3113, 0x55},
{0x3114, 0x05},
{0x3135, 0x00},
{0x32F0, 0x01},
{0x3290, 0x01},
{0x3291, 0x80},
{0x3296, 0x01},
{0x3297, 0x73},
{0x3250, 0x80},
{0x3251, 0x03},
{0x3252, 0xFF},
{0x3253, 0x00},
{0x3254, 0x03},
{0x3255, 0xFF},
{0x3256, 0x00},
{0x3257, 0x50},
{0x3270, 0x00},
{0x3271, 0x0C},
{0x3272, 0x18},
{0x3273, 0x32},
{0x3274, 0x44},
{0x3275, 0x54},
{0x3276, 0x70},
{0x3277, 0x88},
{0x3278, 0x9D},
{0x3279, 0xB0},
{0x327A, 0xCF},
{0x327B, 0xE2},
{0x327C, 0xEF},
{0x327D, 0xF7},
{0x327E, 0xFF},
{0x3302, 0x00},
{0x3303, 0x40},
{0x3304, 0x00},
{0x3305, 0x96},
{0x3306, 0x00},
{0x3307, 0x29},
{0x3308, 0x07},
{0x3309, 0xBA},
{0x330A, 0x06},
{0x330B, 0xF5},
{0x330C, 0x01},
{0x330D, 0x51},
{0x330E, 0x01},
{0x330F, 0x30},
{0x3310, 0x07},
{0x3311, 0x16},
{0x3312, 0x07},
{0x3313, 0xBA},
{0x3326, 0x02},
{0x32F6, 0x0F},
{0x32F9, 0x42},
{0x32FA, 0x24},
{0x3325, 0x4A},
{0x3330, 0x00},
{0x3331, 0x0A},
{0x3332, 0xFF},
{0x3338, 0x30},
{0x3339, 0x84},
{0x333A, 0x48},
{0x333F, 0x07},
{0x3360, 0x10},
{0x3361, 0x18},
{0x3362, 0x1f},
{0x3363, 0x37},
{0x3364, 0x80},
{0x3365, 0x80},
{0x3366, 0x68},
{0x3367, 0x60},
{0x3368, 0x30},
{0x3369, 0x28},
{0x336A, 0x20},
{0x336B, 0x10},
{0x336C, 0x00},
{0x336D, 0x20},
{0x336E, 0x1C},
{0x336F, 0x18},
{0x3370, 0x10},
{0x3371, 0x38},
{0x3372, 0x3C},
{0x3373, 0x3F},
{0x3374, 0x3F},
{0x338A, 0x34},
{0x338B, 0x7F},
{0x338C, 0x10},
{0x338D, 0x23},
{0x338E, 0x7F},
{0x338F, 0x14},
{0x3375, 0x08},
{0x3376, 0x0C},
{0x3377, 0x18},
{0x3378, 0x20},
{0x3012, 0x02},
{0x3013, 0xD0},
{0x3025, 0x02}, //colorbar
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_jpeg[][2] = {
{0x32F0, 0x70}, // YUV422
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_raw[][2] = {
{0x32F0, 0x50}, // RAW
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_grayscale[][2] = {
{0x32F1, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_yuv422[][2] = {
{0x32F0, 0x00}, // YUV422
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_rgb565[][2] = {
{0x32F0, 0x01}, // RGB
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint8_t sensor_saturation_levels[9][1] = {
{0x60},//-4
{0x68},//-3
{0x70},//-2
{0x78},//-1
{0x80},//0
{0x88},//+1
{0x90},//+2
{0x98},//+3
{0xA0},//+4
};
static const DRAM_ATTR uint8_t sensor_special_effects[7][4] = {
{0x00, 0x80, 0x80, 0x01},//Normal
{0x03, 0x80, 0x80, 0x01},//Negative
{0x01, 0x80, 0x80, 0x01},//Grayscale
{0x05, 0x2A, 0xF0, 0x01},//Red Tint
{0x05, 0x60, 0x20, 0x01},//Green Tint
{0x05, 0xF0, 0x80, 0x01},//Blue Tint
{0x02, 0x80, 0x80, 0x01},//Sepia
};
// AE LEVEL
static const DRAM_ATTR uint16_t sensor_ae_level[][2] = {
// 1. [AE_Target : 0x24]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x29 },
{0x32B9, 0x1F },
{0x32BC, 0x24 },
{0x32BD, 0x27 },
{0x32BE, 0x21 },
//------------------------------------------------------------------------
// 2. [AE_Target : 0x28]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x2D },
{0x32B9, 0x23 },
{0x32BC, 0x28 },
{0x32BD, 0x2B },
{0x32BE, 0x25 },
//------------------------------------------------------------------------
// 3. [AE_Target : 0x2C]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x32 },
{0x32B9, 0x26 },
{0x32BC, 0x2C },
{0x32BD, 0x2F },
{0x32BE, 0x29 },
//------------------------------------------------------------------------
// 4, [AE_Target : 0x30]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x36 },
{0x32B9, 0x2A },
{0x32BC, 0x30 },
{0x32BD, 0x33 },
{0x32BE, 0x2D },
//------------------------------------------------------------------------
// 5. [AE_Target : 0x34]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x3B },
{0x32B9, 0x2D },
{0x32BC, 0x34 },
{0x32BD, 0x38 },
{0x32BE, 0x30 },
//------------------------------------------------------------------------
// 6. [AE_Target : 0x38]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x3F },
{0x32B9, 0x31 },
{0x32BC, 0x38 },
{0x32BD, 0x3C },
{0x32BE, 0x34 },
//------------------------------------------------------------------------
// 7. [AE_Target : 0x3D]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x44 },
{0x32B9, 0x34 },
{0x32BC, 0x3C },
{0x32BD, 0x40 },
{0x32BE, 0x38 },
//------------------------------------------------------------------------
// 8. [AE_Target : 0x40]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x48 },
{0x32B9, 0x38 },
{0x32BC, 0x40 },
{0x32BD, 0x44 },
{0x32BE, 0x3C },
//------------------------------------------------------------------------
// 9. [AE_Target : 0x44]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x32B8, 0x4D },
{0x32B9, 0x3B },
{0x32BC, 0x44 },
{0x32BD, 0x49 },
{0x32BE, 0x3F },
};
static const DRAM_ATTR uint16_t sensor_framesize_HD[][2] = {
//[JPEG_1280x720_8.18_8.18_Fps]
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x3C},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x5E},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x24},
{0x3002, 0x00},
{0x3003, 0x04},
{0x3004, 0x00},
{0x3005, 0x04},
{0x3006, 0x05},
{0x3007, 0x03},
{0x3008, 0x02},
{0x3009, 0xD3},
{0x300A, 0x06},
{0x300B, 0x7C},
{0x300C, 0x02},
{0x300D, 0xE0},
{0x300E, 0x05},
{0x300F, 0x00},
{0x3010, 0x02},
{0x3011, 0xD0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x3F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_VGA[][2] = {
//[JPEG_640x480_10.14_10.14_Fps]
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x4B},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x62},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x32E0, 0x02},
{0x32E1, 0x80},
{0x32E2, 0x01},
{0x32E3, 0xE0},
{0x32E4, 0x00},
{0x32E5, 0x80},
{0x32E6, 0x00},
{0x32E7, 0x80},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x24},
{0x3002, 0x00},
{0x3003, 0xA4},
{0x3004, 0x00},
{0x3005, 0x04},
{0x3006, 0x04},
{0x3007, 0x63},
{0x3008, 0x02},
{0x3009, 0xD3},
{0x300A, 0x05},
{0x300B, 0x3C},
{0x300C, 0x02},
{0x300D, 0xE0},
{0x300E, 0x03},
{0x300F, 0xC0},
{0x3010, 0x02},
{0x3011, 0xD0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x7F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_QVGA[][2] = {
//[JPEG_320x240_10.14_10.14_Fps]
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x4B},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x62},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x32E0, 0x01},
{0x32E1, 0x40},
{0x32E2, 0x00},
{0x32E3, 0xF0},
{0x32E4, 0x02},
{0x32E5, 0x02},
{0x32E6, 0x02},
{0x32E7, 0x03},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x24},
{0x3002, 0x00},
{0x3003, 0xA4},
{0x3004, 0x00},
{0x3005, 0x04},
{0x3006, 0x04},
{0x3007, 0x63},
{0x3008, 0x02},
{0x3009, 0xD3},
{0x300A, 0x05},
{0x300B, 0x3C},
{0x300C, 0x02},
{0x300D, 0xE0},
{0x300E, 0x03},
{0x300F, 0xC0},
{0x3010, 0x02},
{0x3011, 0xD0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x7F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_VGA_xyskip[][2] = {
// [JPEG_640x360_20.00_25.01_Fps_XY_Skip]
// Set_Device_Format = FORMAT_16_8
// SET_Device_Addr = 0x54
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60 },
{0x320A, 0xB2 },
{0x32C0, 0x64 },
{0x32C1, 0x64 },
{0x32C2, 0x64 },
{0x32C3, 0x00 },
{0x32C4, 0x20 },
{0x32C5, 0x20 },
{0x32C6, 0x20 },
{0x32C7, 0x00 },
{0x32C8, 0x62 },
{0x32C9, 0x64 },
{0x32CA, 0x84 },
{0x32CB, 0x84 },
{0x32CC, 0x84 },
{0x32CD, 0x84 },
{0x32DB, 0x68 },
{0x32F0, 0x70 },
{0x3400, 0x08 },
{0x3400, 0x00 },
{0x3401, 0x4E },
{0x3404, 0x00 },
{0x3405, 0x00 },
{0x3410, 0x00 },
{0x3200, 0x3E },
{0x3201, 0x0F },
{0x3028, 0x0F },
{0x3029, 0x00 },
{0x302A, 0x08 },
{0x3022, 0x24 },
{0x3023, 0x6C },
{0x3002, 0x00 },
{0x3003, 0x04 },
{0x3004, 0x00 },
{0x3005, 0x04 },
{0x3006, 0x05 },
{0x3007, 0x03 },
{0x3008, 0x02 },
{0x3009, 0xD3 },
{0x300A, 0x03 },
{0x300B, 0xFC },
{0x300C, 0x01 },
{0x300D, 0x88 },
{0x300E, 0x02 },
{0x300F, 0x80 },
{0x3010, 0x01 },
{0x3011, 0x68 },
{0x32B8, 0x3F },
{0x32B9, 0x31 },
{0x32BB, 0x87 },
{0x32BC, 0x38 },
{0x32BD, 0x3C },
{0x32BE, 0x34 },
{0x3201, 0x3F },
{0x3025, 0x00 }, //normal
{0x3021, 0x06 },
{0x3400, 0x01 },
{0x3060, 0x01 },
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_VGA_xskip[][2] = {
//[JPEG_640x480_Xskip_13.32_13.32_Fps]
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x62},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x68},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x32E0, 0x02},
{0x32E1, 0x80},
{0x32E2, 0x01},
{0x32E3, 0xE0},
{0x32E4, 0x00},
{0x32E5, 0x00},
{0x32E6, 0x00},
{0x32E7, 0x80},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x2C},
{0x3002, 0x00},
{0x3003, 0x04},
{0x3004, 0x00},
{0x3005, 0x04},
{0x3006, 0x05},
{0x3007, 0x03},
{0x3008, 0x02},
{0x3009, 0xD3},
{0x300A, 0x03},
{0x300B, 0xFC},
{0x300C, 0x02},
{0x300D, 0xE0},
{0x300E, 0x02},
{0x300F, 0x80},
{0x3010, 0x02},
{0x3011, 0xD0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x7F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_QVGA_xskip[][2] = {
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
//[JPEG_320x240_Xskip_13.32_13.32_Fps]
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x62},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x68},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x32E0, 0x01},
{0x32E1, 0x40},
{0x32E2, 0x00},
{0x32E3, 0xF0},
{0x32E4, 0x01},
{0x32E5, 0x01},
{0x32E6, 0x02},
{0x32E7, 0x03},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x2C},
{0x3002, 0x00},
{0x3003, 0x04},
{0x3004, 0x00},
{0x3005, 0x04},
{0x3006, 0x05},
{0x3007, 0x03},
{0x3008, 0x02},
{0x3009, 0xD3},
{0x300A, 0x03},
{0x300B, 0xFC},
{0x300C, 0x02},
{0x300D, 0xE0},
{0x300E, 0x02},
{0x300F, 0x80},
{0x3010, 0x02},
{0x3011, 0xD0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x7F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_VGA_crop[][2] = {
//[JPEG_640x480_Crop_19.77_19.77_Fps]
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x62},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x68},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x24},
{0x3002, 0x01},
{0x3003, 0x44},
{0x3004, 0x00},
{0x3005, 0x7C},
{0x3006, 0x03},
{0x3007, 0xC3},
{0x3008, 0x02},
{0x3009, 0x5B},
{0x300A, 0x03},
{0x300B, 0xFC},
{0x300C, 0x01},
{0x300D, 0xF0},
{0x300E, 0x02},
{0x300F, 0x80},
{0x3010, 0x01},
{0x3011, 0xE0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x3F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_QVGA_crop[][2] = {
//[JPEG_320x240_Crop_19.77_19.77_Fps]
{0x3021, 0x00},
{REG_DLY, 100}, // delay 100ms
{0x32BF, 0x60},
{0x32C0, 0x5A},
{0x32C1, 0x5A},
{0x32C2, 0x5A},
{0x32C3, 0x00},
{0x32C4, 0x20},
{0x32C5, 0x20},
{0x32C6, 0x20},
{0x32C7, 0x00},
{0x32C8, 0x62},
{0x32C9, 0x5A},
{0x32CA, 0x7A},
{0x32CB, 0x7A},
{0x32CC, 0x7A},
{0x32CD, 0x7A},
{0x32DB, 0x68},
{0x32F0, 0x70},
{0x3400, 0x08},
{0x3400, 0x00},
{0x3401, 0x4E},
{0x3404, 0x00},
{0x3405, 0x00},
{0x3410, 0x00},
{0x32E0, 0x01},
{0x32E1, 0x40},
{0x32E2, 0x00},
{0x32E3, 0xF0},
{0x32E4, 0x01},
{0x32E5, 0x01},
{0x32E6, 0x01},
{0x32E7, 0x02},
{0x3200, 0x3E},
{0x3201, 0x0F},
{0x3028, 0x0F},
{0x3029, 0x00},
{0x302A, 0x08},
{0x3022, 0x24},
{0x3023, 0x24},
{0x3002, 0x01},
{0x3003, 0x44},
{0x3004, 0x00},
{0x3005, 0x7C},
{0x3006, 0x03},
{0x3007, 0xC3},
{0x3008, 0x02},
{0x3009, 0x5B},
{0x300A, 0x03},
{0x300B, 0xFC},
{0x300C, 0x01},
{0x300D, 0xF0},
{0x300E, 0x02},
{0x300F, 0x80},
{0x3010, 0x01},
{0x3011, 0xE0},
{0x32B8, 0x3F},
{0x32B9, 0x31},
{0x32BB, 0x87},
{0x32BC, 0x38},
{0x32BD, 0x3C},
{0x32BE, 0x34},
{0x3201, 0x7F},
{0x3021, 0x06},
{0x3025, 0x00}, //normal
{0x3400, 0x01},
{0x3060, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
#endif

View File

@ -1,32 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV2640 driver.
*
*/
#ifndef __OV2640_H__
#define __OV2640_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int ov2640_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int ov2640_init(sensor_t *sensor);
#endif // __OV2640_H__

View File

@ -1,216 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV2640 register definitions.
*/
#ifndef __REG_REGS_H__
#define __REG_REGS_H__
/* DSP register bank FF=0x00*/
#define R_BYPASS 0x05
#define QS 0x44
#define CTRLI 0x50
#define HSIZE 0x51
#define VSIZE 0x52
#define XOFFL 0x53
#define YOFFL 0x54
#define VHYX 0x55
#define DPRP 0x56
#define TEST 0x57
#define ZMOW 0x5A
#define ZMOH 0x5B
#define ZMHH 0x5C
#define BPADDR 0x7C
#define BPDATA 0x7D
#define CTRL2 0x86
#define CTRL3 0x87
#define SIZEL 0x8C
#define HSIZE8 0xC0
#define VSIZE8 0xC1
#define CTRL0 0xC2
#define CTRL1 0xC3
#define R_DVP_SP 0xD3
#define IMAGE_MODE 0xDA
#define RESET 0xE0
#define MS_SP 0xF0
#define SS_ID 0xF7
#define SS_CTRL 0xF7
#define MC_BIST 0xF9
#define MC_AL 0xFA
#define MC_AH 0xFB
#define MC_D 0xFC
#define P_CMD 0xFD
#define P_STATUS 0xFE
#define BANK_SEL 0xFF
#define CTRLI_LP_DP 0x80
#define CTRLI_ROUND 0x40
#define CTRL0_AEC_EN 0x80
#define CTRL0_AEC_SEL 0x40
#define CTRL0_STAT_SEL 0x20
#define CTRL0_VFIRST 0x10
#define CTRL0_YUV422 0x08
#define CTRL0_YUV_EN 0x04
#define CTRL0_RGB_EN 0x02
#define CTRL0_RAW_EN 0x01
#define CTRL2_DCW_EN 0x20
#define CTRL2_SDE_EN 0x10
#define CTRL2_UV_ADJ_EN 0x08
#define CTRL2_UV_AVG_EN 0x04
#define CTRL2_CMX_EN 0x01
#define CTRL3_BPC_EN 0x80
#define CTRL3_WPC_EN 0x40
#define R_DVP_SP_AUTO_MODE 0x80
#define R_BYPASS_DSP_EN 0x00
#define R_BYPASS_DSP_BYPAS 0x01
#define IMAGE_MODE_Y8_DVP_EN 0x40
#define IMAGE_MODE_JPEG_EN 0x10
#define IMAGE_MODE_YUV422 0x00
#define IMAGE_MODE_RAW10 0x04
#define IMAGE_MODE_RGB565 0x08
#define IMAGE_MODE_HREF_VSYNC 0x02
#define IMAGE_MODE_LBYTE_FIRST 0x01
#define RESET_MICROC 0x40
#define RESET_SCCB 0x20
#define RESET_JPEG 0x10
#define RESET_DVP 0x04
#define RESET_IPU 0x02
#define RESET_CIF 0x01
#define MC_BIST_RESET 0x80
#define MC_BIST_BOOT_ROM_SEL 0x40
#define MC_BIST_12KB_SEL 0x20
#define MC_BIST_12KB_MASK 0x30
#define MC_BIST_512KB_SEL 0x08
#define MC_BIST_512KB_MASK 0x0C
#define MC_BIST_BUSY_BIT_R 0x02
#define MC_BIST_MC_RES_ONE_SH_W 0x02
#define MC_BIST_LAUNCH 0x01
typedef enum {
BANK_DSP, BANK_SENSOR, BANK_MAX
} ov2640_bank_t;
/* Sensor register bank FF=0x01*/
#define GAIN 0x00
#define COM1 0x03
#define REG04 0x04
#define REG08 0x08
#define COM2 0x09
#define REG_PID 0x0A
#define REG_VER 0x0B
#define COM3 0x0C
#define COM4 0x0D
#define AEC 0x10
#define CLKRC 0x11
#define COM7 0x12
#define COM8 0x13
#define COM9 0x14 /* AGC gain ceiling */
#define COM10 0x15
#define HSTART 0x17
#define HSTOP 0x18
#define VSTART 0x19
#define VSTOP 0x1A
#define REG_MIDH 0x1C
#define REG_MIDL 0x1D
#define AEW 0x24
#define AEB 0x25
#define VV 0x26
#define REG2A 0x2A
#define FRARL 0x2B
#define ADDVSL 0x2D
#define ADDVSH 0x2E
#define YAVG 0x2F
#define HSDY 0x30
#define HEDY 0x31
#define REG32 0x32
#define ARCOM2 0x34
#define REG45 0x45
#define FLL 0x46
#define FLH 0x47
#define COM19 0x48
#define ZOOMS 0x49
#define COM22 0x4B
#define COM25 0x4E
#define BD50 0x4F
#define BD60 0x50
#define REG5D 0x5D
#define REG5E 0x5E
#define REG5F 0x5F
#define REG60 0x60
#define HISTO_LOW 0x61
#define HISTO_HIGH 0x62
#define REG04_DEFAULT 0x28
#define REG04_HFLIP_IMG 0x80
#define REG04_VFLIP_IMG 0x40
#define REG04_VREF_EN 0x10
#define REG04_HREF_EN 0x08
#define REG04_SET(x) (REG04_DEFAULT|x)
#define COM2_STDBY 0x10
#define COM2_OUT_DRIVE_1x 0x00
#define COM2_OUT_DRIVE_2x 0x01
#define COM2_OUT_DRIVE_3x 0x02
#define COM2_OUT_DRIVE_4x 0x03
#define COM3_DEFAULT 0x38
#define COM3_BAND_50Hz 0x04
#define COM3_BAND_60Hz 0x00
#define COM3_BAND_AUTO 0x02
#define COM3_BAND_SET(x) (COM3_DEFAULT|x)
#define COM7_SRST 0x80
#define COM7_RES_UXGA 0x00 /* UXGA */
#define COM7_RES_SVGA 0x40 /* SVGA */
#define COM7_RES_CIF 0x20 /* CIF */
#define COM7_ZOOM_EN 0x04 /* Enable Zoom */
#define COM7_COLOR_BAR 0x02 /* Enable Color Bar Test */
#define COM8_DEFAULT 0xC0
#define COM8_BNDF_EN 0x20 /* Enable Banding filter */
#define COM8_AGC_EN 0x04 /* AGC Auto/Manual control selection */
#define COM8_AEC_EN 0x01 /* Auto/Manual Exposure control */
#define COM8_SET(x) (COM8_DEFAULT|x)
#define COM9_DEFAULT 0x08
#define COM9_AGC_GAIN_2x 0x00 /* AGC: 2x */
#define COM9_AGC_GAIN_4x 0x01 /* AGC: 4x */
#define COM9_AGC_GAIN_8x 0x02 /* AGC: 8x */
#define COM9_AGC_GAIN_16x 0x03 /* AGC: 16x */
#define COM9_AGC_GAIN_32x 0x04 /* AGC: 32x */
#define COM9_AGC_GAIN_64x 0x05 /* AGC: 64x */
#define COM9_AGC_GAIN_128x 0x06 /* AGC: 128x */
#define COM9_AGC_SET(x) (COM9_DEFAULT|(x<<5))
#define COM10_HREF_EN 0x80 /* HSYNC changes to HREF */
#define COM10_HSYNC_EN 0x40 /* HREF changes to HSYNC */
#define COM10_PCLK_FREE 0x20 /* PCLK output option: free running PCLK */
#define COM10_PCLK_EDGE 0x10 /* Data is updated at the rising edge of PCLK */
#define COM10_HREF_NEG 0x08 /* HREF negative */
#define COM10_VSYNC_NEG 0x02 /* VSYNC negative */
#define COM10_HSYNC_NEG 0x01 /* HSYNC negative */
#define CTRL1_AWB 0x08 /* Enable AWB */
#define VV_AGC_TH_SET(h,l) ((h<<4)|(l&0x0F))
#define REG32_UXGA 0x36
#define REG32_SVGA 0x09
#define REG32_CIF 0x89
#define CLKRC_2X 0x80
#define CLKRC_2X_UXGA (0x01 | CLKRC_2X)
#define CLKRC_2X_SVGA CLKRC_2X
#define CLKRC_2X_CIF CLKRC_2X
#endif //__REG_REGS_H__

View File

@ -1,485 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _OV2640_SETTINGS_H_
#define _OV2640_SETTINGS_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "ov2640_regs.h"
typedef enum {
OV2640_MODE_UXGA, OV2640_MODE_SVGA, OV2640_MODE_CIF, OV2640_MODE_MAX
} ov2640_sensor_mode_t;
typedef struct {
union {
struct {
uint8_t pclk_div:7;
uint8_t pclk_auto:1;
};
uint8_t pclk;
};
union {
struct {
uint8_t clk_div:6;
uint8_t reserved:1;
uint8_t clk_2x:1;
};
uint8_t clk;
};
} ov2640_clk_t;
typedef struct {
uint16_t offset_x;
uint16_t offset_y;
uint16_t max_x;
uint16_t max_y;
} ov2640_ratio_settings_t;
static const DRAM_ATTR ov2640_ratio_settings_t ratio_table[] = {
// ox, oy, mx, my
{ 0, 0, 1600, 1200 }, //4x3
{ 8, 72, 1584, 1056 }, //3x2
{ 0, 100, 1600, 1000 }, //16x10
{ 0, 120, 1600, 960 }, //5x3
{ 0, 150, 1600, 900 }, //16x9
{ 2, 258, 1596, 684 }, //21x9
{ 50, 0, 1500, 1200 }, //5x4
{ 200, 0, 1200, 1200 }, //1x1
{ 462, 0, 676, 1200 } //9x16
};
// 30fps@24MHz
const DRAM_ATTR uint8_t ov2640_settings_cif[][2] = {
{BANK_SEL, BANK_DSP},
{0x2c, 0xff},
{0x2e, 0xdf},
{BANK_SEL, BANK_SENSOR},
{0x3c, 0x32},
{CLKRC, 0x01},
{COM2, COM2_OUT_DRIVE_3x},
{REG04, REG04_DEFAULT},
{COM8, COM8_DEFAULT | COM8_BNDF_EN | COM8_AGC_EN | COM8_AEC_EN},
{COM9, COM9_AGC_SET(COM9_AGC_GAIN_8x)},
{0x2c, 0x0c},
{0x33, 0x78},
{0x3a, 0x33},
{0x3b, 0xfB},
{0x3e, 0x00},
{0x43, 0x11},
{0x16, 0x10},
{0x39, 0x92},
{0x35, 0xda},
{0x22, 0x1a},
{0x37, 0xc3},
{0x23, 0x00},
{ARCOM2, 0xc0},
{0x06, 0x88},
{0x07, 0xc0},
{COM4, 0x87},
{0x0e, 0x41},
{0x4c, 0x00},
{0x4a, 0x81},
{0x21, 0x99},
{AEW, 0x40},
{AEB, 0x38},
{VV, VV_AGC_TH_SET(8,2)},
{0x5c, 0x00},
{0x63, 0x00},
{HISTO_LOW, 0x70},
{HISTO_HIGH, 0x80},
{0x7c, 0x05},
{0x20, 0x80},
{0x28, 0x30},
{0x6c, 0x00},
{0x6d, 0x80},
{0x6e, 0x00},
{0x70, 0x02},
{0x71, 0x94},
{0x73, 0xc1},
{0x3d, 0x34},
{0x5a, 0x57},
{BD50, 0xbb},
{BD60, 0x9c},
{COM7, COM7_RES_CIF},
{HSTART, 0x11},
{HSTOP, 0x43},
{VSTART, 0x00},
{VSTOP, 0x25},
{REG32, 0x89},
{0x37, 0xc0},
{BD50, 0xca},
{BD60, 0xa8},
{0x6d, 0x00},
{0x3d, 0x38},
{BANK_SEL, BANK_DSP},
{0xe5, 0x7f},
{MC_BIST, MC_BIST_RESET | MC_BIST_BOOT_ROM_SEL},
{0x41, 0x24},
{RESET, RESET_JPEG | RESET_DVP},
{0x76, 0xff},
{0x33, 0xa0},
{0x42, 0x20},
{0x43, 0x18},
{0x4c, 0x00},
{CTRL3, CTRL3_WPC_EN | 0x10 },
{0x88, 0x3f},
{0xd7, 0x03},
{0xd9, 0x10},
{R_DVP_SP, R_DVP_SP_AUTO_MODE | 0x02},
{0xc8, 0x08},
{0xc9, 0x80},
{BPADDR, 0x00},
{BPDATA, 0x00},
{BPADDR, 0x03},
{BPDATA, 0x48},
{BPDATA, 0x48},
{BPADDR, 0x08},
{BPDATA, 0x20},
{BPDATA, 0x10},
{BPDATA, 0x0e},
{0x90, 0x00},
{0x91, 0x0e},
{0x91, 0x1a},
{0x91, 0x31},
{0x91, 0x5a},
{0x91, 0x69},
{0x91, 0x75},
{0x91, 0x7e},
{0x91, 0x88},
{0x91, 0x8f},
{0x91, 0x96},
{0x91, 0xa3},
{0x91, 0xaf},
{0x91, 0xc4},
{0x91, 0xd7},
{0x91, 0xe8},
{0x91, 0x20},
{0x92, 0x00},
{0x93, 0x06},
{0x93, 0xe3},
{0x93, 0x05},
{0x93, 0x05},
{0x93, 0x00},
{0x93, 0x04},
{0x93, 0x00},
{0x93, 0x00},
{0x93, 0x00},
{0x93, 0x00},
{0x93, 0x00},
{0x93, 0x00},
{0x93, 0x00},
{0x96, 0x00},
{0x97, 0x08},
{0x97, 0x19},
{0x97, 0x02},
{0x97, 0x0c},
{0x97, 0x24},
{0x97, 0x30},
{0x97, 0x28},
{0x97, 0x26},
{0x97, 0x02},
{0x97, 0x98},
{0x97, 0x80},
{0x97, 0x00},
{0x97, 0x00},
{0xa4, 0x00},
{0xa8, 0x00},
{0xc5, 0x11},
{0xc6, 0x51},
{0xbf, 0x80},
{0xc7, 0x10},
{0xb6, 0x66},
{0xb8, 0xA5},
{0xb7, 0x64},
{0xb9, 0x7C},
{0xb3, 0xaf},
{0xb4, 0x97},
{0xb5, 0xFF},
{0xb0, 0xC5},
{0xb1, 0x94},
{0xb2, 0x0f},
{0xc4, 0x5c},
{CTRL1, 0xfd},
{0x7f, 0x00},
{0xe5, 0x1f},
{0xe1, 0x67},
{0xdd, 0x7f},
{IMAGE_MODE, 0x00},
{RESET, 0x00},
{R_BYPASS, R_BYPASS_DSP_EN},
{0, 0}
};
const DRAM_ATTR uint8_t ov2640_settings_to_cif[][2] = {
{BANK_SEL, BANK_SENSOR},
{COM7, COM7_RES_CIF},
//Set the sensor output window
{COM1, 0x0A},
{REG32, REG32_CIF},
{HSTART, 0x11},
{HSTOP, 0x43},
{VSTART, 0x00},
{VSTOP, 0x25},
//{CLKRC, 0x00},
{BD50, 0xca},
{BD60, 0xa8},
{0x5a, 0x23},
{0x6d, 0x00},
{0x3d, 0x38},
{0x39, 0x92},
{0x35, 0xda},
{0x22, 0x1a},
{0x37, 0xc3},
{0x23, 0x00},
{ARCOM2, 0xc0},
{0x06, 0x88},
{0x07, 0xc0},
{COM4, 0x87},
{0x0e, 0x41},
{0x4c, 0x00},
{BANK_SEL, BANK_DSP},
{RESET, RESET_DVP},
//Set the sensor resolution (UXGA, SVGA, CIF)
{HSIZE8, 0x32},
{VSIZE8, 0x25},
{SIZEL, 0x00},
//Set the image window size >= output size
{HSIZE, 0x64},
{VSIZE, 0x4a},
{XOFFL, 0x00},
{YOFFL, 0x00},
{VHYX, 0x00},
{TEST, 0x00},
{CTRL2, CTRL2_DCW_EN | 0x1D},
{CTRLI, CTRLI_LP_DP | 0x00},
//{R_DVP_SP, 0x08},
{0, 0}
};
const DRAM_ATTR uint8_t ov2640_settings_to_svga[][2] = {
{BANK_SEL, BANK_SENSOR},
{COM7, COM7_RES_SVGA},
//Set the sensor output window
{COM1, 0x0A},
{REG32, REG32_SVGA},
{HSTART, 0x11},
{HSTOP, 0x43},
{VSTART, 0x00},
{VSTOP, 0x4b},
//{CLKRC, 0x00},
{0x37, 0xc0},
{BD50, 0xca},
{BD60, 0xa8},
{0x5a, 0x23},
{0x6d, 0x00},
{0x3d, 0x38},
{0x39, 0x92},
{0x35, 0xda},
{0x22, 0x1a},
{0x37, 0xc3},
{0x23, 0x00},
{ARCOM2, 0xc0},
{0x06, 0x88},
{0x07, 0xc0},
{COM4, 0x87},
{0x0e, 0x41},
{0x42, 0x03},
{0x4c, 0x00},
{BANK_SEL, BANK_DSP},
{RESET, RESET_DVP},
//Set the sensor resolution (UXGA, SVGA, CIF)
{HSIZE8, 0x64},
{VSIZE8, 0x4B},
{SIZEL, 0x00},
//Set the image window size >= output size
{HSIZE, 0xC8},
{VSIZE, 0x96},
{XOFFL, 0x00},
{YOFFL, 0x00},
{VHYX, 0x00},
{TEST, 0x00},
{CTRL2, CTRL2_DCW_EN | 0x1D},
{CTRLI, CTRLI_LP_DP | 0x00},
//{R_DVP_SP, 0x08},
{0, 0}
};
const DRAM_ATTR uint8_t ov2640_settings_to_uxga[][2] = {
{BANK_SEL, BANK_SENSOR},
{COM7, COM7_RES_UXGA},
//Set the sensor output window
{COM1, 0x0F},
{REG32, REG32_UXGA},
{HSTART, 0x11},
{HSTOP, 0x75},
{VSTART, 0x01},
{VSTOP, 0x97},
//{CLKRC, 0x00},
{0x3d, 0x34},
{BD50, 0xbb},
{BD60, 0x9c},
{0x5a, 0x57},
{0x6d, 0x80},
{0x39, 0x82},
{0x23, 0x00},
{0x07, 0xc0},
{0x4c, 0x00},
{0x35, 0x88},
{0x22, 0x0a},
{0x37, 0x40},
{ARCOM2, 0xa0},
{0x06, 0x02},
{COM4, 0xb7},
{0x0e, 0x01},
{0x42, 0x83},
{BANK_SEL, BANK_DSP},
{RESET, RESET_DVP},
//Set the sensor resolution (UXGA, SVGA, CIF)
{HSIZE8, 0xc8},
{VSIZE8, 0x96},
{SIZEL, 0x00},
//Set the image window size >= output size
{HSIZE, 0x90},
{VSIZE, 0x2c},
{XOFFL, 0x00},
{YOFFL, 0x00},
{VHYX, 0x88},
{TEST, 0x00},
{CTRL2, CTRL2_DCW_EN | 0x1d},
{CTRLI, 0x00},
//{R_DVP_SP, 0x06},
{0, 0}
};
const DRAM_ATTR uint8_t ov2640_settings_jpeg3[][2] = {
{BANK_SEL, BANK_DSP},
{RESET, RESET_JPEG | RESET_DVP},
{IMAGE_MODE, IMAGE_MODE_JPEG_EN | IMAGE_MODE_HREF_VSYNC},
{0xD7, 0x03},
{0xE1, 0x77},
{0xE5, 0x1F},
{0xD9, 0x10},
{0xDF, 0x80},
{0x33, 0x80},
{0x3C, 0x10},
{0xEB, 0x30},
{0xDD, 0x7F},
{RESET, 0x00},
{0, 0}
};
static const uint8_t ov2640_settings_yuv422[][2] = {
{BANK_SEL, BANK_DSP},
{RESET, RESET_DVP},
{IMAGE_MODE, IMAGE_MODE_YUV422},
{0xD7, 0x01},
{0xE1, 0x67},
{RESET, 0x00},
{0, 0},
};
static const uint8_t ov2640_settings_rgb565[][2] = {
{BANK_SEL, BANK_DSP},
{RESET, RESET_DVP},
{IMAGE_MODE, IMAGE_MODE_RGB565},
{0xD7, 0x03},
{0xE1, 0x77},
{RESET, 0x00},
{0, 0},
};
#define NUM_BRIGHTNESS_LEVELS (5)
static const uint8_t brightness_regs[NUM_BRIGHTNESS_LEVELS + 1][5] = {
{BPADDR, BPDATA, BPADDR, BPDATA, BPDATA },
{0x00, 0x04, 0x09, 0x00, 0x00 }, /* -2 */
{0x00, 0x04, 0x09, 0x10, 0x00 }, /* -1 */
{0x00, 0x04, 0x09, 0x20, 0x00 }, /* 0 */
{0x00, 0x04, 0x09, 0x30, 0x00 }, /* +1 */
{0x00, 0x04, 0x09, 0x40, 0x00 }, /* +2 */
};
#define NUM_CONTRAST_LEVELS (5)
static const uint8_t contrast_regs[NUM_CONTRAST_LEVELS + 1][7] = {
{BPADDR, BPDATA, BPADDR, BPDATA, BPDATA, BPDATA, BPDATA },
{0x00, 0x04, 0x07, 0x20, 0x18, 0x34, 0x06 }, /* -2 */
{0x00, 0x04, 0x07, 0x20, 0x1c, 0x2a, 0x06 }, /* -1 */
{0x00, 0x04, 0x07, 0x20, 0x20, 0x20, 0x06 }, /* 0 */
{0x00, 0x04, 0x07, 0x20, 0x24, 0x16, 0x06 }, /* +1 */
{0x00, 0x04, 0x07, 0x20, 0x28, 0x0c, 0x06 }, /* +2 */
};
#define NUM_SATURATION_LEVELS (5)
static const uint8_t saturation_regs[NUM_SATURATION_LEVELS + 1][5] = {
{BPADDR, BPDATA, BPADDR, BPDATA, BPDATA },
{0x00, 0x02, 0x03, 0x28, 0x28 }, /* -2 */
{0x00, 0x02, 0x03, 0x38, 0x38 }, /* -1 */
{0x00, 0x02, 0x03, 0x48, 0x48 }, /* 0 */
{0x00, 0x02, 0x03, 0x58, 0x58 }, /* +1 */
{0x00, 0x02, 0x03, 0x68, 0x68 }, /* +2 */
};
#define NUM_SPECIAL_EFFECTS (7)
static const uint8_t special_effects_regs[NUM_SPECIAL_EFFECTS + 1][5] = {
{BPADDR, BPDATA, BPADDR, BPDATA, BPDATA },
{0x00, 0X00, 0x05, 0X80, 0X80 }, /* no effect */
{0x00, 0X40, 0x05, 0X80, 0X80 }, /* negative */
{0x00, 0X18, 0x05, 0X80, 0X80 }, /* black and white */
{0x00, 0X18, 0x05, 0X40, 0XC0 }, /* reddish */
{0x00, 0X18, 0x05, 0X40, 0X40 }, /* greenish */
{0x00, 0X18, 0x05, 0XA0, 0X40 }, /* blue */
{0x00, 0X18, 0x05, 0X40, 0XA6 }, /* retro */
};
#define NUM_WB_MODES (4)
static const uint8_t wb_modes_regs[NUM_WB_MODES + 1][3] = {
{0XCC, 0XCD, 0XCE },
{0x5E, 0X41, 0x54 }, /* sunny */
{0x65, 0X41, 0x4F }, /* cloudy */
{0x52, 0X41, 0x66 }, /* office */
{0x42, 0X3F, 0x71 }, /* home */
};
#define NUM_AE_LEVELS (5)
static const uint8_t ae_levels_regs[NUM_AE_LEVELS + 1][3] = {
{ AEW, AEB, VV },
{0x20, 0X18, 0x60 },
{0x34, 0X1C, 0x00 },
{0x3E, 0X38, 0x81 },
{0x48, 0X40, 0x81 },
{0x58, 0X50, 0x92 },
};
const uint8_t agc_gain_tbl[31] = {
0x00, 0x10, 0x18, 0x30, 0x34, 0x38, 0x3C, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7A, 0x7C, 0x7E, 0xF0,
0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
#endif /* _OV2640_SETTINGS_H_ */

View File

@ -1,34 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV3660 driver.
*
*/
#ifndef __OV3660_H__
#define __OV3660_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int ov3660_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int ov3660_init(sensor_t *sensor);
#endif // __OV3660_H__

View File

@ -1,211 +0,0 @@
/*
* OV3660 register definitions.
*/
#ifndef __OV3660_REG_REGS_H__
#define __OV3660_REG_REGS_H__
/* system control registers */
#define SYSTEM_CTROL0 0x3008 // Bit[7]: Software reset
// Bit[6]: Software power down
// Bit[5]: Reserved
// Bit[4]: SRB clock SYNC enable
// Bit[3]: Isolation suspend select
// Bit[2:0]: Not used
/* output format control registers */
#define FORMAT_CTRL 0x501F // Format select
// Bit[2:0]:
// 000: YUV422
// 001: RGB
// 010: Dither
// 011: RAW after DPC
// 101: RAW after CIP
/* format control registers */
#define FORMAT_CTRL00 0x4300
/* frame control registers */
#define FRAME_CTRL01 0x4201 // Control Passed Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// Bit[3:0]: Frame ON number
#define FRAME_CTRL02 0x4202 // Control Masked Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// BIT[3:0]: Frame OFF number
/* ISP top control registers */
#define PRE_ISP_TEST_SETTING_1 0x503D // Bit[7]: Test enable
// 0: Test disable
// 1: Color bar enable
// Bit[6]: Rolling
// Bit[5]: Transparent
// Bit[4]: Square black and white
// Bit[3:2]: Color bar style
// 00: Standard 8 color bar
// 01: Gradual change at vertical mode 1
// 10: Gradual change at horizontal
// 11: Gradual change at vertical mode 2
// Bit[1:0]: Test select
// 00: Color bar
// 01: Random data
// 10: Square data
// 11: Black image
//exposure = {0x3500[3:0], 0x3501[7:0], 0x3502[7:0]} / 16 × tROW
/* AEC/AGC control functions */
#define AEC_PK_MANUAL 0x3503 // AEC Manual Mode Control
// Bit[7:6]: Reserved
// Bit[5]: Gain delay option
// Valid when 0x3503[4]=1b0
// 0: Delay one frame latch
// 1: One frame latch
// Bit[4:2]: Reserved
// Bit[1]: AGC manual
// 0: Auto enable
// 1: Manual enable
// Bit[0]: AEC manual
// 0: Auto enable
// 1: Manual enable
//gain = {0x350A[1:0], 0x350B[7:0]} / 16
/* mirror and flip registers */
#define TIMING_TC_REG20 0x3820 // Timing Control Register
// Bit[2:1]: Vertical flip enable
// 00: Normal
// 11: Vertical flip
// Bit[0]: Vertical binning enable
#define TIMING_TC_REG21 0x3821 // Timing Control Register
// Bit[5]: Compression Enable
// Bit[2:1]: Horizontal mirror enable
// 00: Normal
// 11: Horizontal mirror
// Bit[0]: Horizontal binning enable
#define CLOCK_POL_CONTROL 0x4740// Bit[5]: PCLK polarity 0: active low
// 1: active high
// Bit[3]: Gate PCLK under VSYNC
// Bit[2]: Gate PCLK under HREF
// Bit[1]: HREF polarity
// 0: active low
// 1: active high
// Bit[0] VSYNC polarity
// 0: active low
// 1: active high
#define DRIVE_CAPABILITY 0x302c // Bit[7:6]:
// 00: 1x
// 01: 2x
// 10: 3x
// 11: 4x
#define X_ADDR_ST_H 0x3800 //Bit[3:0]: X address start[11:8]
#define X_ADDR_ST_L 0x3801 //Bit[7:0]: X address start[7:0]
#define Y_ADDR_ST_H 0x3802 //Bit[2:0]: Y address start[10:8]
#define Y_ADDR_ST_L 0x3803 //Bit[7:0]: Y address start[7:0]
#define X_ADDR_END_H 0x3804 //Bit[3:0]: X address end[11:8]
#define X_ADDR_END_L 0x3805 //Bit[7:0]:
#define Y_ADDR_END_H 0x3806 //Bit[2:0]: Y address end[10:8]
#define Y_ADDR_END_L 0x3807 //Bit[7:0]:
// Size after scaling
#define X_OUTPUT_SIZE_H 0x3808 //Bit[3:0]: DVP output horizontal width[11:8]
#define X_OUTPUT_SIZE_L 0x3809 //Bit[7:0]:
#define Y_OUTPUT_SIZE_H 0x380a //Bit[2:0]: DVP output vertical height[10:8]
#define Y_OUTPUT_SIZE_L 0x380b //Bit[7:0]:
#define X_TOTAL_SIZE_H 0x380c //Bit[3:0]: Total horizontal size[11:8]
#define X_TOTAL_SIZE_L 0x380d //Bit[7:0]:
#define Y_TOTAL_SIZE_H 0x380e //Bit[7:0]: Total vertical size[15:8]
#define Y_TOTAL_SIZE_L 0x380f //Bit[7:0]:
#define X_OFFSET_H 0x3810 //Bit[3:0]: ISP horizontal offset[11:8]
#define X_OFFSET_L 0x3811 //Bit[7:0]:
#define Y_OFFSET_H 0x3812 //Bit[2:0]: ISP vertical offset[10:8]
#define Y_OFFSET_L 0x3813 //Bit[7:0]:
#define X_INCREMENT 0x3814 //Bit[7:4]: Horizontal odd subsample increment
//Bit[3:0]: Horizontal even subsample increment
#define Y_INCREMENT 0x3815 //Bit[7:4]: Vertical odd subsample increment
//Bit[3:0]: Vertical even subsample increment
// Size before scaling
//#define X_INPUT_SIZE (X_ADDR_END - X_ADDR_ST + 1 - (2 * X_OFFSET))
//#define Y_INPUT_SIZE (Y_ADDR_END - Y_ADDR_ST + 1 - (2 * Y_OFFSET))
#define ISP_CONTROL_01 0x5001 // Bit[5]: Scale enable
// 0: Disable
// 1: Enable
#define SCALE_CTRL_1 0x5601 // Bit[6:4]: HDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
// Bit[2:0]: VDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
#define SCALE_CTRL_2 0x5602 // X_SCALE High Bits
#define SCALE_CTRL_3 0x5603 // X_SCALE Low Bits
#define SCALE_CTRL_4 0x5604 // Y_SCALE High Bits
#define SCALE_CTRL_5 0x5605 // Y_SCALE Low Bits
#define SCALE_CTRL_6 0x5606 // Bit[3:0]: V Offset
#define PCLK_RATIO 0x3824 // Bit[4:0]: PCLK ratio manual
#define VFIFO_CTRL0C 0x460C // Bit[1]: PCLK manual enable
// 0: Auto
// 1: Manual by PCLK_RATIO
#define VFIFO_X_SIZE_H 0x4602
#define VFIFO_X_SIZE_L 0x4603
#define VFIFO_Y_SIZE_H 0x4604
#define VFIFO_Y_SIZE_L 0x4605
#define SC_PLLS_CTRL0 0x303a // Bit[7]: PLLS bypass
#define SC_PLLS_CTRL1 0x303b // Bit[4:0]: PLLS multiplier
#define SC_PLLS_CTRL2 0x303c // Bit[6:4]: PLLS charge pump control
// Bit[3:0]: PLLS system divider
#define SC_PLLS_CTRL3 0x303d // Bit[5:4]: PLLS pre-divider
// 00: 1
// 01: 1.5
// 10: 2
// 11: 3
// Bit[2]: PLLS root-divider - 1
// Bit[1:0]: PLLS seld5
// 00: 1
// 01: 1
// 10: 2
// 11: 2.5
#define COMPRESSION_CTRL00 0x4400 //
#define COMPRESSION_CTRL01 0x4401 //
#define COMPRESSION_CTRL02 0x4402 //
#define COMPRESSION_CTRL03 0x4403 //
#define COMPRESSION_CTRL04 0x4404 //
#define COMPRESSION_CTRL05 0x4405 //
#define COMPRESSION_CTRL06 0x4406 //
#define COMPRESSION_CTRL07 0x4407 // Bit[5:0]: QS
#define COMPRESSION_ISI_CTRL 0x4408 //
#define COMPRESSION_CTRL09 0x4409 //
#define COMPRESSION_CTRL0a 0x440a //
#define COMPRESSION_CTRL0b 0x440b //
#define COMPRESSION_CTRL0c 0x440c //
#define COMPRESSION_CTRL0d 0x440d //
#define COMPRESSION_CTRL0E 0x440e //
/**
* @brief register value
*/
#define TEST_COLOR_BAR 0xC0 /* Enable Color Bar roling Test */
#define AEC_PK_MANUAL_AGC_MANUALEN 0x02 /* Enable AGC Manual enable */
#define AEC_PK_MANUAL_AEC_MANUALEN 0x01 /* Enable AEC Manual enable */
#define TIMING_TC_REG20_VFLIP 0x06 /* Vertical flip enable */
#define TIMING_TC_REG21_HMIRROR 0x06 /* Horizontal mirror enable */
#endif // __OV3660_REG_REGS_H__

View File

@ -1,318 +0,0 @@
#ifndef _OV3660_SETTINGS_H_
#define _OV3660_SETTINGS_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "ov3660_regs.h"
static const ratio_settings_t ratio_table[] = {
// mw, mh, sx, sy, ex, ey, ox, oy, tx, ty
{ 2048, 1536, 0, 0, 2079, 1547, 16, 6, 2300, 1564 }, //4x3
{ 1920, 1280, 64, 128, 2015, 1419, 16, 6, 2172, 1436 }, //3x2
{ 2048, 1280, 0, 128, 2079, 1419, 16, 6, 2300, 1436 }, //16x10
{ 1920, 1152, 64, 192, 2015, 1355, 16, 6, 2172, 1372 }, //5x3
{ 1920, 1080, 64, 242, 2015, 1333, 16, 6, 2172, 1322 }, //16x9
{ 2048, 880, 0, 328, 2079, 1219, 16, 6, 2300, 1236 }, //21x9
{ 1920, 1536, 64, 0, 2015, 1547, 16, 6, 2172, 1564 }, //5x4
{ 1536, 1536, 256, 0, 1823, 1547, 16, 6, 2044, 1564 }, //1x1
{ 864, 1536, 592, 0, 1487, 1547, 16, 6, 2044, 1564 } //9x16
};
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000
static const DRAM_ATTR uint16_t sensor_default_regs[][2] = {
{SYSTEM_CTROL0, 0x82}, // software reset
{REG_DLY, 10}, // delay 10ms
{0x3103, 0x13},
{SYSTEM_CTROL0, 0x42},
{0x3017, 0xff},
{0x3018, 0xff},
{DRIVE_CAPABILITY, 0xc3},
{CLOCK_POL_CONTROL, 0x21},
{0x3611, 0x01},
{0x3612, 0x2d},
{0x3032, 0x00},
{0x3614, 0x80},
{0x3618, 0x00},
{0x3619, 0x75},
{0x3622, 0x80},
{0x3623, 0x00},
{0x3624, 0x03},
{0x3630, 0x52},
{0x3632, 0x07},
{0x3633, 0xd2},
{0x3704, 0x80},
{0x3708, 0x66},
{0x3709, 0x12},
{0x370b, 0x12},
{0x3717, 0x00},
{0x371b, 0x60},
{0x371c, 0x00},
{0x3901, 0x13},
{0x3600, 0x08},
{0x3620, 0x43},
{0x3702, 0x20},
{0x3739, 0x48},
{0x3730, 0x20},
{0x370c, 0x0c},
{0x3a18, 0x00},
{0x3a19, 0xf8},
{0x3000, 0x10},
{0x3004, 0xef},
{0x6700, 0x05},
{0x6701, 0x19},
{0x6702, 0xfd},
{0x6703, 0xd1},
{0x6704, 0xff},
{0x6705, 0xff},
{0x3c01, 0x80},
{0x3c00, 0x04},
{0x3a08, 0x00}, {0x3a09, 0x62}, //50Hz Band Width Step (10bit)
{0x3a0e, 0x08}, //50Hz Max Bands in One Frame (6 bit)
{0x3a0a, 0x00}, {0x3a0b, 0x52}, //60Hz Band Width Step (10bit)
{0x3a0d, 0x09}, //60Hz Max Bands in One Frame (6 bit)
{0x3a00, 0x3a},//night mode off
{0x3a14, 0x09},
{0x3a15, 0x30},
{0x3a02, 0x09},
{0x3a03, 0x30},
{COMPRESSION_CTRL0E, 0x08},
{0x4520, 0x0b},
{0x460b, 0x37},
{0x4713, 0x02},
{0x471c, 0xd0},
{0x5086, 0x00},
{0x5002, 0x00},
{0x501f, 0x00},
{SYSTEM_CTROL0, 0x02},
{0x5180, 0xff},
{0x5181, 0xf2},
{0x5182, 0x00},
{0x5183, 0x14},
{0x5184, 0x25},
{0x5185, 0x24},
{0x5186, 0x16},
{0x5187, 0x16},
{0x5188, 0x16},
{0x5189, 0x68},
{0x518a, 0x60},
{0x518b, 0xe0},
{0x518c, 0xb2},
{0x518d, 0x42},
{0x518e, 0x35},
{0x518f, 0x56},
{0x5190, 0x56},
{0x5191, 0xf8},
{0x5192, 0x04},
{0x5193, 0x70},
{0x5194, 0xf0},
{0x5195, 0xf0},
{0x5196, 0x03},
{0x5197, 0x01},
{0x5198, 0x04},
{0x5199, 0x12},
{0x519a, 0x04},
{0x519b, 0x00},
{0x519c, 0x06},
{0x519d, 0x82},
{0x519e, 0x38},
{0x5381, 0x1d},
{0x5382, 0x60},
{0x5383, 0x03},
{0x5384, 0x0c},
{0x5385, 0x78},
{0x5386, 0x84},
{0x5387, 0x7d},
{0x5388, 0x6b},
{0x5389, 0x12},
{0x538a, 0x01},
{0x538b, 0x98},
{0x5480, 0x01},
// {0x5481, 0x05},
// {0x5482, 0x09},
// {0x5483, 0x10},
// {0x5484, 0x3a},
// {0x5485, 0x4c},
// {0x5486, 0x5a},
// {0x5487, 0x68},
// {0x5488, 0x74},
// {0x5489, 0x80},
// {0x548a, 0x8e},
// {0x548b, 0xa4},
// {0x548c, 0xb4},
// {0x548d, 0xc8},
// {0x548e, 0xde},
// {0x548f, 0xf0},
// {0x5490, 0x15},
{0x5000, 0xa7},
{0x5800, 0x0C},
{0x5801, 0x09},
{0x5802, 0x0C},
{0x5803, 0x0C},
{0x5804, 0x0D},
{0x5805, 0x17},
{0x5806, 0x06},
{0x5807, 0x05},
{0x5808, 0x04},
{0x5809, 0x06},
{0x580a, 0x09},
{0x580b, 0x0E},
{0x580c, 0x05},
{0x580d, 0x01},
{0x580e, 0x01},
{0x580f, 0x01},
{0x5810, 0x05},
{0x5811, 0x0D},
{0x5812, 0x05},
{0x5813, 0x01},
{0x5814, 0x01},
{0x5815, 0x01},
{0x5816, 0x05},
{0x5817, 0x0D},
{0x5818, 0x08},
{0x5819, 0x06},
{0x581a, 0x05},
{0x581b, 0x07},
{0x581c, 0x0B},
{0x581d, 0x0D},
{0x581e, 0x12},
{0x581f, 0x0D},
{0x5820, 0x0E},
{0x5821, 0x10},
{0x5822, 0x10},
{0x5823, 0x1E},
{0x5824, 0x53},
{0x5825, 0x15},
{0x5826, 0x05},
{0x5827, 0x14},
{0x5828, 0x54},
{0x5829, 0x25},
{0x582a, 0x33},
{0x582b, 0x33},
{0x582c, 0x34},
{0x582d, 0x16},
{0x582e, 0x24},
{0x582f, 0x41},
{0x5830, 0x50},
{0x5831, 0x42},
{0x5832, 0x15},
{0x5833, 0x25},
{0x5834, 0x34},
{0x5835, 0x33},
{0x5836, 0x24},
{0x5837, 0x26},
{0x5838, 0x54},
{0x5839, 0x25},
{0x583a, 0x15},
{0x583b, 0x25},
{0x583c, 0x53},
{0x583d, 0xCF},
{0x3a0f, 0x30},
{0x3a10, 0x28},
{0x3a1b, 0x30},
{0x3a1e, 0x28},
{0x3a11, 0x60},
{0x3a1f, 0x14},
{0x5302, 0x28},
{0x5303, 0x20},
{0x5306, 0x1c}, //de-noise offset 1
{0x5307, 0x28}, //de-noise offset 2
{0x4002, 0xc5},
{0x4003, 0x81},
{0x4005, 0x12},
{0x5688, 0x11},
{0x5689, 0x11},
{0x568a, 0x11},
{0x568b, 0x11},
{0x568c, 0x11},
{0x568d, 0x11},
{0x568e, 0x11},
{0x568f, 0x11},
{0x5580, 0x06},
{0x5588, 0x00},
{0x5583, 0x40},
{0x5584, 0x2c},
{ISP_CONTROL_01, 0x83}, // turn color matrix, awb and SDE
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_jpeg[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x30}, // YUYV
{0x3002, 0x00},//0x1c to 0x00 !!!
{0x3006, 0xff},//0xc3 to 0xff !!!
{0x471c, 0x50},//0xd0 to 0x50 !!!
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_raw[][2] = {
{FORMAT_CTRL00, 0x00}, // RAW
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint16_t sensor_fmt_grayscale[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x10}, // Y8
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint16_t sensor_fmt_yuv422[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x30}, // YUYV
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint16_t sensor_fmt_rgb565[][2] = {
{FORMAT_CTRL, 0x01}, // RGB
{FORMAT_CTRL00, 0x61}, // RGB565 (BGR)
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint8_t sensor_saturation_levels[9][11] = {
{0x1d, 0x60, 0x03, 0x07, 0x48, 0x4f, 0x4b, 0x40, 0x0b, 0x01, 0x98},//-4
{0x1d, 0x60, 0x03, 0x08, 0x54, 0x5c, 0x58, 0x4b, 0x0d, 0x01, 0x98},//-3
{0x1d, 0x60, 0x03, 0x0a, 0x60, 0x6a, 0x64, 0x56, 0x0e, 0x01, 0x98},//-2
{0x1d, 0x60, 0x03, 0x0b, 0x6c, 0x77, 0x70, 0x60, 0x10, 0x01, 0x98},//-1
{0x1d, 0x60, 0x03, 0x0c, 0x78, 0x84, 0x7d, 0x6b, 0x12, 0x01, 0x98},//0
{0x1d, 0x60, 0x03, 0x0d, 0x84, 0x91, 0x8a, 0x76, 0x14, 0x01, 0x98},//+1
{0x1d, 0x60, 0x03, 0x0e, 0x90, 0x9e, 0x96, 0x80, 0x16, 0x01, 0x98},//+2
{0x1d, 0x60, 0x03, 0x10, 0x9c, 0xac, 0xa2, 0x8b, 0x17, 0x01, 0x98},//+3
{0x1d, 0x60, 0x03, 0x11, 0xa8, 0xb9, 0xaf, 0x96, 0x19, 0x01, 0x98},//+4
};
static const DRAM_ATTR uint8_t sensor_special_effects[7][4] = {
{0x06, 0x40, 0x2c, 0x08},//Normal
{0x46, 0x40, 0x28, 0x08},//Negative
{0x1e, 0x80, 0x80, 0x08},//Grayscale
{0x1e, 0x80, 0xc0, 0x08},//Red Tint
{0x1e, 0x60, 0x60, 0x08},//Green Tint
{0x1e, 0xa0, 0x40, 0x08},//Blue Tint
{0x1e, 0x40, 0xa0, 0x08},//Sepia
};
#endif

View File

@ -1,27 +0,0 @@
#ifndef __OV5640_H__
#define __OV5640_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int ov5640_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int ov5640_init(sensor_t *sensor);
#endif // __OV5640_H__

View File

@ -1,213 +0,0 @@
/*
* OV5640 register definitions.
*/
#ifndef __OV5640_REG_REGS_H__
#define __OV5640_REG_REGS_H__
/* system control registers */
#define SYSTEM_CTROL0 0x3008 // Bit[7]: Software reset
// Bit[6]: Software power down
// Bit[5]: Reserved
// Bit[4]: SRB clock SYNC enable
// Bit[3]: Isolation suspend select
// Bit[2:0]: Not used
#define DRIVE_CAPABILITY 0x302c // Bit[7:6]:
// 00: 1x
// 01: 2x
// 10: 3x
// 11: 4x
#define SC_PLLS_CTRL0 0x303a // Bit[7]: PLLS bypass
#define SC_PLLS_CTRL1 0x303b // Bit[4:0]: PLLS multiplier
#define SC_PLLS_CTRL2 0x303c // Bit[6:4]: PLLS charge pump control
// Bit[3:0]: PLLS system divider
#define SC_PLLS_CTRL3 0x303d // Bit[5:4]: PLLS pre-divider
// 00: 1
// 01: 1.5
// 10: 2
// 11: 3
// Bit[2]: PLLS root-divider - 1
// Bit[1:0]: PLLS seld5
// 00: 1
// 01: 1
// 10: 2
// 11: 2.5
/* AEC/AGC control functions */
#define AEC_PK_MANUAL 0x3503 // AEC Manual Mode Control
// Bit[7:6]: Reserved
// Bit[5]: Gain delay option
// Valid when 0x3503[4]=1b0
// 0: Delay one frame latch
// 1: One frame latch
// Bit[4:2]: Reserved
// Bit[1]: AGC manual
// 0: Auto enable
// 1: Manual enable
// Bit[0]: AEC manual
// 0: Auto enable
// 1: Manual enable
//gain = {0x350A[1:0], 0x350B[7:0]} / 16
#define X_ADDR_ST_H 0x3800 //Bit[3:0]: X address start[11:8]
#define X_ADDR_ST_L 0x3801 //Bit[7:0]: X address start[7:0]
#define Y_ADDR_ST_H 0x3802 //Bit[2:0]: Y address start[10:8]
#define Y_ADDR_ST_L 0x3803 //Bit[7:0]: Y address start[7:0]
#define X_ADDR_END_H 0x3804 //Bit[3:0]: X address end[11:8]
#define X_ADDR_END_L 0x3805 //Bit[7:0]:
#define Y_ADDR_END_H 0x3806 //Bit[2:0]: Y address end[10:8]
#define Y_ADDR_END_L 0x3807 //Bit[7:0]:
// Size after scaling
#define X_OUTPUT_SIZE_H 0x3808 //Bit[3:0]: DVP output horizontal width[11:8]
#define X_OUTPUT_SIZE_L 0x3809 //Bit[7:0]:
#define Y_OUTPUT_SIZE_H 0x380a //Bit[2:0]: DVP output vertical height[10:8]
#define Y_OUTPUT_SIZE_L 0x380b //Bit[7:0]:
#define X_TOTAL_SIZE_H 0x380c //Bit[3:0]: Total horizontal size[11:8]
#define X_TOTAL_SIZE_L 0x380d //Bit[7:0]:
#define Y_TOTAL_SIZE_H 0x380e //Bit[7:0]: Total vertical size[15:8]
#define Y_TOTAL_SIZE_L 0x380f //Bit[7:0]:
#define X_OFFSET_H 0x3810 //Bit[3:0]: ISP horizontal offset[11:8]
#define X_OFFSET_L 0x3811 //Bit[7:0]:
#define Y_OFFSET_H 0x3812 //Bit[2:0]: ISP vertical offset[10:8]
#define Y_OFFSET_L 0x3813 //Bit[7:0]:
#define X_INCREMENT 0x3814 //Bit[7:4]: Horizontal odd subsample increment
//Bit[3:0]: Horizontal even subsample increment
#define Y_INCREMENT 0x3815 //Bit[7:4]: Vertical odd subsample increment
//Bit[3:0]: Vertical even subsample increment
// Size before scaling
//#define X_INPUT_SIZE (X_ADDR_END - X_ADDR_ST + 1 - (2 * X_OFFSET))
//#define Y_INPUT_SIZE (Y_ADDR_END - Y_ADDR_ST + 1 - (2 * Y_OFFSET))
/* mirror and flip registers */
#define TIMING_TC_REG20 0x3820 // Timing Control Register
// Bit[2:1]: Vertical flip enable
// 00: Normal
// 11: Vertical flip
// Bit[0]: Vertical binning enable
#define TIMING_TC_REG21 0x3821 // Timing Control Register
// Bit[5]: Compression Enable
// Bit[2:1]: Horizontal mirror enable
// 00: Normal
// 11: Horizontal mirror
// Bit[0]: Horizontal binning enable
#define PCLK_RATIO 0x3824 // Bit[4:0]: PCLK ratio manual
/* frame control registers */
#define FRAME_CTRL01 0x4201 // Control Passed Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// Bit[3:0]: Frame ON number
#define FRAME_CTRL02 0x4202 // Control Masked Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// BIT[3:0]: Frame OFF number
/* format control registers */
#define FORMAT_CTRL00 0x4300
#define CLOCK_POL_CONTROL 0x4740// Bit[5]: PCLK polarity 0: active low
// 1: active high
// Bit[3]: Gate PCLK under VSYNC
// Bit[2]: Gate PCLK under HREF
// Bit[1]: HREF polarity
// 0: active low
// 1: active high
// Bit[0] VSYNC polarity
// 0: active low
// 1: active high
#define ISP_CONTROL_01 0x5001 // Bit[5]: Scale enable
// 0: Disable
// 1: Enable
/* output format control registers */
#define FORMAT_CTRL 0x501F // Format select
// Bit[2:0]:
// 000: YUV422
// 001: RGB
// 010: Dither
// 011: RAW after DPC
// 101: RAW after CIP
/* ISP top control registers */
#define PRE_ISP_TEST_SETTING_1 0x503D // Bit[7]: Test enable
// 0: Test disable
// 1: Color bar enable
// Bit[6]: Rolling
// Bit[5]: Transparent
// Bit[4]: Square black and white
// Bit[3:2]: Color bar style
// 00: Standard 8 color bar
// 01: Gradual change at vertical mode 1
// 10: Gradual change at horizontal
// 11: Gradual change at vertical mode 2
// Bit[1:0]: Test select
// 00: Color bar
// 01: Random data
// 10: Square data
// 11: Black image
//exposure = {0x3500[3:0], 0x3501[7:0], 0x3502[7:0]} / 16 × tROW
#define SCALE_CTRL_1 0x5601 // Bit[6:4]: HDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
// Bit[2:0]: VDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
#define SCALE_CTRL_2 0x5602 // X_SCALE High Bits
#define SCALE_CTRL_3 0x5603 // X_SCALE Low Bits
#define SCALE_CTRL_4 0x5604 // Y_SCALE High Bits
#define SCALE_CTRL_5 0x5605 // Y_SCALE Low Bits
#define SCALE_CTRL_6 0x5606 // Bit[3:0]: V Offset
#define VFIFO_CTRL0C 0x460C // Bit[1]: PCLK manual enable
// 0: Auto
// 1: Manual by PCLK_RATIO
#define VFIFO_X_SIZE_H 0x4602
#define VFIFO_X_SIZE_L 0x4603
#define VFIFO_Y_SIZE_H 0x4604
#define VFIFO_Y_SIZE_L 0x4605
#define COMPRESSION_CTRL00 0x4400 //
#define COMPRESSION_CTRL01 0x4401 //
#define COMPRESSION_CTRL02 0x4402 //
#define COMPRESSION_CTRL03 0x4403 //
#define COMPRESSION_CTRL04 0x4404 //
#define COMPRESSION_CTRL05 0x4405 //
#define COMPRESSION_CTRL06 0x4406 //
#define COMPRESSION_CTRL07 0x4407 // Bit[5:0]: QS
#define COMPRESSION_ISI_CTRL 0x4408 //
#define COMPRESSION_CTRL09 0x4409 //
#define COMPRESSION_CTRL0a 0x440a //
#define COMPRESSION_CTRL0b 0x440b //
#define COMPRESSION_CTRL0c 0x440c //
#define COMPRESSION_CTRL0d 0x440d //
#define COMPRESSION_CTRL0E 0x440e //
/**
* @brief register value
*/
#define TEST_COLOR_BAR 0xC0 /* Enable Color Bar roling Test */
#define AEC_PK_MANUAL_AGC_MANUALEN 0x02 /* Enable AGC Manual enable */
#define AEC_PK_MANUAL_AEC_MANUALEN 0x01 /* Enable AEC Manual enable */
#define TIMING_TC_REG20_VFLIP 0x06 /* Vertical flip enable */
#define TIMING_TC_REG21_HMIRROR 0x06 /* Horizontal mirror enable */
#endif // __OV3660_REG_REGS_H__

View File

@ -1,334 +0,0 @@
#ifndef _OV5640_SETTINGS_H_
#define _OV5640_SETTINGS_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "ov5640_regs.h"
static const ratio_settings_t ratio_table[] = {
// mw, mh, sx, sy, ex, ey, ox, oy, tx, ty
{ 2560, 1920, 0, 0, 2623, 1951, 32, 16, 2844, 1968 }, //4x3
{ 2560, 1704, 0, 110, 2623, 1843, 32, 16, 2844, 1752 }, //3x2
{ 2560, 1600, 0, 160, 2623, 1791, 32, 16, 2844, 1648 }, //16x10
{ 2560, 1536, 0, 192, 2623, 1759, 32, 16, 2844, 1584 }, //5x3
{ 2560, 1440, 0, 240, 2623, 1711, 32, 16, 2844, 1488 }, //16x9
{ 2560, 1080, 0, 420, 2623, 1531, 32, 16, 2844, 1128 }, //21x9
{ 2400, 1920, 80, 0, 2543, 1951, 32, 16, 2684, 1968 }, //5x4
{ 1920, 1920, 320, 0, 2543, 1951, 32, 16, 2684, 1968 }, //1x1
{ 1088, 1920, 736, 0, 1887, 1951, 32, 16, 1884, 1968 } //9x16
};
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000
static const DRAM_ATTR uint16_t sensor_default_regs[][2] = {
{SYSTEM_CTROL0, 0x82}, // software reset
{REG_DLY, 10}, // delay 10ms
{SYSTEM_CTROL0, 0x42}, // power down
//enable pll
{0x3103, 0x13},
//io direction
{0x3017, 0xff},
{0x3018, 0xff},
{DRIVE_CAPABILITY, 0xc3},
{CLOCK_POL_CONTROL, 0x21},
{0x4713, 0x02},//jpg mode select
{ISP_CONTROL_01, 0x83}, // turn color matrix, awb and SDE
//sys reset
{0x3000, 0x00},
{0x3002, 0x1c},
//clock enable
{0x3004, 0xff},
{0x3006, 0xc3},
//isp control
{0x5000, 0xa7},
{ISP_CONTROL_01, 0xa3},//+scaling?
{0x5003, 0x08},//special_effect
//unknown
{0x370c, 0x02},//!!IMPORTANT
{0x3634, 0x40},//!!IMPORTANT
//AEC/AGC
{0x3a02, 0x03},
{0x3a03, 0xd8},
{0x3a08, 0x01},
{0x3a09, 0x27},
{0x3a0a, 0x00},
{0x3a0b, 0xf6},
{0x3a0d, 0x04},
{0x3a0e, 0x03},
{0x3a0f, 0x30},//ae_level
{0x3a10, 0x28},//ae_level
{0x3a11, 0x60},//ae_level
{0x3a13, 0x43},
{0x3a14, 0x03},
{0x3a15, 0xd8},
{0x3a18, 0x00},//gainceiling
{0x3a19, 0xf8},//gainceiling
{0x3a1b, 0x30},//ae_level
{0x3a1e, 0x26},//ae_level
{0x3a1f, 0x14},//ae_level
//vcm debug
{0x3600, 0x08},
{0x3601, 0x33},
//50/60Hz
{0x3c01, 0xa4},
{0x3c04, 0x28},
{0x3c05, 0x98},
{0x3c06, 0x00},
{0x3c07, 0x08},
{0x3c08, 0x00},
{0x3c09, 0x1c},
{0x3c0a, 0x9c},
{0x3c0b, 0x40},
{0x460c, 0x22},//disable jpeg footer
//BLC
{0x4001, 0x02},
{0x4004, 0x02},
//AWB
{0x5180, 0xff},
{0x5181, 0xf2},
{0x5182, 0x00},
{0x5183, 0x14},
{0x5184, 0x25},
{0x5185, 0x24},
{0x5186, 0x09},
{0x5187, 0x09},
{0x5188, 0x09},
{0x5189, 0x75},
{0x518a, 0x54},
{0x518b, 0xe0},
{0x518c, 0xb2},
{0x518d, 0x42},
{0x518e, 0x3d},
{0x518f, 0x56},
{0x5190, 0x46},
{0x5191, 0xf8},
{0x5192, 0x04},
{0x5193, 0x70},
{0x5194, 0xf0},
{0x5195, 0xf0},
{0x5196, 0x03},
{0x5197, 0x01},
{0x5198, 0x04},
{0x5199, 0x12},
{0x519a, 0x04},
{0x519b, 0x00},
{0x519c, 0x06},
{0x519d, 0x82},
{0x519e, 0x38},
//color matrix (Saturation)
{0x5381, 0x1e},
{0x5382, 0x5b},
{0x5383, 0x08},
{0x5384, 0x0a},
{0x5385, 0x7e},
{0x5386, 0x88},
{0x5387, 0x7c},
{0x5388, 0x6c},
{0x5389, 0x10},
{0x538a, 0x01},
{0x538b, 0x98},
//CIP control (Sharpness)
{0x5300, 0x10},//sharpness
{0x5301, 0x10},//sharpness
{0x5302, 0x18},//sharpness
{0x5303, 0x19},//sharpness
{0x5304, 0x10},
{0x5305, 0x10},
{0x5306, 0x08},//denoise
{0x5307, 0x16},
{0x5308, 0x40},
{0x5309, 0x10},//sharpness
{0x530a, 0x10},//sharpness
{0x530b, 0x04},//sharpness
{0x530c, 0x06},//sharpness
//GAMMA
{0x5480, 0x01},
{0x5481, 0x00},
{0x5482, 0x1e},
{0x5483, 0x3b},
{0x5484, 0x58},
{0x5485, 0x66},
{0x5486, 0x71},
{0x5487, 0x7d},
{0x5488, 0x83},
{0x5489, 0x8f},
{0x548a, 0x98},
{0x548b, 0xa6},
{0x548c, 0xb8},
{0x548d, 0xca},
{0x548e, 0xd7},
{0x548f, 0xe3},
{0x5490, 0x1d},
//Special Digital Effects (SDE) (UV adjust)
{0x5580, 0x06},//enable brightness and contrast
{0x5583, 0x40},//special_effect
{0x5584, 0x10},//special_effect
{0x5586, 0x20},//contrast
{0x5587, 0x00},//brightness
{0x5588, 0x00},//brightness
{0x5589, 0x10},
{0x558a, 0x00},
{0x558b, 0xf8},
{0x501d, 0x40},// enable manual offset of contrast
//power on
{0x3008, 0x02},
//50Hz
{0x3c00, 0x04},
{REG_DLY, 300},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_jpeg[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x30}, // YUYV
{0x3002, 0x00},//0x1c to 0x00 !!!
{0x3006, 0xff},//0xc3 to 0xff !!!
{0x471c, 0x50},//0xd0 to 0x50 !!!
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_fmt_raw[][2] = {
{FORMAT_CTRL, 0x03}, // RAW (DPC)
{FORMAT_CTRL00, 0x00}, // RAW
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint16_t sensor_fmt_grayscale[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x10}, // Y8
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint16_t sensor_fmt_yuv422[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x30}, // YUYV
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint16_t sensor_fmt_rgb565[][2] = {
{FORMAT_CTRL, 0x01}, // RGB
{FORMAT_CTRL00, 0x61}, // RGB565 (BGR)
{REGLIST_TAIL, 0x00}
};
static const DRAM_ATTR uint8_t sensor_saturation_levels[9][11] = {
{0x1d, 0x60, 0x03, 0x07, 0x48, 0x4f, 0x4b, 0x40, 0x0b, 0x01, 0x98},//-4
{0x1d, 0x60, 0x03, 0x08, 0x54, 0x5c, 0x58, 0x4b, 0x0d, 0x01, 0x98},//-3
{0x1d, 0x60, 0x03, 0x0a, 0x60, 0x6a, 0x64, 0x56, 0x0e, 0x01, 0x98},//-2
{0x1d, 0x60, 0x03, 0x0b, 0x6c, 0x77, 0x70, 0x60, 0x10, 0x01, 0x98},//-1
{0x1d, 0x60, 0x03, 0x0c, 0x78, 0x84, 0x7d, 0x6b, 0x12, 0x01, 0x98},//0
{0x1d, 0x60, 0x03, 0x0d, 0x84, 0x91, 0x8a, 0x76, 0x14, 0x01, 0x98},//+1
{0x1d, 0x60, 0x03, 0x0e, 0x90, 0x9e, 0x96, 0x80, 0x16, 0x01, 0x98},//+2
{0x1d, 0x60, 0x03, 0x10, 0x9c, 0xac, 0xa2, 0x8b, 0x17, 0x01, 0x98},//+3
{0x1d, 0x60, 0x03, 0x11, 0xa8, 0xb9, 0xaf, 0x96, 0x19, 0x01, 0x98},//+4
};
static const DRAM_ATTR uint8_t sensor_special_effects[7][4] = {
{0x06, 0x40, 0x2c, 0x08},//Normal
{0x46, 0x40, 0x28, 0x08},//Negative
{0x1e, 0x80, 0x80, 0x08},//Grayscale
{0x1e, 0x80, 0xc0, 0x08},//Red Tint
{0x1e, 0x60, 0x60, 0x08},//Green Tint
{0x1e, 0xa0, 0x40, 0x08},//Blue Tint
{0x1e, 0x40, 0xa0, 0x08},//Sepia
};
static const DRAM_ATTR uint16_t sensor_regs_gamma0[][2] = {
{0x5480, 0x01},
{0x5481, 0x08},
{0x5482, 0x14},
{0x5483, 0x28},
{0x5484, 0x51},
{0x5485, 0x65},
{0x5486, 0x71},
{0x5487, 0x7d},
{0x5488, 0x87},
{0x5489, 0x91},
{0x548a, 0x9a},
{0x548b, 0xaa},
{0x548c, 0xb8},
{0x548d, 0xcd},
{0x548e, 0xdd},
{0x548f, 0xea},
{0x5490, 0x1d}
};
static const DRAM_ATTR uint16_t sensor_regs_gamma1[][2] = {
{0x5480, 0x1},
{0x5481, 0x0},
{0x5482, 0x1e},
{0x5483, 0x3b},
{0x5484, 0x58},
{0x5485, 0x66},
{0x5486, 0x71},
{0x5487, 0x7d},
{0x5488, 0x83},
{0x5489, 0x8f},
{0x548a, 0x98},
{0x548b, 0xa6},
{0x548c, 0xb8},
{0x548d, 0xca},
{0x548e, 0xd7},
{0x548f, 0xe3},
{0x5490, 0x1d}
};
static const DRAM_ATTR uint16_t sensor_regs_awb0[][2] = {
{0x5180, 0xff},
{0x5181, 0xf2},
{0x5182, 0x00},
{0x5183, 0x14},
{0x5184, 0x25},
{0x5185, 0x24},
{0x5186, 0x09},
{0x5187, 0x09},
{0x5188, 0x09},
{0x5189, 0x75},
{0x518a, 0x54},
{0x518b, 0xe0},
{0x518c, 0xb2},
{0x518d, 0x42},
{0x518e, 0x3d},
{0x518f, 0x56},
{0x5190, 0x46},
{0x5191, 0xf8},
{0x5192, 0x04},
{0x5193, 0x70},
{0x5194, 0xf0},
{0x5195, 0xf0},
{0x5196, 0x03},
{0x5197, 0x01},
{0x5198, 0x04},
{0x5199, 0x12},
{0x519a, 0x04},
{0x519b, 0x00},
{0x519c, 0x06},
{0x519d, 0x82},
{0x519e, 0x38}
};
#endif

View File

@ -1,33 +0,0 @@
/*
* This file is part of the OpenMV project.
* author: Juan Schiavoni <juanjoseschiavoni@hotmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV7670 driver.
*
*/
#ifndef __OV7670_H__
#define __OV7670_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int ov7670_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int ov7670_init(sensor_t *sensor);
#endif // __OV7670_H__

View File

@ -1,354 +0,0 @@
/*
* This file is for the OpenMV project so the OV7670 can be used
* author: Juan Schiavoni <juanjoseschiavoni@hotmail.com>
*
* OV7670 register definitions.
*/
#ifndef __OV7670_REG_REGS_H__
#define __OV7670_REG_REGS_H__
#define GAIN 0x00 /* AGC Gain control gain setting */
#define BLUE 0x01 /* AWB Blue channel gain setting */
#define RED 0x02 /* AWB Red channel gain setting */
#define VREF 0x03 /* AWB Green channel gain setting */
#define COM1 0x04 /* Common Control 1 */
#define BAVG 0x05 /* U/B Average Level */
#define GAVG 0x06 /* Y/Gb Average Level */
#define AECH 0x07 /* Exposure VAlue - AEC MSB 5 bits */
#define RAVG 0x08 /* V/R Average Level */
#define COM2 0x09 /* Common Control 2 */
#define COM2_SOFT_SLEEP 0x10 /* Soft sleep mode */
#define COM2_OUT_DRIVE_1x 0x00 /* Output drive capability 1x */
#define COM2_OUT_DRIVE_2x 0x01 /* Output drive capability 2x */
#define COM2_OUT_DRIVE_3x 0x02 /* Output drive capability 3x */
#define COM2_OUT_DRIVE_4x 0x03 /* Output drive capability 4x */
#define REG_PID 0x0A /* Product ID Number MSB */
#define REG_VER 0x0B /* Product ID Number LSB */
#define COM3 0x0C /* Common Control 3 */
#define COM3_SWAP_OUT 0x40 /* Output data MSB/LSB swap */
#define COM3_TRI_CLK 0x20 /* Tri-state output clock */
#define COM3_TRI_DATA 0x10 /* Tri-state option output */
#define COM3_SCALE_EN 0x08 /* Scale enable */
#define COM3_DCW 0x04 /* DCW enable */
#define COM4 0x0D /* Common Control 4 */
#define COM4_PLL_BYPASS 0x00 /* Bypass PLL */
#define COM4_PLL_4x 0x40 /* PLL frequency 4x */
#define COM4_PLL_6x 0x80 /* PLL frequency 6x */
#define COM4_PLL_8x 0xc0 /* PLL frequency 8x */
#define COM4_AEC_FULL 0x00 /* AEC evaluate full window */
#define COM4_AEC_1_2 0x10 /* AEC evaluate 1/2 window */
#define COM4_AEC_1_4 0x20 /* AEC evaluate 1/4 window */
#define COM4_AEC_2_3 0x30 /* AEC evaluate 2/3 window */
#define COM5 0x0E /* Common Control 5 */
#define COM5_AFR 0x80 /* Auto frame rate control ON/OFF selection (night mode) */
#define COM5_AFR_SPEED 0x40 /* Auto frame rate control speed selection */
#define COM5_AFR_0 0x00 /* No reduction of frame rate */
#define COM5_AFR_1_2 0x10 /* Max reduction to 1/2 frame rate */
#define COM5_AFR_1_4 0x20 /* Max reduction to 1/4 frame rate */
#define COM5_AFR_1_8 0x30 /* Max reduction to 1/8 frame rate */
#define COM5_AFR_4x 0x04 /* Add frame when AGC reaches 4x gain */
#define COM5_AFR_8x 0x08 /* Add frame when AGC reaches 8x gain */
#define COM5_AFR_16x 0x0c /* Add frame when AGC reaches 16x gain */
#define COM5_AEC_NO_LIMIT 0x01 /* No limit to AEC increase step */
#define COM6 0x0F /* Common Control 6 */
#define COM6_AUTO_WINDOW 0x01 /* Auto window setting ON/OFF selection when format changes */
#define AEC 0x10 /* AEC[7:0] (see register AECH for AEC[15:8]) */
#define CLKRC 0x11 /* Internal Clock */
#define COM7 0x12 /* Common Control 7 */
#define COM7_RESET 0x80 /* SCCB Register Reset */
#define COM7_RES_VGA 0x00 /* Resolution VGA */
#define COM7_RES_QVGA 0x40 /* Resolution QVGA */
#define COM7_BT656 0x20 /* BT.656 protocol ON/OFF */
#define COM7_SENSOR_RAW 0x10 /* Sensor RAW */
#define COM7_FMT_GBR422 0x00 /* RGB output format GBR422 */
#define COM7_FMT_RGB565 0x04 /* RGB output format RGB565 */
#define COM7_FMT_RGB555 0x08 /* RGB output format RGB555 */
#define COM7_FMT_RGB444 0x0C /* RGB output format RGB444 */
#define COM7_FMT_YUV 0x00 /* Output format YUV */
#define COM7_FMT_P_BAYER 0x01 /* Output format Processed Bayer RAW */
#define COM7_FMT_RGB 0x04 /* Output format RGB */
#define COM7_FMT_R_BAYER 0x03 /* Output format Bayer RAW */
#define COM7_SET_FMT(r, x) ((r&0xFC)|((x&0x5)<<0))
#define COM8 0x13 /* Common Control 8 */
#define COM8_FAST_AUTO 0x80 /* Enable fast AGC/AEC algorithm */
#define COM8_STEP_VSYNC 0x00 /* AEC - Step size limited to vertical blank */
#define COM8_STEP_UNLIMIT 0x40 /* AEC - Step size unlimited step size */
#define COM8_BANDF_EN 0x20 /* Banding filter ON/OFF */
#define COM8_AEC_BANDF 0x10 /* Enable AEC below banding value */
#define COM8_AEC_FINE_EN 0x08 /* Fine AEC ON/OFF control */
#define COM8_AGC_EN 0x04 /* AGC Enable */
#define COM8_AWB_EN 0x02 /* AWB Enable */
#define COM8_AEC_EN 0x01 /* AEC Enable */
#define COM8_SET_AGC(r, x) ((r&0xFB)|((x&0x1)<<2))
#define COM8_SET_AWB(r, x) ((r&0xFD)|((x&0x1)<<1))
#define COM8_SET_AEC(r, x) ((r&0xFE)|((x&0x1)<<0))
#define COM9 0x14 /* Common Control 9 */
#define COM9_HISTO_AVG 0x80 /* Histogram or average based AEC/AGC selection */
#define COM9_AGC_GAIN_2x 0x00 /* Automatic Gain Ceiling 2x */
#define COM9_AGC_GAIN_4x 0x10 /* Automatic Gain Ceiling 4x */
#define COM9_AGC_GAIN_8x 0x20 /* Automatic Gain Ceiling 8x */
#define COM9_AGC_GAIN_16x 0x30 /* Automatic Gain Ceiling 16x */
#define COM9_AGC_GAIN_32x 0x40 /* Automatic Gain Ceiling 32x */
#define COM9_DROP_VSYNC 0x04 /* Drop VSYNC output of corrupt frame */
#define COM9_DROP_HREF 0x02 /* Drop HREF output of corrupt frame */
#define COM9_SET_AGC(r, x) ((r&0x8F)|((x&0x07)<<4))
#define COM10 0x15 /* Common Control 10 */
#define COM10_NEGATIVE 0x80 /* Output negative data */
#define COM10_HSYNC_EN 0x40 /* HREF changes to HSYNC */
#define COM10_PCLK_FREE 0x00 /* PCLK output option: free running PCLK */
#define COM10_PCLK_MASK 0x20 /* PCLK output option: masked during horizontal blank */
#define COM10_PCLK_REV 0x10 /* PCLK reverse */
#define COM10_HREF_REV 0x08 /* HREF reverse */
#define COM10_VSYNC_FALLING 0x00 /* VSYNC changes on falling edge of PCLK */
#define COM10_VSYNC_RISING 0x04 /* VSYNC changes on rising edge of PCLK */
#define COM10_VSYNC_NEG 0x02 /* VSYNC negative */
#define COM10_OUT_RANGE_8 0x01 /* Output data range: Full range */
#define COM10_OUT_RANGE_10 0x00 /* Output data range: Data from [10] to [F0] (8 MSBs) */
#define RSVD_16 0x16 /* Reserved register */
#define HSTART 0x17 /* Horizontal Frame (HREF column) Start high 8-bit(low 3 bits are at HREF[2:0]) */
#define HSTOP 0x18 /* Horizontal Frame (HREF column) end high 8-bit (low 3 bits are at HREF[5:3]) */
#define VSTART 0x19 /* Vertical Frame (row) Start high 8-bit (low 2 bits are at VREF[1:0]) */
#define VSTOP 0x1A /* Vertical Frame (row) End high 8-bit (low 2 bits are at VREF[3:2]) */
#define PSHFT 0x1B /* Data Format - Pixel Delay Select */
#define REG_MIDH 0x1C /* Manufacturer ID Byte High */
#define REG_MIDL 0x1D /* Manufacturer ID Byte Low */
#define MVFP 0x1E /* Mirror/Vflip Enable */
#define MVFP_MIRROR 0x20 /* Mirror image */
#define MVFP_FLIP 0x10 /* Vertical flip */
#define MVFP_SUN 0x02 /* Black sun enable */
#define MVFP_SET_MIRROR(r,x) ((r&0xDF)|((x&1)<<5)) /* change only bit5 according to x */
#define MVFP_SET_FLIP(r,x) ((r&0xEF)|((x&1)<<4)) /* change only bit4 according to x */
#define LAEC 0x1F /* Fine AEC Value - defines exposure value less than one row period (Reserved?) */
#define ADCCTR0 0x20 /* ADC control */
#define ADCCTR1 0x21 /* reserved */
#define ADCCTR2 0x22 /* reserved */
#define ADCCTR3 0x23 /* reserved */
#define AEW 0x24 /* AGC/AEC - Stable Operating Region (Upper Limit) */
#define AEB 0x25 /* AGC/AEC - Stable Operating Region (Lower Limit) */
#define VPT 0x26 /* AGC/AEC Fast Mode Operating Region */
#define BBIAS 0x27 /* B channel signal output bias (effective only when COM6[3]=1) */
#define GbBIAS 0x28 /* Gb channel signal output bias (effective only when COM6[3]=1) */
#define RSVD_29 0x29 /* reserved */
#define EXHCH 0x2A /* Dummy Pixel Insert MSB */
#define EXHCL 0x2B /* Dummy Pixel Insert LSB */
#define RBIAS 0x2C /* R channel signal output bias (effective only when COM6[3]=1) */
#define ADVFL 0x2D /* LSB of Insert Dummy Rows in Vertical Sync (1 bit equals 1 row) */
#define ADVFH 0x2E /* MSB of Insert Dummy Rows in Vertical Sync */
#define YAVE 0x2F /* Y/G Channel Average Value */
#define HSYST 0x30 /* HSync rising edge delay */
#define HSYEN 0x31 /* HSync falling edge delay */
#define HREF 0x32 /* Image Start and Size Control DIFFERENT CONTROL SEQUENCE */
#define CHLF 0x33 /* Array Current control */
#define ARBLM 0x34 /* Array reference control */
#define RSVD_35 0x35 /* Reserved */
#define RSVD_36 0x36 /* Reserved */
#define ADC 0x37 /* ADC control */
#define ACOM 0x38 /* ADC and analog common mode control */
#define OFON 0x39 /* ADC offset control */
#define TSLB 0x3A /* Line buffer test option */
#define COM11 0x3B /* Common control 11 */
#define COM11_EXP 0x02
#define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
#define COM12 0x3C /* Common control 12 */
#define COM13 0x3D /* Common control 13 */
#define COM13_GAMMA 0x80 /* Gamma enable */
#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
#define COM14 0x3E /* Common Control 14 */
#define EDGE 0x3F /* edge enhancement adjustment */
#define COM15 0x40 /* Common Control 15 DIFFERENT CONTROLS */
#define COM15_SET_RGB565(r,x) ((r&0xEF)|((x&1)<<4)) /* set rgb565 mode */
#define COM15_RGB565 0x10 /* RGB565 output */
#define COM15_R00FF 0xC0 /* Output range: [00] to [FF] */
#define COM16 0x41 /* Common Control 16 DIFFERENT CONTROLS */
#define COM16_AWBGAIN 0x08 /* AWB gain enable */
#define COM17 0x42 /* Common Control 17 */
#define AWBC1 0x43 /* Reserved */
#define AWBC2 0x44 /* Reserved */
#define AWBC3 0x45 /* Reserved */
#define AWBC4 0x46 /* Reserved */
#define AWBC5 0x47 /* Reserved */
#define AWBC6 0x48 /* Reserved */
#define RSVD_49 0x49 /* Reserved */
#define RSVD_4A 0x4A /* Reserved */
#define REG4B 0x4B /* Register 4B */
#define DNSTH 0x4C /* Denoise strength */
#define RSVD_4D 0x4D /* Reserved */
#define RSVD_4E 0x4E /* Reserved */
#define MTX1 0x4F /* Matrix coefficient 1 */
#define MTX2 0x50 /* Matrix coefficient 2 */
#define MTX3 0x51 /* Matrix coefficient 3 */
#define MTX4 0x52 /* Matrix coefficient 4 */
#define MTX5 0x53 /* Matrix coefficient 5 */
#define MTX6 0x54 /* Matrix coefficient 6 */
#define BRIGHTNESS 0x55 /* Brightness control */
#define CONTRAST 0x56 /* Contrast control */
#define CONTRASCENTER 0x57 /* Contrast center */
#define MTXS 0x58 /* Matrix coefficient sign for coefficient 5 to 0*/
#define RSVD_59 0x59 /* Reserved */
#define RSVD_5A 0x5A /* Reserved */
#define RSVD_5B 0x5B /* Reserved */
#define RSVD_5C 0x5C /* Reserved */
#define RSVD_5D 0x5D /* Reserved */
#define RSVD_5E 0x5E /* Reserved */
#define RSVD_5F 0x5F /* Reserved */
#define RSVD_60 0x60 /* Reserved */
#define RSVD_61 0x61 /* Reserved */
#define LCC1 0x62 /* Lens correction option 1 */
#define LCC2 0x63 /* Lens correction option 2 */
#define LCC3 0x64 /* Lens correction option 3 */
#define LCC4 0x65 /* Lens correction option 4 */
#define LCC5 0x66 /* Lens correction option 5 */
#define MANU 0x67 /* Manual U Value */
#define MANV 0x68 /* Manual V Value */
#define GFIX 0x69 /* Fix gain control */
#define GGAIN 0x6A /* G channel AWB gain */
#define DBLV 0x6B /* PLL and clock ? */
#define AWBCTR3 0x6C /* AWB Control 3 */
#define AWBCTR2 0x6D /* AWB Control 2 */
#define AWBCTR1 0x6E /* AWB Control 1 */
#define AWBCTR0 0x6F /* AWB Control 0 */
#define SCALING_XSC 0x70 /* test pattern and horizontal scaling factor */
#define SCALING_XSC_CBAR(r) (r&0x7F) /* make sure bit7 is 0 for color bar */
#define SCALING_YSC 0x71 /* test pattern and vertical scaling factor */
#define SCALING_YSC_CBAR(r,x) ((r&0x7F)|((x&1)<<7)) /* change bit7 for color bar on/off */
#define SCALING_DCWCTR 0x72 /* DCW control */
#define SCALING_PCLK_DIV 0x73 /* */
#define REG74 0x74 /* */
#define REG75 0x75 /* */
#define REG76 0x76 /* */
#define REG77 0x77 /* */
#define RSVD_78 0x78 /* Reserved */
#define RSVD_79 0x79 /* Reserved */
#define SLOP 0x7A /* Gamma curve highest segment slope */
#define GAM1 0x7B /* Gamma Curve 1st Segment Input End Point 0x04 Output Value */
#define GAM2 0x7C /* Gamma Curve 2nd Segment Input End Point 0x08 Output Value */
#define GAM3 0x7D /* Gamma Curve 3rd Segment Input End Point 0x10 Output Value */
#define GAM4 0x7E /* Gamma Curve 4th Segment Input End Point 0x20 Output Value */
#define GAM5 0x7F /* Gamma Curve 5th Segment Input End Point 0x28 Output Value */
#define GAM6 0x80 /* Gamma Curve 6rd Segment Input End Point 0x30 Output Value */
#define GAM7 0x81 /* Gamma Curve 7th Segment Input End Point 0x38 Output Value */
#define GAM8 0x82 /* Gamma Curve 8th Segment Input End Point 0x40 Output Value */
#define GAM9 0x83 /* Gamma Curve 9th Segment Input End Point 0x48 Output Value */
#define GAM10 0x84 /* Gamma Curve 10th Segment Input End Point 0x50 Output Value */
#define GAM11 0x85 /* Gamma Curve 11th Segment Input End Point 0x60 Output Value */
#define GAM12 0x86 /* Gamma Curve 12th Segment Input End Point 0x70 Output Value */
#define GAM13 0x87 /* Gamma Curve 13th Segment Input End Point 0x90 Output Value */
#define GAM14 0x88 /* Gamma Curve 14th Segment Input End Point 0xB0 Output Value */
#define GAM15 0x89 /* Gamma Curve 15th Segment Input End Point 0xD0 Output Value */
#define RSVD_8A 0x8A /* Reserved */
#define RSVD_8B 0x8B /* Reserved */
#define RGB444 0x8C /* */
#define RSVD_8D 0x8D /* Reserved */
#define RSVD_8E 0x8E /* Reserved */
#define RSVD_8F 0x8F /* Reserved */
#define RSVD_90 0x90 /* Reserved */
#define RSVD_91 0x91 /* Reserved */
#define DM_LNL 0x92 /* Dummy line low 8 bit */
#define DM_LNH 0x93 /* Dummy line high 8 bit */
#define LCC6 0x94 /* Lens correction option 6 */
#define LCC7 0x95 /* Lens correction option 7 */
#define RSVD_96 0x96 /* Reserved */
#define RSVD_97 0x97 /* Reserved */
#define RSVD_98 0x98 /* Reserved */
#define RSVD_99 0x99 /* Reserved */
#define RSVD_9A 0x9A /* Reserved */
#define RSVD_9B 0x9B /* Reserved */
#define RSVD_9C 0x9C /* Reserved */
#define BD50ST 0x9D /* 50 Hz banding filter value */
#define BD60ST 0x9E /* 60 Hz banding filter value */
#define HAECC1 0x9F /* Histogram-based AEC/AGC control 1 */
#define HAECC2 0xA0 /* Histogram-based AEC/AGC control 2 */
#define RSVD_A1 0xA1 /* Reserved */
#define SCALING_PCLK_DELAY 0xA2 /* Pixel clock delay */
#define RSVD_A3 0xA3 /* Reserved */
#define NT_CNTRL 0xA4 /* */
#define BD50MAX 0xA5 /* 50 Hz banding step limit */
#define HAECC3 0xA6 /* Histogram-based AEC/AGC control 3 */
#define HAECC4 0xA7 /* Histogram-based AEC/AGC control 4 */
#define HAECC5 0xA8 /* Histogram-based AEC/AGC control 5 */
#define HAECC6 0xA9 /* Histogram-based AEC/AGC control 6 */
#define HAECC7 0xAA /* Histogram-based AEC/AGC control 7 */
#define HAECC_EN 0x80 /* Histogram-based AEC algorithm enable */
#define BD60MAX 0xAB /* 60 Hz banding step limit */
#define STR_OPT 0xAC /* Register AC */
#define STR_R 0xAD /* R gain for led output frame */
#define STR_G 0xAE /* G gain for led output frame */
#define STR_B 0xAF /* B gain for led output frame */
#define RSVD_B0 0xB0 /* Reserved */
#define ABLC1 0xB1 /* */
#define RSVD_B2 0xB2 /* Reserved */
#define THL_ST 0xB3 /* ABLC target */
#define THL_DLT 0xB5 /* ABLC stable range */
#define RSVD_B6 0xB6 /* Reserved */
#define RSVD_B7 0xB7 /* Reserved */
#define RSVD_B8 0xB8 /* Reserved */
#define RSVD_B9 0xB9 /* Reserved */
#define RSVD_BA 0xBA /* Reserved */
#define RSVD_BB 0xBB /* Reserved */
#define RSVD_BC 0xBC /* Reserved */
#define RSVD_BD 0xBD /* Reserved */
#define AD_CHB 0xBE /* blue channel black level compensation */
#define AD_CHR 0xBF /* Red channel black level compensation */
#define AD_CHGb 0xC0 /* Gb channel black level compensation */
#define AD_CHGr 0xC1 /* Gr channel black level compensation */
#define RSVD_C2 0xC2 /* Reserved */
#define RSVD_C3 0xC3 /* Reserved */
#define RSVD_C4 0xC4 /* Reserved */
#define RSVD_C5 0xC5 /* Reserved */
#define RSVD_C6 0xC6 /* Reserved */
#define RSVD_C7 0xC7 /* Reserved */
#define RSVD_C8 0xC8 /* Reserved */
#define SATCTR 0xC9 /* Saturation control */
#define SET_REG(reg, x) (##reg_DEFAULT|x)
#endif //__OV7670_REG_REGS_H__

View File

@ -1,33 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV7725 driver.
*
*/
#ifndef __OV7725_H__
#define __OV7725_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int ov7725_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int ov7725_init(sensor_t *sensor);
#endif // __OV7725_H__

View File

@ -1,335 +0,0 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV2640 register definitions.
*/
#ifndef __REG_REGS_H__
#define __REG_REGS_H__
#define GAIN 0x00 /* AGC Gain control gain setting */
#define BLUE 0x01 /* AWB Blue channel gain setting */
#define RED 0x02 /* AWB Red channel gain setting */
#define GREEN 0x03 /* AWB Green channel gain setting */
#define BAVG 0x05 /* U/B Average Level */
#define GAVG 0x06 /* Y/Gb Average Level */
#define RAVG 0x07 /* V/R Average Level */
#define AECH 0x08 /* Exposure Value AEC MSBs */
#define COM2 0x09 /* Common Control 2 */
#define COM2_SOFT_SLEEP 0x10 /* Soft sleep mode */
#define COM2_OUT_DRIVE_1x 0x00 /* Output drive capability 1x */
#define COM2_OUT_DRIVE_2x 0x01 /* Output drive capability 2x */
#define COM2_OUT_DRIVE_3x 0x02 /* Output drive capability 3x */
#define COM2_OUT_DRIVE_4x 0x03 /* Output drive capability 4x */
#define REG_PID 0x0A /* Product ID Number MSB */
#define REG_VER 0x0B /* Product ID Number LSB */
#define COM3 0x0C /* Common Control 3 */
#define COM3_VFLIP 0x80 /* Vertical flip image ON/OFF selection */
#define COM3_MIRROR 0x40 /* Horizontal mirror image ON/OFF selection */
#define COM3_SWAP_BR 0x20 /* Swap B/R output sequence in RGB output mode */
#define COM3_SWAP_YUV 0x10 /* Swap Y/UV output sequence in YUV output mode */
#define COM3_SWAP_MSB 0x08 /* Swap output MSB/LSB */
#define COM3_TRI_CLOCK 0x04 /* Tri-state option for output clock at power-down period */
#define COM3_TRI_DATA 0x02 /* Tri-state option for output data at power-down period */
#define COM3_COLOR_BAR 0x01 /* Sensor color bar test pattern output enable */
#define COM3_SET_CBAR(r, x) ((r&0xFE)|((x&1)<<0))
#define COM3_SET_MIRROR(r, x) ((r&0xBF)|((x&1)<<6))
#define COM3_SET_FLIP(r, x) ((r&0x7F)|((x&1)<<7))
#define COM4 0x0D /* Common Control 4 */
#define COM4_PLL_BYPASS 0x00 /* Bypass PLL */
#define COM4_PLL_4x 0x40 /* PLL frequency 4x */
#define COM4_PLL_6x 0x80 /* PLL frequency 6x */
#define COM4_PLL_8x 0xc0 /* PLL frequency 8x */
#define COM4_AEC_FULL 0x00 /* AEC evaluate full window */
#define COM4_AEC_1_2 0x10 /* AEC evaluate 1/2 window */
#define COM4_AEC_1_4 0x20 /* AEC evaluate 1/4 window */
#define COM4_AEC_2_3 0x30 /* AEC evaluate 2/3 window */
#define COM5 0x0E /* Common Control 5 */
#define COM5_AFR 0x80 /* Auto frame rate control ON/OFF selection (night mode) */
#define COM5_AFR_SPEED 0x40 /* Auto frame rate control speed selection */
#define COM5_AFR_0 0x00 /* No reduction of frame rate */
#define COM5_AFR_1_2 0x10 /* Max reduction to 1/2 frame rate */
#define COM5_AFR_1_4 0x20 /* Max reduction to 1/4 frame rate */
#define COM5_AFR_1_8 0x30 /* Max reduction to 1/8 frame rate */
#define COM5_AFR_4x 0x04 /* Add frame when AGC reaches 4x gain */
#define COM5_AFR_8x 0x08 /* Add frame when AGC reaches 8x gain */
#define COM5_AFR_16x 0x0c /* Add frame when AGC reaches 16x gain */
#define COM5_AEC_NO_LIMIT 0x01 /* No limit to AEC increase step */
#define COM6 0x0F /* Common Control 6 */
#define COM6_AUTO_WINDOW 0x01 /* Auto window setting ON/OFF selection when format changes */
#define AEC 0x10 /* AEC[7:0] (see register AECH for AEC[15:8]) */
#define CLKRC 0x11 /* Internal Clock */
#define COM7 0x12 /* Common Control 7 */
#define COM7_RESET 0x80 /* SCCB Register Reset */
#define COM7_RES_VGA 0x00 /* Resolution VGA */
#define COM7_RES_QVGA 0x40 /* Resolution QVGA */
#define COM7_BT656 0x20 /* BT.656 protocol ON/OFF */
#define COM7_SENSOR_RAW 0x10 /* Sensor RAW */
#define COM7_FMT_GBR422 0x00 /* RGB output format GBR422 */
#define COM7_FMT_RGB565 0x04 /* RGB output format RGB565 */
#define COM7_FMT_RGB555 0x08 /* RGB output format RGB555 */
#define COM7_FMT_RGB444 0x0C /* RGB output format RGB444 */
#define COM7_FMT_YUV 0x00 /* Output format YUV */
#define COM7_FMT_P_BAYER 0x01 /* Output format Processed Bayer RAW */
#define COM7_FMT_RGB 0x02 /* Output format RGB */
#define COM7_FMT_R_BAYER 0x03 /* Output format Bayer RAW */
#define COM7_SET_FMT(r, x) ((r&0xFC)|((x&0x3)<<0))
#define COM7_SET_RGB(r, x) ((r&0xF0)|(x&0x0C)|COM7_FMT_RGB)
#define COM8 0x13 /* Common Control 8 */
#define COM8_FAST_AUTO 0x80 /* Enable fast AGC/AEC algorithm */
#define COM8_STEP_VSYNC 0x00 /* AEC - Step size limited to vertical blank */
#define COM8_STEP_UNLIMIT 0x40 /* AEC - Step size unlimited step size */
#define COM8_BANDF_EN 0x20 /* Banding filter ON/OFF */
#define COM8_AEC_BANDF 0x10 /* Enable AEC below banding value */
#define COM8_AEC_FINE_EN 0x08 /* Fine AEC ON/OFF control */
#define COM8_AGC_EN 0x04 /* AGC Enable */
#define COM8_AWB_EN 0x02 /* AWB Enable */
#define COM8_AEC_EN 0x01 /* AEC Enable */
#define COM8_SET_AGC(r, x) ((r&0xFB)|((x&0x1)<<2))
#define COM8_SET_AWB(r, x) ((r&0xFD)|((x&0x1)<<1))
#define COM8_SET_AEC(r, x) ((r&0xFE)|((x&0x1)<<0))
#define COM9 0x14 /* Common Control 9 */
#define COM9_HISTO_AVG 0x80 /* Histogram or average based AEC/AGC selection */
#define COM9_AGC_GAIN_2x 0x00 /* Automatic Gain Ceiling 2x */
#define COM9_AGC_GAIN_4x 0x10 /* Automatic Gain Ceiling 4x */
#define COM9_AGC_GAIN_8x 0x20 /* Automatic Gain Ceiling 8x */
#define COM9_AGC_GAIN_16x 0x30 /* Automatic Gain Ceiling 16x */
#define COM9_AGC_GAIN_32x 0x40 /* Automatic Gain Ceiling 32x */
#define COM9_DROP_VSYNC 0x04 /* Drop VSYNC output of corrupt frame */
#define COM9_DROP_HREF 0x02 /* Drop HREF output of corrupt frame */
#define COM9_SET_AGC(r, x) ((r&0x8F)|((x&0x07)<<4))
#define COM10 0x15 /* Common Control 10 */
#define COM10_NEGATIVE 0x80 /* Output negative data */
#define COM10_HSYNC_EN 0x40 /* HREF changes to HSYNC */
#define COM10_PCLK_FREE 0x00 /* PCLK output option: free running PCLK */
#define COM10_PCLK_MASK 0x20 /* PCLK output option: masked during horizontal blank */
#define COM10_PCLK_REV 0x10 /* PCLK reverse */
#define COM10_HREF_REV 0x08 /* HREF reverse */
#define COM10_VSYNC_FALLING 0x00 /* VSYNC changes on falling edge of PCLK */
#define COM10_VSYNC_RISING 0x04 /* VSYNC changes on rising edge of PCLK */
#define COM10_VSYNC_NEG 0x02 /* VSYNC negative */
#define COM10_OUT_RANGE_8 0x01 /* Output data range: Full range */
#define COM10_OUT_RANGE_10 0x00 /* Output data range: Data from [10] to [F0] (8 MSBs) */
#define REG16 0x16 /* Register 16 */
#define REG16_BIT_SHIFT 0x80 /* Bit shift test pattern options */
#define HSTART 0x17 /* Horizontal Frame (HREF column) Start 8 MSBs (2 LSBs are at HREF[5:4]) */
#define HSIZE 0x18 /* Horizontal Sensor Size (2 LSBs are at HREF[1:0]) */
#define VSTART 0x19 /* Vertical Frame (row) Start 8 MSBs (1 LSB is at HREF[6]) */
#define VSIZE 0x1A /* Vertical Sensor Size (1 LSB is at HREF[2]) */
#define PSHFT 0x1B /* Data Format - Pixel Delay Select */
#define REG_MIDH 0x1C /* Manufacturer ID Byte High */
#define REG_MIDL 0x1D /* Manufacturer ID Byte Low */
#define LAEC 0x1F /* Fine AEC Value - defines exposure value less than one row period */
#define COM11 0x20 /* Common Control 11 */
#define COM11_SNGL_FRAME_EN 0x02 /* Single frame ON/OFF selection */
#define COM11_SNGL_XFR_TRIG 0x01 /* Single frame transfer trigger */
#define BDBASE 0x22 /* Banding Filter Minimum AEC Value */
#define DBSTEP 0x23 /* Banding Filter Maximum Step */
#define AEW 0x24 /* AGC/AEC - Stable Operating Region (Upper Limit) */
#define AEB 0x25 /* AGC/AEC - Stable Operating Region (Lower Limit) */
#define VPT 0x26 /* AGC/AEC Fast Mode Operating Region */
#define REG28 0x28 /* Selection on the number of dummy rows, N */
#define HOUTSIZE 0x29 /* Horizontal Data Output Size MSBs (2 LSBs at register EXHCH[1:0]) */
#define EXHCH 0x2A /* Dummy Pixel Insert MSB */
#define EXHCL 0x2B /* Dummy Pixel Insert LSB */
#define VOUTSIZE 0x2C /* Vertical Data Output Size MSBs (LSB at register EXHCH[2]) */
#define ADVFL 0x2D /* LSB of Insert Dummy Rows in Vertical Sync (1 bit equals 1 row) */
#define ADVFH 0x2E /* MSB of Insert Dummy Rows in Vertical Sync */
#define YAVE 0x2F /* Y/G Channel Average Value */
#define LUMHTH 0x30 /* Histogram AEC/AGC Luminance High Level Threshold */
#define LUMLTH 0x31 /* Histogram AEC/AGC Luminance Low Level Threshold */
#define HREF 0x32 /* Image Start and Size Control */
#define DM_LNL 0x33 /* Dummy Row Low 8 Bits */
#define DM_LNH 0x34 /* Dummy Row High 8 Bits */
#define ADOFF_B 0x35 /* AD Offset Compensation Value for B Channel */
#define ADOFF_R 0x36 /* AD Offset Compensation Value for R Channel */
#define ADOFF_GB 0x37 /* AD Offset Compensation Value for GB Channel */
#define ADOFF_GR 0x38 /* AD Offset Compensation Value for GR Channel */
#define OFF_B 0x39 /* AD Offset Compensation Value for B Channel */
#define OFF_R 0x3A /* AD Offset Compensation Value for R Channel */
#define OFF_GB 0x3B /* AD Offset Compensation Value for GB Channel */
#define OFF_GR 0x3C /* AD Offset Compensation Value for GR Channel */
#define COM12 0x3D /* DC offset compensation for analog process */
#define COM13 0x3E /* Common Control 13 */
#define COM13_BLC_EN 0x80 /* BLC enable */
#define COM13_ADC_EN 0x40 /* ADC channel BLC ON/OFF control */
#define COM13_ANALOG_BLC 0x20 /* Analog processing channel BLC ON/OFF control */
#define COM13_ABLC_GAIN_EN 0x04 /* ABLC gain trigger enable */
#define COM14 0x3F /* Common Control 14 */
#define COM15 0x40 /* Common Control 15 */
#define COM16 0x41 /* Common Control 16 */
#define TGT_B 0x42 /* BLC Blue Channel Target Value */
#define TGT_R 0x43 /* BLC Red Channel Target Value */
#define TGT_GB 0x44 /* BLC Gb Channel Target Value */
#define TGT_GR 0x45 /* BLC Gr Channel Target Value */
#define LC_CTR 0x46 /* Lens Correction Control */
#define LC_CTR_RGB_COMP_1 0x00 /* R, G, and B channel compensation coefficient is set by LC_COEF (0x49) */
#define LC_CTR_RGB_COMP_3 0x04 /* R, G, and B channel compensation coefficient is set by registers
LC_COEFB (0x4B), LC_COEF (0x49), and LC_COEFR (0x4C), respectively */
#define LC_CTR_EN 0x01 /* Lens correction enable */
#define LC_XC 0x47 /* X Coordinate of Lens Correction Center Relative to Array Center */
#define LC_YC 0x48 /* Y Coordinate of Lens Correction Center Relative to Array Center */
#define LC_COEF 0x49 /* Lens Correction Coefficient */
#define LC_RADI 0x4A /* Lens Correction Radius */
#define LC_COEFB 0x4B /* Lens Correction B Channel Compensation Coefficient */
#define LC_COEFR 0x4C /* Lens Correction R Channel Compensation Coefficient */
#define FIXGAIN 0x4D /* Analog Fix Gain Amplifier */
#define AREF0 0x4E /* Sensor Reference Control */
#define AREF1 0x4F /* Sensor Reference Current Control */
#define AREF2 0x50 /* Analog Reference Control */
#define AREF3 0x51 /* ADC Reference Control */
#define AREF4 0x52 /* ADC Reference Control */
#define AREF5 0x53 /* ADC Reference Control */
#define AREF6 0x54 /* Analog Reference Control */
#define AREF7 0x55 /* Analog Reference Control */
#define UFIX 0x60 /* U Channel Fixed Value Output */
#define VFIX 0x61 /* V Channel Fixed Value Output */
#define AWBB_BLK 0x62 /* AWB Option for Advanced AWB */
#define AWB_CTRL0 0x63 /* AWB Control Byte 0 */
#define AWB_CTRL0_GAIN_EN 0x80 /* AWB gain enable */
#define AWB_CTRL0_CALC_EN 0x40 /* AWB calculate enable */
#define AWB_CTRL0_WBC_MASK 0x0F /* WBC threshold 2 */
#define DSP_CTRL1 0x64 /* DSP Control Byte 1 */
#define DSP_CTRL1_FIFO_EN 0x80 /* FIFO enable/disable selection */
#define DSP_CTRL1_UV_EN 0x40 /* UV adjust function ON/OFF selection */
#define DSP_CTRL1_SDE_EN 0x20 /* SDE enable */
#define DSP_CTRL1_MTRX_EN 0x10 /* Color matrix ON/OFF selection */
#define DSP_CTRL1_INTRP_EN 0x08 /* Interpolation ON/OFF selection */
#define DSP_CTRL1_GAMMA_EN 0x04 /* Gamma function ON/OFF selection */
#define DSP_CTRL1_BLACK_EN 0x02 /* Black defect auto correction ON/OFF */
#define DSP_CTRL1_WHITE_EN 0x01 /* White defect auto correction ON/OFF */
#define DSP_CTRL2 0x65 /* DSP Control Byte 2 */
#define DSP_CTRL2_VDCW_EN 0x08 /* Vertical DCW enable */
#define DSP_CTRL2_HDCW_EN 0x04 /* Horizontal DCW enable */
#define DSP_CTRL2_VZOOM_EN 0x02 /* Vertical zoom out enable */
#define DSP_CTRL2_HZOOM_EN 0x01 /* Horizontal zoom out enable */
#define DSP_CTRL3 0x66 /* DSP Control Byte 3 */
#define DSP_CTRL3_UV_EN 0x80 /* UV output sequence option */
#define DSP_CTRL3_CBAR_EN 0x20 /* DSP color bar ON/OFF selection */
#define DSP_CTRL3_FIFO_EN 0x08 /* FIFO power down ON/OFF selection */
#define DSP_CTRL3_SCAL1_PWDN 0x04 /* Scaling module power down control 1 */
#define DSP_CTRL3_SCAL2_PWDN 0x02 /* Scaling module power down control 2 */
#define DSP_CTRL3_INTRP_PWDN 0x01 /* Interpolation module power down control */
#define DSP_CTRL3_SET_CBAR(r, x) ((r&0xDF)|((x&1)<<5))
#define DSP_CTRL4 0x67 /* DSP Control Byte 4 */
#define DSP_CTRL4_YUV_RGB 0x00 /* Output selection YUV or RGB */
#define DSP_CTRL4_RAW8 0x02 /* Output selection RAW8 */
#define DSP_CTRL4_RAW10 0x03 /* Output selection RAW10 */
#define AWB_BIAS 0x68 /* AWB BLC Level Clip */
#define AWB_CTRL1 0x69 /* AWB Control 1 */
#define AWB_CTRL2 0x6A /* AWB Control 2 */
#define AWB_CTRL3 0x6B /* AWB Control 3 */
#define AWB_CTRL3_ADVANCED 0x80 /* AWB mode select - Advanced AWB */
#define AWB_CTRL3_SIMPLE 0x00 /* AWB mode select - Simple AWB */
#define AWB_CTRL4 0x6C /* AWB Control 4 */
#define AWB_CTRL5 0x6D /* AWB Control 5 */
#define AWB_CTRL6 0x6E /* AWB Control 6 */
#define AWB_CTRL7 0x6F /* AWB Control 7 */
#define AWB_CTRL8 0x70 /* AWB Control 8 */
#define AWB_CTRL9 0x71 /* AWB Control 9 */
#define AWB_CTRL10 0x72 /* AWB Control 10 */
#define AWB_CTRL11 0x73 /* AWB Control 11 */
#define AWB_CTRL12 0x74 /* AWB Control 12 */
#define AWB_CTRL13 0x75 /* AWB Control 13 */
#define AWB_CTRL14 0x76 /* AWB Control 14 */
#define AWB_CTRL15 0x77 /* AWB Control 15 */
#define AWB_CTRL16 0x78 /* AWB Control 16 */
#define AWB_CTRL17 0x79 /* AWB Control 17 */
#define AWB_CTRL18 0x7A /* AWB Control 18 */
#define AWB_CTRL19 0x7B /* AWB Control 19 */
#define AWB_CTRL20 0x7C /* AWB Control 20 */
#define AWB_CTRL21 0x7D /* AWB Control 21 */
#define GAM1 0x7E /* Gamma Curve 1st Segment Input End Point 0x04 Output Value */
#define GAM2 0x7F /* Gamma Curve 2nd Segment Input End Point 0x08 Output Value */
#define GAM3 0x80 /* Gamma Curve 3rd Segment Input End Point 0x10 Output Value */
#define GAM4 0x81 /* Gamma Curve 4th Segment Input End Point 0x20 Output Value */
#define GAM5 0x82 /* Gamma Curve 5th Segment Input End Point 0x28 Output Value */
#define GAM6 0x83 /* Gamma Curve 6th Segment Input End Point 0x30 Output Value */
#define GAM7 0x84 /* Gamma Curve 7th Segment Input End Point 0x38 Output Value */
#define GAM8 0x85 /* Gamma Curve 8th Segment Input End Point 0x40 Output Value */
#define GAM9 0x86 /* Gamma Curve 9th Segment Input End Point 0x48 Output Value */
#define GAM10 0x87 /* Gamma Curve 10th Segment Input End Point 0x50 Output Value */
#define GAM11 0x88 /* Gamma Curve 11th Segment Input End Point 0x60 Output Value */
#define GAM12 0x89 /* Gamma Curve 12th Segment Input End Point 0x70 Output Value */
#define GAM13 0x8A /* Gamma Curve 13th Segment Input End Point 0x90 Output Value */
#define GAM14 0x8B /* Gamma Curve 14th Segment Input End Point 0xB0 Output Value */
#define GAM15 0x8C /* Gamma Curve 15th Segment Input End Point 0xD0 Output Value */
#define SLOP 0x8D /* Gamma Curve Highest Segment Slope */
#define DNSTH 0x8E /* De-noise Threshold */
#define EDGE0 0x8F /* Edge Enhancement Strength Control */
#define EDGE1 0x90 /* Edge Enhancement Threshold Control */
#define DNSOFF 0x91 /* Auto De-noise Threshold Control */
#define EDGE2 0x92 /* Edge Enhancement Strength Upper Limit */
#define EDGE3 0x93 /* Edge Enhancement Strength Upper Limit */
#define MTX1 0x94 /* Matrix Coefficient 1 */
#define MTX2 0x95 /* Matrix Coefficient 2 */
#define MTX3 0x96 /* Matrix Coefficient 3 */
#define MTX4 0x97 /* Matrix Coefficient 4 */
#define MTX5 0x98 /* Matrix Coefficient 5 */
#define MTX6 0x99 /* Matrix Coefficient 6 */
#define MTX_CTRL 0x9A /* Matrix Control */
#define MTX_CTRL_DBL_EN 0x80 /* Matrix double ON/OFF selection */
#define BRIGHTNESS 0x9B /* Brightness Control */
#define CONTRAST 0x9C /* Contrast Gain */
#define UVADJ0 0x9E /* Auto UV Adjust Control 0 */
#define UVADJ1 0x9F /* Auto UV Adjust Control 1 */
#define SCAL0 0xA0 /* DCW Ratio Control */
#define SCAL1 0xA1 /* Horizontal Zoom Out Control */
#define SCAL2 0xA2 /* Vertical Zoom Out Control */
#define FIFODLYM 0xA3 /* FIFO Manual Mode Delay Control */
#define FIFODLYA 0xA4 /* FIFO Auto Mode Delay Control */
#define SDE 0xA6 /* Special Digital Effect Control */
#define SDE_NEGATIVE_EN 0x40 /* Negative image enable */
#define SDE_GRAYSCALE_EN 0x20 /* Gray scale image enable */
#define SDE_V_FIXED_EN 0x10 /* V fixed value enable */
#define SDE_U_FIXED_EN 0x08 /* U fixed value enable */
#define SDE_CONT_BRIGHT_EN 0x04 /* Contrast/Brightness enable */
#define SDE_SATURATION_EN 0x02 /* Saturation enable */
#define SDE_HUE_EN 0x01 /* Hue enable */
#define USAT 0xA7 /* U Component Saturation Gain */
#define VSAT 0xA8 /* V Component Saturation Gain */
#define HUECOS 0xA9 /* Cosine value × 0x80 */
#define HUESIN 0xAA /* Sine value × 0x80 */
#define SIGN_BIT 0xAB /* Sign Bit for Hue and Brightness */
#define DSPAUTO 0xAC /* DSP Auto Function ON/OFF Control */
#define DSPAUTO_AWB_EN 0x80 /* AWB auto threshold control */
#define DSPAUTO_DENOISE_EN 0x40 /* De-noise auto threshold control */
#define DSPAUTO_EDGE_EN 0x20 /* Sharpness (edge enhancement) auto strength control */
#define DSPAUTO_UV_EN 0x10 /* UV adjust auto slope control */
#define DSPAUTO_SCAL0_EN 0x08 /* Auto scaling factor control (register SCAL0 (0xA0)) */
#define DSPAUTO_SCAL1_EN 0x04 /* Auto scaling factor control (registers SCAL1 (0xA1 and SCAL2 (0xA2))*/
#define SET_REG(reg, x) (##reg_DEFAULT|x)
#endif //__REG_REGS_H__

View File

@ -1,522 +0,0 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "soc/i2s_struct.h"
#include "esp_idf_version.h"
#if (ESP_IDF_VERSION_MAJOR >= 4) && (ESP_IDF_VERSION_MINOR > 1)
#include "hal/gpio_ll.h"
#else
#include "soc/gpio_periph.h"
#define esp_rom_delay_us ets_delay_us
static inline int gpio_ll_get_level(gpio_dev_t *hw, int gpio_num)
{
if (gpio_num < 32) {
return (hw->in >> gpio_num) & 0x1;
} else {
return (hw->in1.data >> (gpio_num - 32)) & 0x1;
}
}
#endif
#include "ll_cam.h"
#include "xclk.h"
#include "cam_hal.h"
static const char *TAG = "esp32 ll_cam";
#define I2S_ISR_ENABLE(i) {I2S0.int_clr.i = 1;I2S0.int_ena.i = 1;}
#define I2S_ISR_DISABLE(i) {I2S0.int_ena.i = 0;I2S0.int_clr.i = 1;}
typedef union {
struct {
uint32_t sample2:8;
uint32_t unused2:8;
uint32_t sample1:8;
uint32_t unused1:8;
};
uint32_t val;
} dma_elem_t;
typedef enum {
/* camera sends byte sequence: s1, s2, s3, s4, ...
* fifo receives: 00 s1 00 s2, 00 s2 00 s3, 00 s3 00 s4, ...
*/
SM_0A0B_0B0C = 0,
/* camera sends byte sequence: s1, s2, s3, s4, ...
* fifo receives: 00 s1 00 s2, 00 s3 00 s4, ...
*/
SM_0A0B_0C0D = 1,
/* camera sends byte sequence: s1, s2, s3, s4, ...
* fifo receives: 00 s1 00 00, 00 s2 00 00, 00 s3 00 00, ...
*/
SM_0A00_0B00 = 3,
} i2s_sampling_mode_t;
typedef size_t (*dma_filter_t)(uint8_t* dst, const uint8_t* src, size_t len);
static i2s_sampling_mode_t sampling_mode = SM_0A00_0B00;
static size_t ll_cam_bytes_per_sample(i2s_sampling_mode_t mode)
{
switch(mode) {
case SM_0A00_0B00:
return 4;
case SM_0A0B_0B0C:
return 4;
case SM_0A0B_0C0D:
return 2;
default:
assert(0 && "invalid sampling mode");
return 0;
}
}
static size_t IRAM_ATTR ll_cam_dma_filter_jpeg(uint8_t* dst, const uint8_t* src, size_t len)
{
const dma_elem_t* dma_el = (const dma_elem_t*)src;
size_t elements = len / sizeof(dma_elem_t);
size_t end = elements / 4;
// manually unrolling 4 iterations of the loop here
for (size_t i = 0; i < end; ++i) {
dst[0] = dma_el[0].sample1;
dst[1] = dma_el[1].sample1;
dst[2] = dma_el[2].sample1;
dst[3] = dma_el[3].sample1;
dma_el += 4;
dst += 4;
}
return elements;
}
static size_t IRAM_ATTR ll_cam_dma_filter_grayscale(uint8_t* dst, const uint8_t* src, size_t len)
{
const dma_elem_t* dma_el = (const dma_elem_t*)src;
size_t elements = len / sizeof(dma_elem_t);
size_t end = elements / 4;
for (size_t i = 0; i < end; ++i) {
// manually unrolling 4 iterations of the loop here
dst[0] = dma_el[0].sample1;
dst[1] = dma_el[1].sample1;
dst[2] = dma_el[2].sample1;
dst[3] = dma_el[3].sample1;
dma_el += 4;
dst += 4;
}
return elements;
}
static size_t IRAM_ATTR ll_cam_dma_filter_grayscale_highspeed(uint8_t* dst, const uint8_t* src, size_t len)
{
const dma_elem_t* dma_el = (const dma_elem_t*)src;
size_t elements = len / sizeof(dma_elem_t);
size_t end = elements / 8;
for (size_t i = 0; i < end; ++i) {
// manually unrolling 4 iterations of the loop here
dst[0] = dma_el[0].sample1;
dst[1] = dma_el[2].sample1;
dst[2] = dma_el[4].sample1;
dst[3] = dma_el[6].sample1;
dma_el += 8;
dst += 4;
}
// the final sample of a line in SM_0A0B_0B0C sampling mode needs special handling
if ((elements & 0x7) != 0) {
dst[0] = dma_el[0].sample1;
dst[1] = dma_el[2].sample1;
elements += 1;
}
return elements / 2;
}
static size_t IRAM_ATTR ll_cam_dma_filter_yuyv(uint8_t* dst, const uint8_t* src, size_t len)
{
const dma_elem_t* dma_el = (const dma_elem_t*)src;
size_t elements = len / sizeof(dma_elem_t);
size_t end = elements / 4;
for (size_t i = 0; i < end; ++i) {
dst[0] = dma_el[0].sample1;//y0
dst[1] = dma_el[0].sample2;//u
dst[2] = dma_el[1].sample1;//y1
dst[3] = dma_el[1].sample2;//v
dst[4] = dma_el[2].sample1;//y0
dst[5] = dma_el[2].sample2;//u
dst[6] = dma_el[3].sample1;//y1
dst[7] = dma_el[3].sample2;//v
dma_el += 4;
dst += 8;
}
return elements * 2;
}
static size_t IRAM_ATTR ll_cam_dma_filter_yuyv_highspeed(uint8_t* dst, const uint8_t* src, size_t len)
{
const dma_elem_t* dma_el = (const dma_elem_t*)src;
size_t elements = len / sizeof(dma_elem_t);
size_t end = elements / 8;
for (size_t i = 0; i < end; ++i) {
dst[0] = dma_el[0].sample1;//y0
dst[1] = dma_el[1].sample1;//u
dst[2] = dma_el[2].sample1;//y1
dst[3] = dma_el[3].sample1;//v
dst[4] = dma_el[4].sample1;//y0
dst[5] = dma_el[5].sample1;//u
dst[6] = dma_el[6].sample1;//y1
dst[7] = dma_el[7].sample1;//v
dma_el += 8;
dst += 8;
}
if ((elements & 0x7) != 0) {
dst[0] = dma_el[0].sample1;//y0
dst[1] = dma_el[1].sample1;//u
dst[2] = dma_el[2].sample1;//y1
dst[3] = dma_el[2].sample2;//v
elements += 4;
}
return elements;
}
static void IRAM_ATTR ll_cam_vsync_isr(void *arg)
{
//DBG_PIN_SET(1);
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
// filter
ets_delay_us(1);
if (gpio_ll_get_level(&GPIO, cam->vsync_pin) == !cam->vsync_invert) {
ll_cam_send_event(cam, CAM_VSYNC_EVENT, &HPTaskAwoken);
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
//DBG_PIN_SET(0);
}
static void IRAM_ATTR ll_cam_dma_isr(void *arg)
{
//DBG_PIN_SET(1);
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
typeof(I2S0.int_st) status = I2S0.int_st;
if (status.val == 0) {
return;
}
I2S0.int_clr.val = status.val;
if (status.in_suc_eof) {
ll_cam_send_event(cam, CAM_IN_SUC_EOF_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
//DBG_PIN_SET(0);
}
bool ll_cam_stop(cam_obj_t *cam)
{
I2S0.conf.rx_start = 0;
I2S_ISR_DISABLE(in_suc_eof);
I2S0.in_link.stop = 1;
return true;
}
esp_err_t ll_cam_deinit(cam_obj_t *cam)
{
gpio_isr_handler_remove(cam->vsync_pin);
if (cam->cam_intr_handle) {
esp_intr_free(cam->cam_intr_handle);
cam->cam_intr_handle = NULL;
}
return ESP_OK;
}
bool ll_cam_start(cam_obj_t *cam, int frame_pos)
{
I2S0.conf.rx_start = 0;
I2S_ISR_ENABLE(in_suc_eof);
I2S0.conf.rx_reset = 1;
I2S0.conf.rx_reset = 0;
I2S0.conf.rx_fifo_reset = 1;
I2S0.conf.rx_fifo_reset = 0;
I2S0.lc_conf.in_rst = 1;
I2S0.lc_conf.in_rst = 0;
I2S0.lc_conf.ahbm_fifo_rst = 1;
I2S0.lc_conf.ahbm_fifo_rst = 0;
I2S0.lc_conf.ahbm_rst = 1;
I2S0.lc_conf.ahbm_rst = 0;
I2S0.rx_eof_num = cam->dma_half_buffer_size / sizeof(dma_elem_t);
I2S0.in_link.addr = ((uint32_t)&cam->dma[0]) & 0xfffff;
I2S0.in_link.start = 1;
I2S0.conf.rx_start = 1;
return true;
}
esp_err_t ll_cam_config(cam_obj_t *cam, const camera_config_t *config)
{
// Enable and configure I2S peripheral
periph_module_enable(PERIPH_I2S0_MODULE);
I2S0.conf.rx_reset = 1;
I2S0.conf.rx_reset = 0;
I2S0.conf.rx_fifo_reset = 1;
I2S0.conf.rx_fifo_reset = 0;
I2S0.lc_conf.in_rst = 1;
I2S0.lc_conf.in_rst = 0;
I2S0.lc_conf.ahbm_fifo_rst = 1;
I2S0.lc_conf.ahbm_fifo_rst = 0;
I2S0.lc_conf.ahbm_rst = 1;
I2S0.lc_conf.ahbm_rst = 0;
I2S0.conf.rx_slave_mod = 1;
I2S0.conf.rx_right_first = 0;
I2S0.conf.rx_msb_right = 0;
I2S0.conf.rx_msb_shift = 0;
I2S0.conf.rx_mono = 0;
I2S0.conf.rx_short_sync = 0;
I2S0.conf2.lcd_en = 1;
I2S0.conf2.camera_en = 1;
// Configure clock divider
I2S0.clkm_conf.clkm_div_a = 0;
I2S0.clkm_conf.clkm_div_b = 0;
I2S0.clkm_conf.clkm_div_num = 2;
I2S0.fifo_conf.dscr_en = 1;
I2S0.fifo_conf.rx_fifo_mod = sampling_mode;
I2S0.fifo_conf.rx_fifo_mod_force_en = 1;
I2S0.conf_chan.rx_chan_mod = 1;
I2S0.sample_rate_conf.rx_bits_mod = 0;
I2S0.timing.val = 0;
I2S0.timing.rx_dsync_sw = 1;
return ESP_OK;
}
void ll_cam_vsync_intr_enable(cam_obj_t *cam, bool en)
{
if (en) {
gpio_intr_enable(cam->vsync_pin);
} else {
gpio_intr_disable(cam->vsync_pin);
}
}
esp_err_t ll_cam_set_pin(cam_obj_t *cam, const camera_config_t *config)
{
gpio_config_t io_conf = {0};
io_conf.intr_type = cam->vsync_invert ? GPIO_PIN_INTR_NEGEDGE : GPIO_PIN_INTR_POSEDGE;
io_conf.pin_bit_mask = 1ULL << config->pin_vsync;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_up_en = 1;
io_conf.pull_down_en = 0;
gpio_config(&io_conf);
gpio_install_isr_service(ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM);
gpio_isr_handler_add(config->pin_vsync, ll_cam_vsync_isr, cam);
gpio_intr_disable(config->pin_vsync);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_pclk], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_pclk, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_pclk, GPIO_FLOATING);
gpio_matrix_in(config->pin_pclk, I2S0I_WS_IN_IDX, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_vsync], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_vsync, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_vsync, GPIO_FLOATING);
gpio_matrix_in(config->pin_vsync, I2S0I_V_SYNC_IDX, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_href], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_href, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_href, GPIO_FLOATING);
gpio_matrix_in(config->pin_href, I2S0I_H_SYNC_IDX, false);
int data_pins[8] = {
config->pin_d0, config->pin_d1, config->pin_d2, config->pin_d3, config->pin_d4, config->pin_d5, config->pin_d6, config->pin_d7,
};
for (int i = 0; i < 8; i++) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[data_pins[i]], PIN_FUNC_GPIO);
gpio_set_direction(data_pins[i], GPIO_MODE_INPUT);
gpio_set_pull_mode(data_pins[i], GPIO_FLOATING);
gpio_matrix_in(data_pins[i], I2S0I_DATA_IN0_IDX + i, false);
}
gpio_matrix_in(0x38, I2S0I_H_ENABLE_IDX, false);
return ESP_OK;
}
esp_err_t ll_cam_init_isr(cam_obj_t *cam)
{
return esp_intr_alloc(ETS_I2S0_INTR_SOURCE, ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM, ll_cam_dma_isr, cam, &cam->cam_intr_handle);
}
void ll_cam_do_vsync(cam_obj_t *cam)
{
}
uint8_t ll_cam_get_dma_align(cam_obj_t *cam)
{
return 0;
}
static bool ll_cam_calc_rgb_dma(cam_obj_t *cam){
size_t dma_half_buffer_max = CONFIG_CAMERA_DMA_BUFFER_SIZE_MAX / 2 / cam->dma_bytes_per_item;
size_t dma_buffer_max = 2 * dma_half_buffer_max;
size_t node_max = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE / cam->dma_bytes_per_item;
size_t line_width = cam->width * cam->in_bytes_per_pixel;
size_t image_size = cam->height * line_width;
if (image_size > (4 * 1024 * 1024) || (line_width > dma_half_buffer_max)) {
ESP_LOGE(TAG, "Resolution too high");
return 0;
}
size_t node_size = node_max;
size_t nodes_per_line = 1;
size_t lines_per_node = 1;
size_t lines_per_half_buffer = 1;
size_t dma_half_buffer_min = node_max;
size_t dma_half_buffer = dma_half_buffer_max;
size_t dma_buffer_size = dma_buffer_max;
// Calculate DMA Node Size so that it's divisable by or divisor of the line width
if(line_width >= node_max){
// One or more nodes will be requied for one line
for(size_t i = node_max; i > 0; i=i-1){
if ((line_width % i) == 0) {
node_size = i;
nodes_per_line = line_width / node_size;
break;
}
}
} else {
// One or more lines can fit into one node
for(size_t i = node_max; i > 0; i=i-1){
if ((i % line_width) == 0) {
node_size = i;
lines_per_node = node_size / line_width;
while((cam->height % lines_per_node) != 0){
lines_per_node = lines_per_node - 1;
node_size = lines_per_node * line_width;
}
break;
}
}
}
// Calculate minimum EOF size = max(mode_size, line_size)
dma_half_buffer_min = node_size * nodes_per_line;
// Calculate max EOF size divisable by node size
dma_half_buffer = (dma_half_buffer_max / dma_half_buffer_min) * dma_half_buffer_min;
// Adjust EOF size so that height will be divisable by the number of lines in each EOF
lines_per_half_buffer = dma_half_buffer / line_width;
while((cam->height % lines_per_half_buffer) != 0){
dma_half_buffer = dma_half_buffer - dma_half_buffer_min;
lines_per_half_buffer = dma_half_buffer / line_width;
}
// Calculate DMA size
dma_buffer_size =(dma_buffer_max / dma_half_buffer) * dma_half_buffer;
ESP_LOGI(TAG, "node_size: %4u, nodes_per_line: %u, lines_per_node: %u, dma_half_buffer_min: %5u, dma_half_buffer: %5u, lines_per_half_buffer: %2u, dma_buffer_size: %5u, image_size: %u",
node_size * cam->dma_bytes_per_item, nodes_per_line, lines_per_node, dma_half_buffer_min * cam->dma_bytes_per_item, dma_half_buffer * cam->dma_bytes_per_item, lines_per_half_buffer, dma_buffer_size * cam->dma_bytes_per_item, image_size);
cam->dma_buffer_size = dma_buffer_size * cam->dma_bytes_per_item;
cam->dma_half_buffer_size = dma_half_buffer * cam->dma_bytes_per_item;
cam->dma_node_buffer_size = node_size * cam->dma_bytes_per_item;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
return 1;
}
bool ll_cam_dma_sizes(cam_obj_t *cam)
{
cam->dma_bytes_per_item = ll_cam_bytes_per_sample(sampling_mode);
if (cam->jpeg_mode) {
cam->dma_half_buffer_cnt = 8;
cam->dma_node_buffer_size = 2048;
cam->dma_half_buffer_size = cam->dma_node_buffer_size * 2;
cam->dma_buffer_size = cam->dma_half_buffer_cnt * cam->dma_half_buffer_size;
} else {
return ll_cam_calc_rgb_dma(cam);
}
return 1;
}
static dma_filter_t dma_filter = ll_cam_dma_filter_jpeg;
size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in, size_t len)
{
//DBG_PIN_SET(1);
size_t r = dma_filter(out, in, len);
//DBG_PIN_SET(0);
return r;
}
esp_err_t ll_cam_set_sample_mode(cam_obj_t *cam, pixformat_t pix_format, uint32_t xclk_freq_hz, uint16_t sensor_pid)
{
if (pix_format == PIXFORMAT_GRAYSCALE) {
if (sensor_pid == OV3660_PID || sensor_pid == OV5640_PID || sensor_pid == NT99141_PID) {
if (xclk_freq_hz > 10000000) {
sampling_mode = SM_0A00_0B00;
dma_filter = ll_cam_dma_filter_yuyv_highspeed;
} else {
sampling_mode = SM_0A0B_0C0D;
dma_filter = ll_cam_dma_filter_yuyv;
}
cam->in_bytes_per_pixel = 1; // camera sends Y8
} else {
if (xclk_freq_hz > 10000000 && sensor_pid != OV7725_PID) {
sampling_mode = SM_0A00_0B00;
dma_filter = ll_cam_dma_filter_grayscale_highspeed;
} else {
sampling_mode = SM_0A0B_0C0D;
dma_filter = ll_cam_dma_filter_grayscale;
}
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
}
cam->fb_bytes_per_pixel = 1; // frame buffer stores Y8
} else if (pix_format == PIXFORMAT_YUV422 || pix_format == PIXFORMAT_RGB565) {
if (xclk_freq_hz > 10000000 && sensor_pid != OV7725_PID) {
if (sensor_pid == OV7670_PID) {
sampling_mode = SM_0A0B_0B0C;
} else {
sampling_mode = SM_0A00_0B00;
}
dma_filter = ll_cam_dma_filter_yuyv_highspeed;
} else {
sampling_mode = SM_0A0B_0C0D;
dma_filter = ll_cam_dma_filter_yuyv;
}
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
cam->fb_bytes_per_pixel = 2; // frame buffer stores YU/YV/RGB565
} else if (pix_format == PIXFORMAT_JPEG) {
cam->in_bytes_per_pixel = 1;
cam->fb_bytes_per_pixel = 1;
dma_filter = ll_cam_dma_filter_jpeg;
sampling_mode = SM_0A00_0B00;
} else {
ESP_LOGE(TAG, "Requested format is not supported");
return ESP_ERR_NOT_SUPPORTED;
}
I2S0.fifo_conf.rx_fifo_mod = sampling_mode;
return ESP_OK;
}

View File

@ -1,402 +0,0 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "soc/system_reg.h"
#include "soc/i2s_struct.h"
#include "hal/gpio_ll.h"
#include "ll_cam.h"
#include "xclk.h"
#include "cam_hal.h"
static const char *TAG = "s2 ll_cam";
#define I2S_ISR_ENABLE(i) {I2S0.int_clr.i = 1;I2S0.int_ena.i = 1;}
#define I2S_ISR_DISABLE(i) {I2S0.int_ena.i = 0;I2S0.int_clr.i = 1;}
static void IRAM_ATTR ll_cam_vsync_isr(void *arg)
{
//DBG_PIN_SET(1);
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
// filter
ets_delay_us(1);
if (gpio_ll_get_level(&GPIO, cam->vsync_pin) == !cam->vsync_invert) {
ll_cam_send_event(cam, CAM_VSYNC_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
//DBG_PIN_SET(0);
}
static void IRAM_ATTR ll_cam_dma_isr(void *arg)
{
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
typeof(I2S0.int_st) status = I2S0.int_st;
if (status.val == 0) {
return;
}
I2S0.int_clr.val = status.val;
if (status.in_suc_eof) {
ll_cam_send_event(cam, CAM_IN_SUC_EOF_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
bool ll_cam_stop(cam_obj_t *cam)
{
I2S0.conf.rx_start = 0;
if (cam->jpeg_mode || !cam->psram_mode) {
I2S_ISR_DISABLE(in_suc_eof);
}
I2S0.in_link.stop = 1;
return true;
}
esp_err_t ll_cam_deinit(cam_obj_t *cam)
{
gpio_isr_handler_remove(cam->vsync_pin);
if (cam->cam_intr_handle) {
esp_intr_free(cam->cam_intr_handle);
cam->cam_intr_handle = NULL;
}
return ESP_OK;
}
bool ll_cam_start(cam_obj_t *cam, int frame_pos)
{
I2S0.conf.rx_start = 0;
if (cam->jpeg_mode || !cam->psram_mode) {
I2S_ISR_ENABLE(in_suc_eof);
}
I2S0.conf.rx_reset = 1;
I2S0.conf.rx_reset = 0;
I2S0.conf.rx_fifo_reset = 1;
I2S0.conf.rx_fifo_reset = 0;
I2S0.lc_conf.in_rst = 1;
I2S0.lc_conf.in_rst = 0;
I2S0.lc_conf.ahbm_fifo_rst = 1;
I2S0.lc_conf.ahbm_fifo_rst = 0;
I2S0.lc_conf.ahbm_rst = 1;
I2S0.lc_conf.ahbm_rst = 0;
I2S0.rx_eof_num = cam->dma_half_buffer_size; // Ping pong operation
if (!cam->psram_mode) {
I2S0.in_link.addr = ((uint32_t)&cam->dma[0]) & 0xfffff;
} else {
I2S0.in_link.addr = ((uint32_t)&cam->frames[frame_pos].dma[0]) & 0xfffff;
}
I2S0.in_link.start = 1;
I2S0.conf.rx_start = 1;
return true;
}
esp_err_t ll_cam_config(cam_obj_t *cam, const camera_config_t *config)
{
esp_err_t err = camera_enable_out_clock(config);
if(err != ESP_OK) {
return err;
}
periph_module_enable(PERIPH_I2S0_MODULE);
// Configure the clock
I2S0.clkm_conf.clkm_div_num = 2; // 160MHz / 2 = 80MHz
I2S0.clkm_conf.clkm_div_b = 0;
I2S0.clkm_conf.clkm_div_a = 0;
I2S0.clkm_conf.clk_sel = 2;
I2S0.clkm_conf.clk_en = 1;
I2S0.conf.val = 0;
I2S0.fifo_conf.val = 0;
I2S0.fifo_conf.dscr_en = 1;
I2S0.lc_conf.ahbm_fifo_rst = 1;
I2S0.lc_conf.ahbm_fifo_rst = 0;
I2S0.lc_conf.ahbm_rst = 1;
I2S0.lc_conf.ahbm_rst = 0;
I2S0.lc_conf.check_owner = 0;
//I2S0.lc_conf.indscr_burst_en = 1;
//I2S0.lc_conf.ext_mem_bk_size = 0; // DMA access external memory block size. 0: 16 bytes, 1: 32 bytes, 2:64 bytes, 3:reserved
I2S0.timing.val = 0;
I2S0.int_ena.val = 0;
I2S0.int_clr.val = ~0;
I2S0.conf2.lcd_en = 1;
I2S0.conf2.camera_en = 1;
// Configuration data format
I2S0.conf.rx_slave_mod = 1;
I2S0.conf.rx_right_first = 0;
I2S0.conf.rx_msb_right = cam->swap_data;
I2S0.conf.rx_short_sync = 0;
I2S0.conf.rx_mono = 0;
I2S0.conf.rx_msb_shift = 0;
I2S0.conf.rx_dma_equal = 1;
// Configure sampling rate
I2S0.sample_rate_conf.rx_bck_div_num = 1;
I2S0.sample_rate_conf.rx_bits_mod = 8;
I2S0.conf1.rx_pcm_bypass = 1;
I2S0.conf2.i_v_sync_filter_en = 1;
I2S0.conf2.i_v_sync_filter_thres = 4;
I2S0.conf2.cam_sync_fifo_reset = 1;
I2S0.conf2.cam_sync_fifo_reset = 0;
I2S0.conf_chan.rx_chan_mod = 1;
I2S0.fifo_conf.rx_fifo_mod_force_en = 1;
I2S0.fifo_conf.rx_data_num = 32;
I2S0.fifo_conf.rx_fifo_mod = 2;
I2S0.lc_conf.in_rst = 1;
I2S0.lc_conf.in_rst = 0;
I2S0.conf.rx_start = 1;
return ESP_OK;
}
void ll_cam_vsync_intr_enable(cam_obj_t *cam, bool en)
{
if (en) {
gpio_intr_enable(cam->vsync_pin);
} else {
gpio_intr_disable(cam->vsync_pin);
}
}
esp_err_t ll_cam_set_pin(cam_obj_t *cam, const camera_config_t *config)
{
gpio_config_t io_conf = {0};
io_conf.intr_type = cam->vsync_invert ? GPIO_PIN_INTR_NEGEDGE : GPIO_PIN_INTR_POSEDGE;
io_conf.pin_bit_mask = 1ULL << config->pin_vsync;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_up_en = 1;
io_conf.pull_down_en = 0;
gpio_config(&io_conf);
gpio_install_isr_service(ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM);
gpio_isr_handler_add(config->pin_vsync, ll_cam_vsync_isr, cam);
gpio_intr_disable(config->pin_vsync);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_pclk], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_pclk, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_pclk, GPIO_FLOATING);
gpio_matrix_in(config->pin_pclk, I2S0I_WS_IN_IDX, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_vsync], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_vsync, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_vsync, GPIO_FLOATING);
gpio_matrix_in(config->pin_vsync, I2S0I_V_SYNC_IDX, cam->vsync_invert);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_href], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_href, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_href, GPIO_FLOATING);
gpio_matrix_in(config->pin_href, I2S0I_H_SYNC_IDX, false);
int data_pins[8] = {
config->pin_d0, config->pin_d1, config->pin_d2, config->pin_d3, config->pin_d4, config->pin_d5, config->pin_d6, config->pin_d7,
};
for (int i = 0; i < 8; i++) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[data_pins[i]], PIN_FUNC_GPIO);
gpio_set_direction(data_pins[i], GPIO_MODE_INPUT);
gpio_set_pull_mode(data_pins[i], GPIO_FLOATING);
// High bit alignment, IN16 is always the highest bit
// fifo accesses data by bit, when rx_bits_mod is 8, the data needs to be aligned by 8 bits
gpio_matrix_in(data_pins[i], I2S0I_DATA_IN0_IDX + 8 + i, false);
}
gpio_matrix_in(0x38, I2S0I_H_ENABLE_IDX, false);
return ESP_OK;
}
esp_err_t ll_cam_init_isr(cam_obj_t *cam)
{
return esp_intr_alloc(ETS_I2S0_INTR_SOURCE, ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM, ll_cam_dma_isr, cam, &cam->cam_intr_handle);
}
void ll_cam_do_vsync(cam_obj_t *cam)
{
ll_cam_vsync_intr_enable(cam, false);
gpio_matrix_in(cam->vsync_pin, I2S0I_V_SYNC_IDX, !cam->vsync_invert);
ets_delay_us(10);
gpio_matrix_in(cam->vsync_pin, I2S0I_V_SYNC_IDX, cam->vsync_invert);
ll_cam_vsync_intr_enable(cam, true);
}
uint8_t ll_cam_get_dma_align(cam_obj_t *cam)
{
return 64;//16 << I2S0.lc_conf.ext_mem_bk_size;
}
static bool ll_cam_calc_rgb_dma(cam_obj_t *cam){
size_t node_max = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE / cam->dma_bytes_per_item;
size_t line_width = cam->width * cam->in_bytes_per_pixel;
size_t node_size = node_max;
size_t nodes_per_line = 1;
size_t lines_per_node = 1;
// Calculate DMA Node Size so that it's divisable by or divisor of the line width
if(line_width >= node_max){
// One or more nodes will be requied for one line
for(size_t i = node_max; i > 0; i=i-1){
if ((line_width % i) == 0) {
node_size = i;
nodes_per_line = line_width / node_size;
break;
}
}
} else {
// One or more lines can fit into one node
for(size_t i = node_max; i > 0; i=i-1){
if ((i % line_width) == 0) {
node_size = i;
lines_per_node = node_size / line_width;
while((cam->height % lines_per_node) != 0){
lines_per_node = lines_per_node - 1;
node_size = lines_per_node * line_width;
}
break;
}
}
}
ESP_LOGI(TAG, "node_size: %4u, nodes_per_line: %u, lines_per_node: %u",
node_size * cam->dma_bytes_per_item, nodes_per_line, lines_per_node);
cam->dma_node_buffer_size = node_size * cam->dma_bytes_per_item;
if (cam->psram_mode) {
cam->dma_buffer_size = cam->recv_size * cam->dma_bytes_per_item;
cam->dma_half_buffer_cnt = 2;
cam->dma_half_buffer_size = cam->dma_buffer_size / cam->dma_half_buffer_cnt;
} else {
size_t dma_half_buffer_max = CONFIG_CAMERA_DMA_BUFFER_SIZE_MAX / 2 / cam->dma_bytes_per_item;
if (line_width > dma_half_buffer_max) {
ESP_LOGE(TAG, "Resolution too high");
return 0;
}
// Calculate minimum EOF size = max(mode_size, line_size)
size_t dma_half_buffer_min = node_size * nodes_per_line;
// Calculate max EOF size divisable by node size
size_t dma_half_buffer = (dma_half_buffer_max / dma_half_buffer_min) * dma_half_buffer_min;
// Adjust EOF size so that height will be divisable by the number of lines in each EOF
size_t lines_per_half_buffer = dma_half_buffer / line_width;
while((cam->height % lines_per_half_buffer) != 0){
dma_half_buffer = dma_half_buffer - dma_half_buffer_min;
lines_per_half_buffer = dma_half_buffer / line_width;
}
// Calculate DMA size
size_t dma_buffer_max = 2 * dma_half_buffer_max;
size_t dma_buffer_size = dma_buffer_max;
dma_buffer_size =(dma_buffer_max / dma_half_buffer) * dma_half_buffer;
ESP_LOGI(TAG, "dma_half_buffer_min: %5u, dma_half_buffer: %5u, lines_per_half_buffer: %2u, dma_buffer_size: %5u",
dma_half_buffer_min * cam->dma_bytes_per_item, dma_half_buffer * cam->dma_bytes_per_item, lines_per_half_buffer, dma_buffer_size * cam->dma_bytes_per_item);
cam->dma_buffer_size = dma_buffer_size * cam->dma_bytes_per_item;
cam->dma_half_buffer_size = dma_half_buffer * cam->dma_bytes_per_item;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
}
return 1;
}
bool ll_cam_dma_sizes(cam_obj_t *cam)
{
cam->dma_bytes_per_item = 1;
if (cam->jpeg_mode) {
if (cam->psram_mode) {
cam->dma_buffer_size = cam->recv_size;
cam->dma_half_buffer_size = 1024;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
cam->dma_node_buffer_size = cam->dma_half_buffer_size;
} else {
cam->dma_half_buffer_cnt = 16;
cam->dma_buffer_size = cam->dma_half_buffer_cnt * 1024;
cam->dma_half_buffer_size = cam->dma_buffer_size / cam->dma_half_buffer_cnt;
cam->dma_node_buffer_size = cam->dma_half_buffer_size;
}
} else {
return ll_cam_calc_rgb_dma(cam);
}
return 1;
}
size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in, size_t len)
{
// YUV to Grayscale
if (cam->in_bytes_per_pixel == 2 && cam->fb_bytes_per_pixel == 1) {
size_t end = len / 8;
for (size_t i = 0; i < end; ++i) {
out[0] = in[0];
out[1] = in[2];
out[2] = in[4];
out[3] = in[6];
out += 4;
in += 8;
}
return len / 2;
}
// just memcpy
memcpy(out, in, len);
return len;
}
esp_err_t ll_cam_set_sample_mode(cam_obj_t *cam, pixformat_t pix_format, uint32_t xclk_freq_hz, uint16_t sensor_pid)
{
if (pix_format == PIXFORMAT_GRAYSCALE) {
if (sensor_pid == OV3660_PID || sensor_pid == OV5640_PID || sensor_pid == NT99141_PID) {
cam->in_bytes_per_pixel = 1; // camera sends Y8
} else {
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
}
cam->fb_bytes_per_pixel = 1; // frame buffer stores Y8
} else if (pix_format == PIXFORMAT_YUV422 || pix_format == PIXFORMAT_RGB565) {
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
cam->fb_bytes_per_pixel = 2; // frame buffer stores YU/YV/RGB565
} else if (pix_format == PIXFORMAT_JPEG) {
cam->in_bytes_per_pixel = 1;
cam->fb_bytes_per_pixel = 1;
} else {
ESP_LOGE(TAG, "Requested format is not supported");
return ESP_ERR_NOT_SUPPORTED;
}
return ESP_OK;
}

View File

@ -1,99 +0,0 @@
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor include file (C)ChaN, 2012
/----------------------------------------------------------------------------*/
#ifndef _TJPGDEC
#define _TJPGDEC
/*---------------------------------------------------------------------------*/
/* System Configurations */
#define JD_SZBUF 512 /* Size of stream input buffer */
#define JD_FORMAT 0 /* Output pixel format 0:RGB888 (3 BYTE/pix), 1:RGB565 (1 WORD/pix) */
#define JD_USE_SCALE 1 /* Use descaling feature for output */
#define JD_TBLCLIP 1 /* Use table for saturation (might be a bit faster but increases 1K bytes of code size) */
/*---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
/* These types must be 16-bit, 32-bit or larger integer */
typedef int INT;
typedef unsigned int UINT;
/* These types must be 8-bit integer */
typedef char CHAR;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;
/* These types must be 16-bit integer */
typedef short SHORT;
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned short WCHAR;
/* These types must be 32-bit integer */
typedef long LONG;
typedef unsigned long ULONG;
typedef unsigned long DWORD;
/* Error code */
typedef enum {
JDR_OK = 0, /* 0: Succeeded */
JDR_INTR, /* 1: Interrupted by output function */
JDR_INP, /* 2: Device error or wrong termination of input stream */
JDR_MEM1, /* 3: Insufficient memory pool for the image */
JDR_MEM2, /* 4: Insufficient stream input buffer */
JDR_PAR, /* 5: Parameter error */
JDR_FMT1, /* 6: Data format error (may be damaged data) */
JDR_FMT2, /* 7: Right format but not supported */
JDR_FMT3 /* 8: Not supported JPEG standard */
} JRESULT;
/* Rectangular structure */
typedef struct {
WORD left, right, top, bottom;
} JRECT;
/* Decompressor object structure */
typedef struct JDEC JDEC;
struct JDEC {
UINT dctr; /* Number of bytes available in the input buffer */
BYTE* dptr; /* Current data read ptr */
BYTE* inbuf; /* Bit stream input buffer */
BYTE dmsk; /* Current bit in the current read byte */
BYTE scale; /* Output scaling ratio */
BYTE msx, msy; /* MCU size in unit of block (width, height) */
BYTE qtid[3]; /* Quantization table ID of each component */
SHORT dcv[3]; /* Previous DC element of each component */
WORD nrst; /* Restart inverval */
UINT width, height; /* Size of the input image (pixel) */
BYTE* huffbits[2][2]; /* Huffman bit distribution tables [id][dcac] */
WORD* huffcode[2][2]; /* Huffman code word tables [id][dcac] */
BYTE* huffdata[2][2]; /* Huffman decoded data tables [id][dcac] */
LONG* qttbl[4]; /* Dequaitizer tables [id] */
void* workbuf; /* Working buffer for IDCT and RGB output */
BYTE* mcubuf; /* Working buffer for the MCU */
void* pool; /* Pointer to available memory pool */
UINT sz_pool; /* Size of momory pool (bytes available) */
UINT (*infunc)(JDEC*, BYTE*, UINT);/* Pointer to jpeg stream input function */
void* device; /* Pointer to I/O device identifiler for the session */
};
/* TJpgDec API functions */
JRESULT jd_prepare (JDEC*, UINT(*)(JDEC*,BYTE*,UINT), void*, UINT, void*);
JRESULT jd_decomp (JDEC*, UINT(*)(JDEC*,void*,JRECT*), BYTE);
#ifdef __cplusplus
}
#endif
#endif /* _TJPGDEC */

View File

@ -1,970 +0,0 @@
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor R0.01b (C)ChaN, 2012
/-----------------------------------------------------------------------------/
/ The TJpgDec is a generic JPEG decompressor module for tiny embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/ Copyright (C) 2012, ChaN, all right reserved.
/
/ * The TJpgDec module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-----------------------------------------------------------------------------/
/ Oct 04,'11 R0.01 First release.
/ Feb 19,'12 R0.01a Fixed decompression fails when scan starts with an escape seq.
/ Sep 03,'12 R0.01b Added JD_TBLCLIP option.
/----------------------------------------------------------------------------*/
#include "tjpgd.h"
#define SUPPORT_JPEG 1
#ifdef SUPPORT_JPEG
/*-----------------------------------------------*/
/* Zigzag-order to raster-order conversion table */
/*-----------------------------------------------*/
#define ZIG(n) Zig[n]
static
const BYTE Zig[64] = { /* Zigzag-order to raster-order conversion table */
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
};
/*-------------------------------------------------*/
/* Input scale factor of Arai algorithm */
/* (scaled up 16 bits for fixed point operations) */
/*-------------------------------------------------*/
#define IPSF(n) Ipsf[n]
static
const WORD Ipsf[64] = { /* See also aa_idct.png */
(WORD)(1.00000*8192), (WORD)(1.38704*8192), (WORD)(1.30656*8192), (WORD)(1.17588*8192), (WORD)(1.00000*8192), (WORD)(0.78570*8192), (WORD)(0.54120*8192), (WORD)(0.27590*8192),
(WORD)(1.38704*8192), (WORD)(1.92388*8192), (WORD)(1.81226*8192), (WORD)(1.63099*8192), (WORD)(1.38704*8192), (WORD)(1.08979*8192), (WORD)(0.75066*8192), (WORD)(0.38268*8192),
(WORD)(1.30656*8192), (WORD)(1.81226*8192), (WORD)(1.70711*8192), (WORD)(1.53636*8192), (WORD)(1.30656*8192), (WORD)(1.02656*8192), (WORD)(0.70711*8192), (WORD)(0.36048*8192),
(WORD)(1.17588*8192), (WORD)(1.63099*8192), (WORD)(1.53636*8192), (WORD)(1.38268*8192), (WORD)(1.17588*8192), (WORD)(0.92388*8192), (WORD)(0.63638*8192), (WORD)(0.32442*8192),
(WORD)(1.00000*8192), (WORD)(1.38704*8192), (WORD)(1.30656*8192), (WORD)(1.17588*8192), (WORD)(1.00000*8192), (WORD)(0.78570*8192), (WORD)(0.54120*8192), (WORD)(0.27590*8192),
(WORD)(0.78570*8192), (WORD)(1.08979*8192), (WORD)(1.02656*8192), (WORD)(0.92388*8192), (WORD)(0.78570*8192), (WORD)(0.61732*8192), (WORD)(0.42522*8192), (WORD)(0.21677*8192),
(WORD)(0.54120*8192), (WORD)(0.75066*8192), (WORD)(0.70711*8192), (WORD)(0.63638*8192), (WORD)(0.54120*8192), (WORD)(0.42522*8192), (WORD)(0.29290*8192), (WORD)(0.14932*8192),
(WORD)(0.27590*8192), (WORD)(0.38268*8192), (WORD)(0.36048*8192), (WORD)(0.32442*8192), (WORD)(0.27590*8192), (WORD)(0.21678*8192), (WORD)(0.14932*8192), (WORD)(0.07612*8192)
};
/*---------------------------------------------*/
/* Conversion table for fast clipping process */
/*---------------------------------------------*/
#if JD_TBLCLIP
#define BYTECLIP(v) Clip8[(UINT)(v) & 0x3FF]
static
const BYTE Clip8[1024] = {
/* 0..255 */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
/* 256..511 */
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
/* -512..-257 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* -256..-1 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#else /* JD_TBLCLIP */
inline
BYTE BYTECLIP (
INT val
)
{
if (val < 0) val = 0;
if (val > 255) val = 255;
return (BYTE)val;
}
#endif
/*-----------------------------------------------------------------------*/
/* Allocate a memory block from memory pool */
/*-----------------------------------------------------------------------*/
static
void* alloc_pool ( /* Pointer to allocated memory block (NULL:no memory available) */
JDEC* jd, /* Pointer to the decompressor object */
UINT nd /* Number of bytes to allocate */
)
{
char *rp = 0;
nd = (nd + 3) & ~3; /* Align block size to the word boundary */
if (jd->sz_pool >= nd) {
jd->sz_pool -= nd;
rp = (char*)jd->pool; /* Get start of available memory pool */
jd->pool = (void*)(rp + nd); /* Allocate requierd bytes */
}
return (void*)rp; /* Return allocated memory block (NULL:no memory to allocate) */
}
/*-----------------------------------------------------------------------*/
/* Create de-quantization and prescaling tables with a DQT segment */
/*-----------------------------------------------------------------------*/
static
UINT create_qt_tbl ( /* 0:OK, !0:Failed */
JDEC* jd, /* Pointer to the decompressor object */
const BYTE* data, /* Pointer to the quantizer tables */
UINT ndata /* Size of input data */
)
{
UINT i;
BYTE d, z;
LONG *pb;
while (ndata) { /* Process all tables in the segment */
if (ndata < 65) return JDR_FMT1; /* Err: table size is unaligned */
ndata -= 65;
d = *data++; /* Get table property */
if (d & 0xF0) return JDR_FMT1; /* Err: not 8-bit resolution */
i = d & 3; /* Get table ID */
pb = alloc_pool(jd, 64 * sizeof (LONG));/* Allocate a memory block for the table */
if (!pb) return JDR_MEM1; /* Err: not enough memory */
jd->qttbl[i] = pb; /* Register the table */
for (i = 0; i < 64; i++) { /* Load the table */
z = ZIG(i); /* Zigzag-order to raster-order conversion */
pb[z] = (LONG)((DWORD)*data++ * IPSF(z)); /* Apply scale factor of Arai algorithm to the de-quantizers */
}
}
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Create huffman code tables with a DHT segment */
/*-----------------------------------------------------------------------*/
static
UINT create_huffman_tbl ( /* 0:OK, !0:Failed */
JDEC* jd, /* Pointer to the decompressor object */
const BYTE* data, /* Pointer to the packed huffman tables */
UINT ndata /* Size of input data */
)
{
UINT i, j, b, np, cls, num;
BYTE d, *pb, *pd;
WORD hc, *ph;
while (ndata) { /* Process all tables in the segment */
if (ndata < 17) return JDR_FMT1; /* Err: wrong data size */
ndata -= 17;
d = *data++; /* Get table number and class */
cls = (d >> 4); num = d & 0x0F; /* class = dc(0)/ac(1), table number = 0/1 */
if (d & 0xEE) return JDR_FMT1; /* Err: invalid class/number */
pb = alloc_pool(jd, 16); /* Allocate a memory block for the bit distribution table */
if (!pb) return JDR_MEM1; /* Err: not enough memory */
jd->huffbits[num][cls] = pb;
for (np = i = 0; i < 16; i++) { /* Load number of patterns for 1 to 16-bit code */
pb[i] = b = *data++;
np += b; /* Get sum of code words for each code */
}
ph = alloc_pool(jd, np * sizeof (WORD));/* Allocate a memory block for the code word table */
if (!ph) return JDR_MEM1; /* Err: not enough memory */
jd->huffcode[num][cls] = ph;
hc = 0;
for (j = i = 0; i < 16; i++) { /* Re-build huffman code word table */
b = pb[i];
while (b--) ph[j++] = hc++;
hc <<= 1;
}
if (ndata < np) return JDR_FMT1; /* Err: wrong data size */
ndata -= np;
pd = alloc_pool(jd, np); /* Allocate a memory block for the decoded data */
if (!pd) return JDR_MEM1; /* Err: not enough memory */
jd->huffdata[num][cls] = pd;
for (i = 0; i < np; i++) { /* Load decoded data corresponds to each code ward */
d = *data++;
if (!cls && d > 11) return JDR_FMT1;
*pd++ = d;
}
}
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Extract N bits from input stream */
/*-----------------------------------------------------------------------*/
static
INT bitext ( /* >=0: extracted data, <0: error code */
JDEC* jd, /* Pointer to the decompressor object */
UINT nbit /* Number of bits to extract (1 to 11) */
)
{
BYTE msk, s, *dp;
UINT dc, v, f;
msk = jd->dmsk; dc = jd->dctr; dp = jd->dptr; /* Bit mask, number of data available, read ptr */
s = *dp; v = f = 0;
do {
if (!msk) { /* Next byte? */
if (!dc) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
dc = jd->infunc(jd, dp, JD_SZBUF);
if (!dc) return 0 - (INT)JDR_INP; /* Err: read error or wrong stream termination */
} else {
dp++; /* Next data ptr */
}
dc--; /* Decrement number of available bytes */
if (f) { /* In flag sequence? */
f = 0; /* Exit flag sequence */
if (*dp != 0) return 0 - (INT)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = s = 0xFF; /* The flag is a data 0xFF */
} else {
s = *dp; /* Get next data byte */
if (s == 0xFF) { /* Is start of flag sequence? */
f = 1; continue; /* Enter flag sequence */
}
}
msk = 0x80; /* Read from MSB */
}
v <<= 1; /* Get a bit */
if (s & msk) v++;
msk >>= 1;
nbit--;
} while (nbit);
jd->dmsk = msk; jd->dctr = dc; jd->dptr = dp;
return (INT)v;
}
/*-----------------------------------------------------------------------*/
/* Extract a huffman decoded data from input stream */
/*-----------------------------------------------------------------------*/
static
INT huffext ( /* >=0: decoded data, <0: error code */
JDEC* jd, /* Pointer to the decompressor object */
const BYTE* hbits, /* Pointer to the bit distribution table */
const WORD* hcode, /* Pointer to the code word table */
const BYTE* hdata /* Pointer to the data table */
)
{
BYTE msk, s, *dp;
UINT dc, v, f, bl, nd;
msk = jd->dmsk; dc = jd->dctr; dp = jd->dptr; /* Bit mask, number of data available, read ptr */
s = *dp; v = f = 0;
bl = 16; /* Max code length */
do {
if (!msk) { /* Next byte? */
if (!dc) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
dc = jd->infunc(jd, dp, JD_SZBUF);
if (!dc) return 0 - (INT)JDR_INP; /* Err: read error or wrong stream termination */
} else {
dp++; /* Next data ptr */
}
dc--; /* Decrement number of available bytes */
if (f) { /* In flag sequence? */
f = 0; /* Exit flag sequence */
if (*dp != 0)
return 0 - (INT)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = s = 0xFF; /* The flag is a data 0xFF */
} else {
s = *dp; /* Get next data byte */
if (s == 0xFF) { /* Is start of flag sequence? */
f = 1; continue; /* Enter flag sequence, get trailing byte */
}
}
msk = 0x80; /* Read from MSB */
}
v <<= 1; /* Get a bit */
if (s & msk) v++;
msk >>= 1;
for (nd = *hbits++; nd; nd--) { /* Search the code word in this bit length */
if (v == *hcode++) { /* Matched? */
jd->dmsk = msk; jd->dctr = dc; jd->dptr = dp;
return *hdata; /* Return the decoded data */
}
hdata++;
}
bl--;
} while (bl);
return 0 - (INT)JDR_FMT1; /* Err: code not found (may be collapted data) */
}
/*-----------------------------------------------------------------------*/
/* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png) */
/*-----------------------------------------------------------------------*/
static
void block_idct (
LONG* src, /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */
BYTE* dst /* Pointer to the destination to store the block as byte array */
)
{
const LONG M13 = (LONG)(1.41421*4096), M2 = (LONG)(1.08239*4096), M4 = (LONG)(2.61313*4096), M5 = (LONG)(1.84776*4096);
LONG v0, v1, v2, v3, v4, v5, v6, v7;
LONG t10, t11, t12, t13;
UINT i;
/* Process columns */
for (i = 0; i < 8; i++) {
v0 = src[8 * 0]; /* Get even elements */
v1 = src[8 * 2];
v2 = src[8 * 4];
v3 = src[8 * 6];
t10 = v0 + v2; /* Process the even elements */
t12 = v0 - v2;
t11 = (v1 - v3) * M13 >> 12;
v3 += v1;
t11 -= v3;
v0 = t10 + v3;
v3 = t10 - v3;
v1 = t11 + t12;
v2 = t12 - t11;
v4 = src[8 * 7]; /* Get odd elements */
v5 = src[8 * 1];
v6 = src[8 * 5];
v7 = src[8 * 3];
t10 = v5 - v4; /* Process the odd elements */
t11 = v5 + v4;
t12 = v6 - v7;
v7 += v6;
v5 = (t11 - v7) * M13 >> 12;
v7 += t11;
t13 = (t10 + t12) * M5 >> 12;
v4 = t13 - (t10 * M2 >> 12);
v6 = t13 - (t12 * M4 >> 12) - v7;
v5 -= v6;
v4 -= v5;
src[8 * 0] = v0 + v7; /* Write-back transformed values */
src[8 * 7] = v0 - v7;
src[8 * 1] = v1 + v6;
src[8 * 6] = v1 - v6;
src[8 * 2] = v2 + v5;
src[8 * 5] = v2 - v5;
src[8 * 3] = v3 + v4;
src[8 * 4] = v3 - v4;
src++; /* Next column */
}
/* Process rows */
src -= 8;
for (i = 0; i < 8; i++) {
v0 = src[0] + (128L << 8); /* Get even elements (remove DC offset (-128) here) */
v1 = src[2];
v2 = src[4];
v3 = src[6];
t10 = v0 + v2; /* Process the even elements */
t12 = v0 - v2;
t11 = (v1 - v3) * M13 >> 12;
v3 += v1;
t11 -= v3;
v0 = t10 + v3;
v3 = t10 - v3;
v1 = t11 + t12;
v2 = t12 - t11;
v4 = src[7]; /* Get odd elements */
v5 = src[1];
v6 = src[5];
v7 = src[3];
t10 = v5 - v4; /* Process the odd elements */
t11 = v5 + v4;
t12 = v6 - v7;
v7 += v6;
v5 = (t11 - v7) * M13 >> 12;
v7 += t11;
t13 = (t10 + t12) * M5 >> 12;
v4 = t13 - (t10 * M2 >> 12);
v6 = t13 - (t12 * M4 >> 12) - v7;
v5 -= v6;
v4 -= v5;
dst[0] = BYTECLIP((v0 + v7) >> 8); /* Descale the transformed values 8 bits and output */
dst[7] = BYTECLIP((v0 - v7) >> 8);
dst[1] = BYTECLIP((v1 + v6) >> 8);
dst[6] = BYTECLIP((v1 - v6) >> 8);
dst[2] = BYTECLIP((v2 + v5) >> 8);
dst[5] = BYTECLIP((v2 - v5) >> 8);
dst[3] = BYTECLIP((v3 + v4) >> 8);
dst[4] = BYTECLIP((v3 - v4) >> 8);
dst += 8;
src += 8; /* Next row */
}
}
/*-----------------------------------------------------------------------*/
/* Load all blocks in the MCU into working buffer */
/*-----------------------------------------------------------------------*/
static
JRESULT mcu_load (
JDEC* jd /* Pointer to the decompressor object */
)
{
LONG *tmp = (LONG*)jd->workbuf; /* Block working buffer for de-quantize and IDCT */
UINT blk, nby, nbc, i, z, id, cmp;
INT b, d, e;
BYTE *bp;
const BYTE *hb, *hd;
const WORD *hc;
const LONG *dqf;
nby = jd->msx * jd->msy; /* Number of Y blocks (1, 2 or 4) */
nbc = 2; /* Number of C blocks (2) */
bp = jd->mcubuf; /* Pointer to the first block */
for (blk = 0; blk < nby + nbc; blk++) {
cmp = (blk < nby) ? 0 : blk - nby + 1; /* Component number 0:Y, 1:Cb, 2:Cr */
id = cmp ? 1 : 0; /* Huffman table ID of the component */
/* Extract a DC element from input stream */
hb = jd->huffbits[id][0]; /* Huffman table for the DC element */
hc = jd->huffcode[id][0];
hd = jd->huffdata[id][0];
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded data (bit length) */
if (b < 0) return 0 - b; /* Err: invalid code or input */
d = jd->dcv[cmp]; /* DC value of previous block */
if (b) { /* If there is any difference from previous block */
e = bitext(jd, b); /* Extract data bits */
if (e < 0) return 0 - e; /* Err: input */
b = 1 << (b - 1); /* MSB position */
if (!(e & b)) e -= (b << 1) - 1; /* Restore sign if needed */
d += e; /* Get current value */
jd->dcv[cmp] = (SHORT)d; /* Save current DC value for next block */
}
dqf = jd->qttbl[jd->qtid[cmp]]; /* De-quantizer table ID for this component */
tmp[0] = d * dqf[0] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
/* Extract following 63 AC elements from input stream */
for (i = 1; i < 64; i++) tmp[i] = 0; /* Clear rest of elements */
hb = jd->huffbits[id][1]; /* Huffman table for the AC elements */
hc = jd->huffcode[id][1];
hd = jd->huffdata[id][1];
i = 1; /* Top of the AC elements */
do {
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded value (zero runs and bit length) */
if (b == 0) break; /* EOB? */
if (b < 0) return 0 - b; /* Err: invalid code or input error */
z = (UINT)b >> 4; /* Number of leading zero elements */
if (z) {
i += z; /* Skip zero elements */
if (i >= 64) return JDR_FMT1; /* Too long zero run */
}
if (b &= 0x0F) { /* Bit length */
d = bitext(jd, b); /* Extract data bits */
if (d < 0) return 0 - d; /* Err: input device */
b = 1 << (b - 1); /* MSB position */
if (!(d & b)) d -= (b << 1) - 1;/* Restore negative value if needed */
z = ZIG(i); /* Zigzag-order to raster-order converted index */
tmp[z] = d * dqf[z] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
}
} while (++i < 64); /* Next AC element */
if (JD_USE_SCALE && jd->scale == 3)
*bp = (*tmp / 256) + 128; /* If scale ratio is 1/8, IDCT can be ommited and only DC element is used */
else
block_idct(tmp, bp); /* Apply IDCT and store the block to the MCU buffer */
bp += 64; /* Next block */
}
return JDR_OK; /* All blocks have been loaded successfully */
}
/*-----------------------------------------------------------------------*/
/* Output an MCU: Convert YCrCb to RGB and output it in RGB form */
/*-----------------------------------------------------------------------*/
static
JRESULT mcu_output (
JDEC* jd, /* Pointer to the decompressor object */
UINT (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */
UINT x, /* MCU position in the image (left of the MCU) */
UINT y /* MCU position in the image (top of the MCU) */
)
{
const INT CVACC = (sizeof (INT) > 2) ? 1024 : 128;
UINT ix, iy, mx, my, rx, ry;
INT yy, cb, cr;
BYTE *py, *pc, *rgb24;
JRECT rect;
mx = jd->msx * 8; my = jd->msy * 8; /* MCU size (pixel) */
rx = (x + mx <= jd->width) ? mx : jd->width - x; /* Output rectangular size (it may be clipped at right/bottom end) */
ry = (y + my <= jd->height) ? my : jd->height - y;
if (JD_USE_SCALE) {
rx >>= jd->scale; ry >>= jd->scale;
if (!rx || !ry) return JDR_OK; /* Skip this MCU if all pixel is to be rounded off */
x >>= jd->scale; y >>= jd->scale;
}
rect.left = x; rect.right = x + rx - 1; /* Rectangular area in the frame buffer */
rect.top = y; rect.bottom = y + ry - 1;
if (!JD_USE_SCALE || jd->scale != 3) { /* Not for 1/8 scaling */
/* Build an RGB MCU from discrete comopnents */
rgb24 = (BYTE*)jd->workbuf;
for (iy = 0; iy < my; iy++) {
pc = jd->mcubuf;
py = pc + iy * 8;
if (my == 16) { /* Double block height? */
pc += 64 * 4 + (iy >> 1) * 8;
if (iy >= 8) py += 64;
} else { /* Single block height */
pc += mx * 8 + iy * 8;
}
for (ix = 0; ix < mx; ix++) {
cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */
cr = pc[64] - 128;
if (mx == 16) { /* Double block width? */
if (ix == 8) py += 64 - 8; /* Jump to next block if double block heigt */
pc += ix & 1; /* Increase chroma pointer every two pixels */
} else { /* Single block width */
pc++; /* Increase chroma pointer every pixel */
}
yy = *py++; /* Get Y component */
/* Convert YCbCr to RGB */
*rgb24++ = /* R */ BYTECLIP(yy + ((INT)(1.402 * CVACC) * cr) / CVACC);
*rgb24++ = /* G */ BYTECLIP(yy - ((INT)(0.344 * CVACC) * cb + (INT)(0.714 * CVACC) * cr) / CVACC);
*rgb24++ = /* B */ BYTECLIP(yy + ((INT)(1.772 * CVACC) * cb) / CVACC);
}
}
/* Descale the MCU rectangular if needed */
if (JD_USE_SCALE && jd->scale) {
UINT x, y, r, g, b, s, w, a;
BYTE *op;
/* Get averaged RGB value of each square correcponds to a pixel */
s = jd->scale * 2; /* Bumber of shifts for averaging */
w = 1 << jd->scale; /* Width of square */
a = (mx - w) * 3; /* Bytes to skip for next line in the square */
op = (BYTE*)jd->workbuf;
for (iy = 0; iy < my; iy += w) {
for (ix = 0; ix < mx; ix += w) {
rgb24 = (BYTE*)jd->workbuf + (iy * mx + ix) * 3;
r = g = b = 0;
for (y = 0; y < w; y++) { /* Accumulate RGB value in the square */
for (x = 0; x < w; x++) {
r += *rgb24++;
g += *rgb24++;
b += *rgb24++;
}
rgb24 += a;
} /* Put the averaged RGB value as a pixel */
*op++ = (BYTE)(r >> s);
*op++ = (BYTE)(g >> s);
*op++ = (BYTE)(b >> s);
}
}
}
} else { /* For only 1/8 scaling (left-top pixel in each block are the DC value of the block) */
/* Build a 1/8 descaled RGB MCU from discrete comopnents */
rgb24 = (BYTE*)jd->workbuf;
pc = jd->mcubuf + mx * my;
cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */
cr = pc[64] - 128;
for (iy = 0; iy < my; iy += 8) {
py = jd->mcubuf;
if (iy == 8) py += 64 * 2;
for (ix = 0; ix < mx; ix += 8) {
yy = *py; /* Get Y component */
py += 64;
/* Convert YCbCr to RGB */
*rgb24++ = /* R */ BYTECLIP(yy + ((INT)(1.402 * CVACC) * cr / CVACC));
*rgb24++ = /* G */ BYTECLIP(yy - ((INT)(0.344 * CVACC) * cb + (INT)(0.714 * CVACC) * cr) / CVACC);
*rgb24++ = /* B */ BYTECLIP(yy + ((INT)(1.772 * CVACC) * cb / CVACC));
}
}
}
/* Squeeze up pixel table if a part of MCU is to be truncated */
mx >>= jd->scale;
if (rx < mx) {
BYTE *s, *d;
UINT x, y;
s = d = (BYTE*)jd->workbuf;
for (y = 0; y < ry; y++) {
for (x = 0; x < rx; x++) { /* Copy effective pixels */
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
}
s += (mx - rx) * 3; /* Skip truncated pixels */
}
}
/* Convert RGB888 to RGB565 if needed */
if (JD_FORMAT == 1) {
BYTE *s = (BYTE*)jd->workbuf;
WORD w, *d = (WORD*)s;
UINT n = rx * ry;
do {
w = (*s++ & 0xF8) << 8; /* RRRRR----------- */
w |= (*s++ & 0xFC) << 3; /* -----GGGGGG----- */
w |= *s++ >> 3; /* -----------BBBBB */
*d++ = w;
} while (--n);
}
/* Output the RGB rectangular */
return outfunc(jd, jd->workbuf, &rect) ? JDR_OK : JDR_INTR;
}
/*-----------------------------------------------------------------------*/
/* Process restart interval */
/*-----------------------------------------------------------------------*/
static
JRESULT restart (
JDEC* jd, /* Pointer to the decompressor object */
WORD rstn /* Expected restert sequense number */
)
{
UINT i, dc;
WORD d;
BYTE *dp;
/* Discard padding bits and get two bytes from the input stream */
dp = jd->dptr; dc = jd->dctr;
d = 0;
for (i = 0; i < 2; i++) {
if (!dc) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf;
dc = jd->infunc(jd, dp, JD_SZBUF);
if (!dc) return JDR_INP;
} else {
dp++;
}
dc--;
d = (d << 8) | *dp; /* Get a byte */
}
jd->dptr = dp; jd->dctr = dc; jd->dmsk = 0;
/* Check the marker */
if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7))
return JDR_FMT1; /* Err: expected RSTn marker is not detected (may be collapted data) */
/* Reset DC offset */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0;
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Analyze the JPEG image and Initialize decompressor object */
/*-----------------------------------------------------------------------*/
#define LDB_WORD(ptr) (WORD)(((WORD)*((BYTE*)(ptr))<<8)|(WORD)*(BYTE*)((ptr)+1))
JRESULT jd_prepare (
JDEC* jd, /* Blank decompressor object */
UINT (*infunc)(JDEC*, BYTE*, UINT), /* JPEG strem input function */
void* pool, /* Working buffer for the decompression session */
UINT sz_pool, /* Size of working buffer */
void* dev /* I/O device identifier for the session */
)
{
BYTE *seg, b;
WORD marker;
DWORD ofs;
UINT n, i, j, len;
JRESULT rc;
if (!pool) return JDR_PAR;
jd->pool = pool; /* Work memroy */
jd->sz_pool = sz_pool; /* Size of given work memory */
jd->infunc = infunc; /* Stream input function */
jd->device = dev; /* I/O device identifier */
jd->nrst = 0; /* No restart interval (default) */
for (i = 0; i < 2; i++) { /* Nulls pointers */
for (j = 0; j < 2; j++) {
jd->huffbits[i][j] = 0;
jd->huffcode[i][j] = 0;
jd->huffdata[i][j] = 0;
}
}
for (i = 0; i < 4; i++) jd->qttbl[i] = 0;
jd->inbuf = seg = alloc_pool(jd, JD_SZBUF); /* Allocate stream input buffer */
if (!seg) return JDR_MEM1;
if (jd->infunc(jd, seg, 2) != 2) return JDR_INP;/* Check SOI marker */
if (LDB_WORD(seg) != 0xFFD8) return JDR_FMT1; /* Err: SOI is not detected */
ofs = 2;
for (;;) {
/* Get a JPEG marker */
if (jd->infunc(jd, seg, 4) != 4) return JDR_INP;
marker = LDB_WORD(seg); /* Marker */
len = LDB_WORD(seg + 2); /* Length field */
if (len <= 2 || (marker >> 8) != 0xFF) return JDR_FMT1;
len -= 2; /* Content size excluding length field */
ofs += 4 + len; /* Number of bytes loaded */
switch (marker & 0xFF) {
case 0xC0: /* SOF0 (baseline JPEG) */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
jd->width = LDB_WORD(seg+3); /* Image width in unit of pixel */
jd->height = LDB_WORD(seg+1); /* Image height in unit of pixel */
if (seg[5] != 3) return JDR_FMT3; /* Err: Supports only Y/Cb/Cr format */
/* Check three image components */
for (i = 0; i < 3; i++) {
b = seg[7 + 3 * i]; /* Get sampling factor */
if (!i) { /* Y component */
if (b != 0x11 && b != 0x22 && b != 0x21)/* Check sampling factor */
return JDR_FMT3; /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */
jd->msx = b >> 4; jd->msy = b & 15; /* Size of MCU [blocks] */
} else { /* Cb/Cr component */
if (b != 0x11) return JDR_FMT3; /* Err: Sampling factor of Cr/Cb must be 1 */
}
b = seg[8 + 3 * i]; /* Get dequantizer table ID for this component */
if (b > 3) return JDR_FMT3; /* Err: Invalid ID */
jd->qtid[i] = b;
}
break;
case 0xDD: /* DRI */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
/* Get restart interval (MCUs) */
jd->nrst = LDB_WORD(seg);
break;
case 0xC4: /* DHT */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
/* Create huffman tables */
rc = create_huffman_tbl(jd, seg, len);
if (rc) return rc;
break;
case 0xDB: /* DQT */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
/* Create de-quantizer tables */
rc = create_qt_tbl(jd, seg, len);
if (rc) return rc;
break;
case 0xDA: /* SOS */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
if (!jd->width || !jd->height) return JDR_FMT1; /* Err: Invalid image size */
if (seg[0] != 3) return JDR_FMT3; /* Err: Supports only three color components format */
/* Check if all tables corresponding to each components have been loaded */
for (i = 0; i < 3; i++) {
b = seg[2 + 2 * i]; /* Get huffman table ID */
if (b != 0x00 && b != 0x11) return JDR_FMT3; /* Err: Different table number for DC/AC element */
b = i ? 1 : 0;
if (!jd->huffbits[b][0] || !jd->huffbits[b][1]) /* Check huffman table for this component */
return JDR_FMT1; /* Err: Huffman table not loaded */
if (!jd->qttbl[jd->qtid[i]]) return JDR_FMT1; /* Err: Dequantizer table not loaded */
}
/* Allocate working buffer for MCU and RGB */
n = jd->msy * jd->msx; /* Number of Y blocks in the MCU */
if (!n) return JDR_FMT1; /* Err: SOF0 has not been loaded */
len = n * 64 * 2 + 64; /* Allocate buffer for IDCT and RGB output */
if (len < 256) len = 256; /* but at least 256 byte is required for IDCT */
jd->workbuf = alloc_pool(jd, len); /* and it may occupy a part of following MCU working buffer for RGB output */
if (!jd->workbuf) return JDR_MEM1; /* Err: not enough memory */
jd->mcubuf = alloc_pool(jd, (n + 2) * 64); /* Allocate MCU working buffer */
if (!jd->mcubuf) return JDR_MEM1; /* Err: not enough memory */
/* Pre-load the JPEG data to extract it from the bit stream */
jd->dptr = seg; jd->dctr = 0; jd->dmsk = 0; /* Prepare to read bit stream */
if (ofs %= JD_SZBUF) { /* Align read offset to JD_SZBUF */
jd->dctr = jd->infunc(jd, seg + ofs, JD_SZBUF - (UINT)ofs);
jd->dptr = seg + ofs - 1;
}
return JDR_OK; /* Initialization succeeded. Ready to decompress the JPEG image. */
case 0xC1: /* SOF1 */
case 0xC2: /* SOF2 */
case 0xC3: /* SOF3 */
case 0xC5: /* SOF5 */
case 0xC6: /* SOF6 */
case 0xC7: /* SOF7 */
case 0xC9: /* SOF9 */
case 0xCA: /* SOF10 */
case 0xCB: /* SOF11 */
case 0xCD: /* SOF13 */
case 0xCE: /* SOF14 */
case 0xCF: /* SOF15 */
case 0xD9: /* EOI */
return JDR_FMT3; /* Unsuppoted JPEG standard (may be progressive JPEG) */
default: /* Unknown segment (comment, exif or etc..) */
/* Skip segment data */
if (jd->infunc(jd, 0, len) != len) /* Null pointer specifies to skip bytes of stream */
return JDR_INP;
}
}
}
/*-----------------------------------------------------------------------*/
/* Start to decompress the JPEG picture */
/*-----------------------------------------------------------------------*/
JRESULT jd_decomp (
JDEC* jd, /* Initialized decompression object */
UINT (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */
BYTE scale /* Output de-scaling factor (0 to 3) */
)
{
UINT x, y, mx, my;
WORD rst, rsc;
JRESULT rc;
if (scale > (JD_USE_SCALE ? 3 : 0)) return JDR_PAR;
jd->scale = scale;
mx = jd->msx * 8; my = jd->msy * 8; /* Size of the MCU (pixel) */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Initialize DC values */
rst = rsc = 0;
rc = JDR_OK;
for (y = 0; y < jd->height; y += my) { /* Vertical loop of MCUs */
for (x = 0; x < jd->width; x += mx) { /* Horizontal loop of MCUs */
if (jd->nrst && rst++ == jd->nrst) { /* Process restart interval if enabled */
rc = restart(jd, rsc++);
if (rc != JDR_OK) return rc;
rst = 1;
}
rc = mcu_load(jd); /* Load an MCU (decompress huffman coded stream and apply IDCT) */
if (rc != JDR_OK) return rc;
rc = mcu_output(jd, outfunc, x, y); /* Output the MCU (color space conversion, scaling and output) */
if (rc != JDR_OK) return rc;
}
}
return rc;
}
#endif//SUPPORT_JPEG

View File

@ -1,452 +0,0 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "soc/system_reg.h"
#include "soc/lcd_cam_struct.h"
#include "soc/lcd_cam_reg.h"
#include "soc/gdma_struct.h"
#include "soc/gdma_periph.h"
#include "soc/gdma_reg.h"
#include "ll_cam.h"
#include "cam_hal.h"
static const char *TAG = "s3 ll_cam";
static void IRAM_ATTR ll_cam_vsync_isr(void *arg)
{
//DBG_PIN_SET(1);
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
typeof(LCD_CAM.lc_dma_int_st) status = LCD_CAM.lc_dma_int_st;
if (status.val == 0) {
return;
}
LCD_CAM.lc_dma_int_clr.val = status.val;
if (status.cam_vsync_int_st) {
ll_cam_send_event(cam, CAM_VSYNC_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
//DBG_PIN_SET(0);
}
static void IRAM_ATTR ll_cam_dma_isr(void *arg)
{
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
typeof(GDMA.channel[cam->dma_num].in.int_st) status = GDMA.channel[cam->dma_num].in.int_st;
if (status.val == 0) {
return;
}
GDMA.channel[cam->dma_num].in.int_clr.val = status.val;
if (status.in_suc_eof) {
ll_cam_send_event(cam, CAM_IN_SUC_EOF_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
bool ll_cam_stop(cam_obj_t *cam)
{
if (cam->jpeg_mode || !cam->psram_mode) {
GDMA.channel[cam->dma_num].in.int_ena.in_suc_eof = 0;
GDMA.channel[cam->dma_num].in.int_clr.in_suc_eof = 1;
}
GDMA.channel[cam->dma_num].in.link.stop = 1;
return true;
}
esp_err_t ll_cam_deinit(cam_obj_t *cam)
{
if (cam->cam_intr_handle) {
esp_intr_free(cam->cam_intr_handle);
cam->cam_intr_handle = NULL;
}
if (cam->dma_intr_handle) {
esp_intr_free(cam->dma_intr_handle);
cam->dma_intr_handle = NULL;
}
GDMA.channel[cam->dma_num].in.link.addr = 0x0;
LCD_CAM.cam_ctrl1.cam_start = 0;
LCD_CAM.cam_ctrl1.cam_reset = 1;
LCD_CAM.cam_ctrl1.cam_reset = 0;
return ESP_OK;
}
bool ll_cam_start(cam_obj_t *cam, int frame_pos)
{
LCD_CAM.cam_ctrl1.cam_start = 0;
if (cam->jpeg_mode || !cam->psram_mode) {
GDMA.channel[cam->dma_num].in.int_clr.in_suc_eof = 1;
GDMA.channel[cam->dma_num].in.int_ena.in_suc_eof = 1;
}
LCD_CAM.cam_ctrl1.cam_reset = 1;
LCD_CAM.cam_ctrl1.cam_reset = 0;
LCD_CAM.cam_ctrl1.cam_afifo_reset = 1;
LCD_CAM.cam_ctrl1.cam_afifo_reset = 0;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 1;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 0;
LCD_CAM.cam_ctrl1.cam_rec_data_bytelen = cam->dma_half_buffer_size - 1; // Ping pong operation
if (!cam->psram_mode) {
GDMA.channel[cam->dma_num].in.link.addr = ((uint32_t)&cam->dma[0]) & 0xfffff;
} else {
GDMA.channel[cam->dma_num].in.link.addr = ((uint32_t)&cam->frames[frame_pos].dma[0]) & 0xfffff;
}
GDMA.channel[cam->dma_num].in.link.start = 1;
LCD_CAM.cam_ctrl.cam_update = 1;
LCD_CAM.cam_ctrl1.cam_start = 1;
return true;
}
static esp_err_t ll_cam_dma_init(cam_obj_t *cam)
{
for (int x = (SOC_GDMA_PAIRS_PER_GROUP - 1); x >= 0; x--) {
if (GDMA.channel[x].in.link.addr == 0x0) {
cam->dma_num = x;
ESP_LOGI(TAG, "DMA Channel=%d", cam->dma_num);
break;
}
if (x == 0) {
cam_deinit();
ESP_LOGE(TAG, "Can't found available GDMA channel");
return ESP_FAIL;
}
}
if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN) == 0) {
REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
}
GDMA.channel[cam->dma_num].in.int_clr.val = ~0;
GDMA.channel[cam->dma_num].in.int_ena.val = 0;
GDMA.channel[cam->dma_num].in.conf0.val = 0;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 1;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 0;
//internal SRAM only
if (!cam->psram_mode) {
GDMA.channel[cam->dma_num].in.conf0.indscr_burst_en = 1;
GDMA.channel[cam->dma_num].in.conf0.in_data_burst_en = 1;
}
GDMA.channel[cam->dma_num].in.conf1.in_check_owner = 0;
GDMA.channel[cam->dma_num].in.peri_sel.sel = 5;
//GDMA.channel[cam->dma_num].in.pri.rx_pri = 1;//rx prio 0-15
//GDMA.channel[cam->dma_num].in.sram_size.in_size = 6;//This register is used to configure the size of L2 Tx FIFO for Rx channel. 0:16 bytes, 1:24 bytes, 2:32 bytes, 3: 40 bytes, 4: 48 bytes, 5:56 bytes, 6: 64 bytes, 7: 72 bytes, 8: 80 bytes.
//GDMA.channel[cam->dma_num].in.wight.rx_weight = 7;//The weight of Rx channel 0-15
return ESP_OK;
}
esp_err_t ll_cam_config(cam_obj_t *cam, const camera_config_t *config)
{
if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN) == 0) {
REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN);
REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST);
REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST);
}
LCD_CAM.cam_ctrl.val = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_b = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_a = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_num = 160000000 / config->xclk_freq_hz;
LCD_CAM.cam_ctrl.cam_clk_sel = 3;//Select Camera module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.
LCD_CAM.cam_ctrl.cam_stop_en = 0;
LCD_CAM.cam_ctrl.cam_vsync_filter_thres = 4; // Filter by LCD_CAM clock
LCD_CAM.cam_ctrl.cam_update = 0;
LCD_CAM.cam_ctrl.cam_byte_order = cam->swap_data;
LCD_CAM.cam_ctrl.cam_bit_order = 0;
LCD_CAM.cam_ctrl.cam_line_int_en = 0;
LCD_CAM.cam_ctrl.cam_vs_eof_en = 0; //1: CAM_VSYNC to generate in_suc_eof. 0: in_suc_eof is controlled by reg_cam_rec_data_cyclelen
LCD_CAM.cam_ctrl1.val = 0;
LCD_CAM.cam_ctrl1.cam_rec_data_bytelen = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE - 1; // Cannot be assigned to 0, and it is easy to overflow
LCD_CAM.cam_ctrl1.cam_line_int_num = 0; // The number of hsyncs that generate hs interrupts
LCD_CAM.cam_ctrl1.cam_clk_inv = 0;
LCD_CAM.cam_ctrl1.cam_vsync_filter_en = 1;
LCD_CAM.cam_ctrl1.cam_2byte_en = 0;
LCD_CAM.cam_ctrl1.cam_de_inv = 0;
LCD_CAM.cam_ctrl1.cam_hsync_inv = 0;
LCD_CAM.cam_ctrl1.cam_vsync_inv = 0;
LCD_CAM.cam_ctrl1.cam_vh_de_mode_en = 0;
LCD_CAM.cam_rgb_yuv.val = 0;
LCD_CAM.cam_ctrl.cam_update = 1;
LCD_CAM.cam_ctrl1.cam_start = 1;
esp_err_t err = ll_cam_dma_init(cam);
if(err != ESP_OK) {
return err;
}
return ESP_OK;
}
void ll_cam_vsync_intr_enable(cam_obj_t *cam, bool en)
{
LCD_CAM.lc_dma_int_clr.cam_vsync_int_clr = 1;
if (en) {
LCD_CAM.lc_dma_int_ena.cam_vsync_int_ena = 1;
} else {
LCD_CAM.lc_dma_int_ena.cam_vsync_int_ena = 0;
}
}
esp_err_t ll_cam_set_pin(cam_obj_t *cam, const camera_config_t *config)
{
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_pclk], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_pclk, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_pclk, GPIO_FLOATING);
gpio_matrix_in(config->pin_pclk, CAM_PCLK_IDX, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_vsync], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_vsync, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_vsync, GPIO_FLOATING);
gpio_matrix_in(config->pin_vsync, CAM_V_SYNC_IDX, cam->vsync_invert);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_href], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_href, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_href, GPIO_FLOATING);
gpio_matrix_in(config->pin_href, CAM_H_ENABLE_IDX, false);
int data_pins[8] = {
config->pin_d0, config->pin_d1, config->pin_d2, config->pin_d3, config->pin_d4, config->pin_d5, config->pin_d6, config->pin_d7,
};
for (int i = 0; i < 8; i++) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[data_pins[i]], PIN_FUNC_GPIO);
gpio_set_direction(data_pins[i], GPIO_MODE_INPUT);
gpio_set_pull_mode(data_pins[i], GPIO_FLOATING);
gpio_matrix_in(data_pins[i], CAM_DATA_IN0_IDX + i, false);
}
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_xclk], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_xclk, GPIO_MODE_OUTPUT);
gpio_set_pull_mode(config->pin_xclk, GPIO_FLOATING);
gpio_matrix_out(config->pin_xclk, CAM_CLK_IDX, false, false);
return ESP_OK;
}
esp_err_t ll_cam_init_isr(cam_obj_t *cam)
{
esp_err_t ret = ESP_OK;
ret = esp_intr_alloc_intrstatus(gdma_periph_signals.groups[0].pairs[cam->dma_num].rx_irq_id,
ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_IRAM,
(uint32_t)&GDMA.channel[cam->dma_num].in.int_st, GDMA_IN_SUC_EOF_CH0_INT_ST_M,
ll_cam_dma_isr, cam, &cam->dma_intr_handle);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "DMA interrupt allocation of camera failed");
return ret;
}
ret = esp_intr_alloc_intrstatus(ETS_LCD_CAM_INTR_SOURCE,
ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_IRAM,
(uint32_t)&LCD_CAM.lc_dma_int_st.val, LCD_CAM_CAM_VSYNC_INT_ST_M,
ll_cam_vsync_isr, cam, &cam->cam_intr_handle);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "LCD_CAM interrupt allocation of camera failed");
return ret;
}
return ESP_OK;
}
void ll_cam_do_vsync(cam_obj_t *cam)
{
gpio_matrix_in(cam->vsync_pin, CAM_V_SYNC_IDX, !cam->vsync_invert);
ets_delay_us(10);
gpio_matrix_in(cam->vsync_pin, CAM_V_SYNC_IDX, cam->vsync_invert);
}
uint8_t ll_cam_get_dma_align(cam_obj_t *cam)
{
return 16 << GDMA.channel[cam->dma_num].in.conf1.in_ext_mem_bk_size;
}
static bool ll_cam_calc_rgb_dma(cam_obj_t *cam){
size_t node_max = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE / cam->dma_bytes_per_item;
size_t line_width = cam->width * cam->in_bytes_per_pixel;
size_t node_size = node_max;
size_t nodes_per_line = 1;
size_t lines_per_node = 1;
// Calculate DMA Node Size so that it's divisable by or divisor of the line width
if(line_width >= node_max){
// One or more nodes will be requied for one line
for(size_t i = node_max; i > 0; i=i-1){
if ((line_width % i) == 0) {
node_size = i;
nodes_per_line = line_width / node_size;
break;
}
}
} else {
// One or more lines can fit into one node
for(size_t i = node_max; i > 0; i=i-1){
if ((i % line_width) == 0) {
node_size = i;
lines_per_node = node_size / line_width;
while((cam->height % lines_per_node) != 0){
lines_per_node = lines_per_node - 1;
node_size = lines_per_node * line_width;
}
break;
}
}
}
ESP_LOGI(TAG, "node_size: %4u, nodes_per_line: %u, lines_per_node: %u",
node_size * cam->dma_bytes_per_item, nodes_per_line, lines_per_node);
cam->dma_node_buffer_size = node_size * cam->dma_bytes_per_item;
size_t dma_half_buffer_max = CONFIG_CAMERA_DMA_BUFFER_SIZE_MAX / 2 / cam->dma_bytes_per_item;
if (line_width > dma_half_buffer_max) {
ESP_LOGE(TAG, "Resolution too high");
return 0;
}
// Calculate minimum EOF size = max(mode_size, line_size)
size_t dma_half_buffer_min = node_size * nodes_per_line;
// Calculate max EOF size divisable by node size
size_t dma_half_buffer = (dma_half_buffer_max / dma_half_buffer_min) * dma_half_buffer_min;
// Adjust EOF size so that height will be divisable by the number of lines in each EOF
size_t lines_per_half_buffer = dma_half_buffer / line_width;
while((cam->height % lines_per_half_buffer) != 0){
dma_half_buffer = dma_half_buffer - dma_half_buffer_min;
lines_per_half_buffer = dma_half_buffer / line_width;
}
// Calculate DMA size
size_t dma_buffer_max = 2 * dma_half_buffer_max;
if (cam->psram_mode) {
dma_buffer_max = cam->recv_size / cam->dma_bytes_per_item;
}
size_t dma_buffer_size = dma_buffer_max;
if (!cam->psram_mode) {
dma_buffer_size =(dma_buffer_max / dma_half_buffer) * dma_half_buffer;
}
ESP_LOGI(TAG, "dma_half_buffer_min: %5u, dma_half_buffer: %5u, lines_per_half_buffer: %2u, dma_buffer_size: %5u",
dma_half_buffer_min * cam->dma_bytes_per_item, dma_half_buffer * cam->dma_bytes_per_item, lines_per_half_buffer, dma_buffer_size * cam->dma_bytes_per_item);
cam->dma_buffer_size = dma_buffer_size * cam->dma_bytes_per_item;
cam->dma_half_buffer_size = dma_half_buffer * cam->dma_bytes_per_item;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
return 1;
}
bool ll_cam_dma_sizes(cam_obj_t *cam)
{
cam->dma_bytes_per_item = 1;
if (cam->jpeg_mode) {
if (cam->psram_mode) {
cam->dma_buffer_size = cam->recv_size;
cam->dma_half_buffer_size = 1024;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
cam->dma_node_buffer_size = cam->dma_half_buffer_size;
} else {
cam->dma_half_buffer_cnt = 16;
cam->dma_buffer_size = cam->dma_half_buffer_cnt * 1024;
cam->dma_half_buffer_size = cam->dma_buffer_size / cam->dma_half_buffer_cnt;
cam->dma_node_buffer_size = cam->dma_half_buffer_size;
}
} else {
return ll_cam_calc_rgb_dma(cam);
}
return 1;
}
size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in, size_t len)
{
// YUV to Grayscale
if (cam->in_bytes_per_pixel == 2 && cam->fb_bytes_per_pixel == 1) {
size_t end = len / 8;
for (size_t i = 0; i < end; ++i) {
out[0] = in[0];
out[1] = in[2];
out[2] = in[4];
out[3] = in[6];
out += 4;
in += 8;
}
return len / 2;
}
// just memcpy
memcpy(out, in, len);
return len;
}
esp_err_t ll_cam_set_sample_mode(cam_obj_t *cam, pixformat_t pix_format, uint32_t xclk_freq_hz, uint16_t sensor_pid)
{
if (pix_format == PIXFORMAT_GRAYSCALE) {
if (sensor_pid == OV3660_PID || sensor_pid == OV5640_PID || sensor_pid == NT99141_PID) {
cam->in_bytes_per_pixel = 1; // camera sends Y8
} else {
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
}
cam->fb_bytes_per_pixel = 1; // frame buffer stores Y8
} else if (pix_format == PIXFORMAT_YUV422 || pix_format == PIXFORMAT_RGB565) {
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
cam->fb_bytes_per_pixel = 2; // frame buffer stores YU/YV/RGB565
} else if (pix_format == PIXFORMAT_JPEG) {
cam->in_bytes_per_pixel = 1;
cam->fb_bytes_per_pixel = 1;
} else {
ESP_LOGE(TAG, "Requested format is not supported");
return ESP_ERR_NOT_SUPPORTED;
}
return ESP_OK;
}
// implements function from xclk.c to allow dynamic XCLK change
esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz)
{
LCD_CAM.cam_ctrl.cam_clkm_div_b = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_a = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_num = 160000000 / xclk_freq_hz;
LCD_CAM.cam_ctrl.cam_clk_sel = 3;//Select Camera module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.
LCD_CAM.cam_ctrl.cam_update = 1;
return ESP_OK;
}

View File

@ -1,141 +0,0 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include "sdkconfig.h"
#include "esp_idf_version.h"
#if CONFIG_IDF_TARGET_ESP32
#if ESP_IDF_VERSION_MAJOR >= 4
#include "esp32/rom/lldesc.h"
#else
#include "rom/lldesc.h"
#endif
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/lldesc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/lldesc.h"
#endif
#include "esp_log.h"
#include "esp_camera.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#if __has_include("esp_private/periph_ctrl.h")
# include "esp_private/periph_ctrl.h"
#endif
#define CAMERA_DBG_PIN_ENABLE 0
#if CAMERA_DBG_PIN_ENABLE
#if CONFIG_IDF_TARGET_ESP32
#define DBG_PIN_NUM 26
#else
#define DBG_PIN_NUM 7
#endif
#include "hal/gpio_ll.h"
#define DBG_PIN_SET(v) gpio_ll_set_level(&GPIO, DBG_PIN_NUM, v)
#else
#define DBG_PIN_SET(v)
#endif
#define CAM_CHECK(a, str, ret) if (!(a)) { \
ESP_LOGE(TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret); \
}
#define CAM_CHECK_GOTO(a, str, lab) if (!(a)) { \
ESP_LOGE(TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
goto lab; \
}
#define LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE (4092)
typedef enum {
CAM_IN_SUC_EOF_EVENT = 0,
CAM_VSYNC_EVENT
} cam_event_t;
typedef enum {
CAM_STATE_IDLE = 0,
CAM_STATE_READ_BUF = 1,
} cam_state_t;
typedef struct {
camera_fb_t fb;
uint8_t en;
//for RGB/YUV modes
lldesc_t *dma;
size_t fb_offset;
} cam_frame_t;
typedef struct {
uint32_t dma_bytes_per_item;
uint32_t dma_buffer_size;
uint32_t dma_half_buffer_size;
uint32_t dma_half_buffer_cnt;
uint32_t dma_node_buffer_size;
uint32_t dma_node_cnt;
uint32_t frame_copy_cnt;
//for JPEG mode
lldesc_t *dma;
uint8_t *dma_buffer;
cam_frame_t *frames;
QueueHandle_t event_queue;
QueueHandle_t frame_buffer_queue;
TaskHandle_t task_handle;
intr_handle_t cam_intr_handle;
uint8_t dma_num;//ESP32-S3
intr_handle_t dma_intr_handle;//ESP32-S3
uint8_t jpeg_mode;
uint8_t vsync_pin;
uint8_t vsync_invert;
uint32_t frame_cnt;
uint32_t recv_size;
bool swap_data;
bool psram_mode;
//for RGB/YUV modes
uint16_t width;
uint16_t height;
uint8_t in_bytes_per_pixel;
uint8_t fb_bytes_per_pixel;
uint32_t fb_size;
cam_state_t state;
} cam_obj_t;
bool ll_cam_stop(cam_obj_t *cam);
bool ll_cam_start(cam_obj_t *cam, int frame_pos);
esp_err_t ll_cam_config(cam_obj_t *cam, const camera_config_t *config);
esp_err_t ll_cam_deinit(cam_obj_t *cam);
void ll_cam_vsync_intr_enable(cam_obj_t *cam, bool en);
esp_err_t ll_cam_set_pin(cam_obj_t *cam, const camera_config_t *config);
esp_err_t ll_cam_init_isr(cam_obj_t *cam);
void ll_cam_do_vsync(cam_obj_t *cam);
uint8_t ll_cam_get_dma_align(cam_obj_t *cam);
bool ll_cam_dma_sizes(cam_obj_t *cam);
size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in, size_t len);
esp_err_t ll_cam_set_sample_mode(cam_obj_t *cam, pixformat_t pix_format, uint32_t xclk_freq_hz, uint16_t sensor_pid);
// implemented in cam_hal
void ll_cam_send_event(cam_obj_t *cam, cam_event_t cam_event, BaseType_t * HPTaskAwoken);

View File

@ -1,64 +0,0 @@
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_system.h"
#include "xclk.h"
#include "esp_camera.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "camera_xclk";
#endif
static ledc_channel_t g_ledc_channel = 0;
esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz)
{
ledc_timer_config_t timer_conf;
timer_conf.duty_resolution = LEDC_TIMER_1_BIT;
timer_conf.freq_hz = xclk_freq_hz;
timer_conf.speed_mode = LEDC_LOW_SPEED_MODE;
#if ESP_IDF_VERSION_MAJOR >= 4
timer_conf.clk_cfg = LEDC_AUTO_CLK;
#endif
timer_conf.timer_num = (ledc_timer_t)ledc_timer;
esp_err_t err = ledc_timer_config(&timer_conf);
if (err != ESP_OK) {
ESP_LOGE(TAG, "ledc_timer_config failed for freq %d, rc=%x", xclk_freq_hz, err);
}
return err;
}
esp_err_t camera_enable_out_clock(camera_config_t* config)
{
esp_err_t err = xclk_timer_conf(config->ledc_timer, config->xclk_freq_hz);
if (err != ESP_OK) {
ESP_LOGE(TAG, "ledc_timer_config failed, rc=%x", err);
return err;
}
g_ledc_channel = config->ledc_channel;
ledc_channel_config_t ch_conf;
ch_conf.gpio_num = config->pin_xclk;
ch_conf.speed_mode = LEDC_LOW_SPEED_MODE;
ch_conf.channel = config->ledc_channel;
ch_conf.intr_type = LEDC_INTR_DISABLE;
ch_conf.timer_sel = config->ledc_timer;
ch_conf.duty = 1;
ch_conf.hpoint = 0;
err = ledc_channel_config(&ch_conf);
if (err != ESP_OK) {
ESP_LOGE(TAG, "ledc_channel_config failed, rc=%x", err);
return err;
}
return ESP_OK;
}
void camera_disable_out_clock()
{
ledc_stop(LEDC_LOW_SPEED_MODE, g_ledc_channel, 0);
}

View File

@ -1,4 +0,0 @@
idf_component_register(SRC_DIRS .
PRIV_INCLUDE_DIRS .
PRIV_REQUIRES test_utils esp32-camera nvs_flash
EMBED_TXTFILES pictures/testimg.jpeg pictures/test_outside.jpeg pictures/test_inside.jpeg)

View File

@ -1,8 +0,0 @@
#
#Component Makefile
#
COMPONENT_SRCDIRS += ./
COMPONENT_PRIV_INCLUDEDIRS += ./
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

View File

@ -1,500 +0,0 @@
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "unity.h"
#include <mbedtls/base64.h>
#include "esp_log.h"
#include "esp_camera.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#define BOARD_WROVER_KIT 1
#elif defined CONFIG_IDF_TARGET_ESP32S2
#define BOARD_CAMERA_MODEL_ESP32S2 1
#elif defined CONFIG_IDF_TARGET_ESP32S3
#define BOARD_CAMERA_MODEL_ESP32_S3_EYE 1
#endif
// WROVER-KIT PIN Map
#if BOARD_WROVER_KIT
#define PWDN_GPIO_NUM -1 //power down is not used
#define RESET_GPIO_NUM -1 //software reset will be performed
#define XCLK_GPIO_NUM 21
#define SIOD_GPIO_NUM 26
#define SIOC_GPIO_NUM 27
#define Y9_GPIO_NUM 35
#define Y8_GPIO_NUM 34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define Y5_GPIO_NUM 19
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 5
#define Y2_GPIO_NUM 4
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22
// ESP32Cam (AiThinker) PIN Map
#elif BOARD_ESP32CAM_AITHINKER
#define PWDN_GPIO_NUM 32
#define RESET_GPIO_NUM -1 //software reset will be performed
#define XCLK_GPIO_NUM 0
#define SIOD_GPIO_NUM 26
#define SIOC_GPIO_NUM 27
#define Y9_GPIO_NUM 35
#define Y8_GPIO_NUM 34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define Y5_GPIO_NUM 21
#define Y4_GPIO_NUM 19
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 5
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22
#elif BOARD_CAMERA_MODEL_ESP32S2
#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define VSYNC_GPIO_NUM 21
#define HREF_GPIO_NUM 38
#define PCLK_GPIO_NUM 11
#define XCLK_GPIO_NUM 40
#define SIOD_GPIO_NUM 17
#define SIOC_GPIO_NUM 18
#define Y9_GPIO_NUM 39
#define Y8_GPIO_NUM 41
#define Y7_GPIO_NUM 42
#define Y6_GPIO_NUM 12
#define Y5_GPIO_NUM 3
#define Y4_GPIO_NUM 14
#define Y3_GPIO_NUM 37
#define Y2_GPIO_NUM 13
#elif BOARD_CAMERA_MODEL_ESP32_S3_EYE
#define PWDN_GPIO_NUM 43
#define RESET_GPIO_NUM 44
#define VSYNC_GPIO_NUM 6
#define HREF_GPIO_NUM 7
#define PCLK_GPIO_NUM 13
#define XCLK_GPIO_NUM 15
#define SIOD_GPIO_NUM 4
#define SIOC_GPIO_NUM 5
#define Y9_GPIO_NUM 16
#define Y8_GPIO_NUM 17
#define Y7_GPIO_NUM 18
#define Y6_GPIO_NUM 12
#define Y5_GPIO_NUM 11
#define Y4_GPIO_NUM 10
#define Y3_GPIO_NUM 9
#define Y2_GPIO_NUM 8
#endif
static const char *TAG = "test camera";
typedef void (*decode_func_t)(uint8_t *jpegbuffer, uint32_t size, uint8_t *outbuffer);
static esp_err_t init_camera(uint32_t xclk_freq_hz, pixformat_t pixel_format, framesize_t frame_size, uint8_t fb_count)
{
framesize_t size_bak = frame_size;
if (PIXFORMAT_JPEG == pixel_format && FRAMESIZE_SVGA > frame_size) {
frame_size = FRAMESIZE_HD;
}
camera_config_t camera_config = {
.pin_pwdn = PWDN_GPIO_NUM,
.pin_reset = RESET_GPIO_NUM,
.pin_xclk = XCLK_GPIO_NUM,
.pin_sscb_sda = SIOD_GPIO_NUM,
.pin_sscb_scl = SIOC_GPIO_NUM,
.pin_d7 = Y9_GPIO_NUM,
.pin_d6 = Y8_GPIO_NUM,
.pin_d5 = Y7_GPIO_NUM,
.pin_d4 = Y6_GPIO_NUM,
.pin_d3 = Y5_GPIO_NUM,
.pin_d2 = Y4_GPIO_NUM,
.pin_d1 = Y3_GPIO_NUM,
.pin_d0 = Y2_GPIO_NUM,
.pin_vsync = VSYNC_GPIO_NUM,
.pin_href = HREF_GPIO_NUM,
.pin_pclk = PCLK_GPIO_NUM,
//EXPERIMENTAL: Set to 16MHz on ESP32-S2 or ESP32-S3 to enable EDMA mode
.xclk_freq_hz = xclk_freq_hz,
.ledc_timer = LEDC_TIMER_0,
.ledc_channel = LEDC_CHANNEL_0,
.pixel_format = pixel_format, //YUV422,GRAYSCALE,RGB565,JPEG
.frame_size = frame_size, //QQVGA-UXGA Do not use sizes above QVGA when not JPEG
.jpeg_quality = 12, //0-63 lower number means higher quality
.fb_count = fb_count, //if more than one, i2s runs in continuous mode. Use only with JPEG
.grab_mode = CAMERA_GRAB_WHEN_EMPTY
};
//initialize the camera
esp_err_t ret = esp_camera_init(&camera_config);
if (ESP_OK == ret && PIXFORMAT_JPEG == pixel_format && FRAMESIZE_SVGA > size_bak) {
sensor_t *s = esp_camera_sensor_get();
s->set_framesize(s, size_bak);
}
return ret;
}
static bool camera_test_fps(uint16_t times, float *fps, uint32_t *size)
{
*fps = 0.0f;
*size = 0;
uint32_t s = 0;
uint32_t num = 0;
uint64_t total_time = esp_timer_get_time();
for (size_t i = 0; i < times; i++) {
camera_fb_t *pic = esp_camera_fb_get();
if (NULL == pic) {
ESP_LOGW(TAG, "fb get failed");
return 0;
} else {
s += pic->len;
num++;
}
esp_camera_fb_return(pic);
}
total_time = esp_timer_get_time() - total_time;
if (num) {
*fps = num * 1000000.0f / total_time ;
*size = s / num;
}
return 1;
}
static const char *get_cam_format_name(pixformat_t pixel_format)
{
switch (pixel_format) {
case PIXFORMAT_JPEG: return "JPEG";
case PIXFORMAT_RGB565: return "RGB565";
case PIXFORMAT_RGB888: return "RGB888";
case PIXFORMAT_YUV422: return "YUV422";
default:
break;
}
return "UNKNOW";
}
static void printf_img_base64(const camera_fb_t *pic)
{
uint8_t *outbuffer = NULL;
size_t outsize = 0;
if (PIXFORMAT_JPEG != pic->format) {
fmt2jpg(pic->buf, pic->width * pic->height * 2, pic->width, pic->height, pic->format, 50, &outbuffer, &outsize);
} else {
outbuffer = pic->buf;
outsize = pic->len;
}
uint8_t *base64_buf = calloc(1, outsize * 4);
if (NULL != base64_buf) {
size_t out_len = 0;
mbedtls_base64_encode(base64_buf, outsize * 4, &out_len, outbuffer, outsize);
printf("%s\n", base64_buf);
free(base64_buf);
if (PIXFORMAT_JPEG != pic->format) {
free(outbuffer);
}
} else {
ESP_LOGE(TAG, "malloc for base64 buffer failed");
}
}
static void camera_performance_test(uint32_t xclk_freq, uint32_t pic_num)
{
esp_err_t ret = ESP_OK;
//detect sensor information
TEST_ESP_OK(init_camera(20000000, PIXFORMAT_RGB565, FRAMESIZE_QVGA, 2));
sensor_t *s = esp_camera_sensor_get();
camera_sensor_info_t *info = esp_camera_sensor_get_info(&s->id);
TEST_ASSERT_NOT_NULL(info);
TEST_ESP_OK(esp_camera_deinit());
vTaskDelay(500 / portTICK_RATE_MS);
framesize_t max_size = info->max_size;
pixformat_t all_format[] = {PIXFORMAT_JPEG, PIXFORMAT_RGB565, PIXFORMAT_YUV422, };
pixformat_t *format_s = &all_format[0];
pixformat_t *format_e = &all_format[2];
if (false == info->support_jpeg) {
format_s++; // skip jpeg
}
struct fps_result {
float fps[FRAMESIZE_INVALID];
uint32_t size[FRAMESIZE_INVALID];
};
struct fps_result results[3] = {0};
for (; format_s <= format_e; format_s++) {
for (size_t i = 0; i <= max_size; i++) {
ESP_LOGI(TAG, "\n\n===> Testing format:%s resolution: %d x %d <===", get_cam_format_name(*format_s), resolution[i].width, resolution[i].height);
ret = init_camera(xclk_freq, *format_s, i, 2);
vTaskDelay(100 / portTICK_RATE_MS);
if (ESP_OK != ret) {
ESP_LOGW(TAG, "Testing init failed :-(, skip this item");
vTaskDelay(500 / portTICK_RATE_MS);
continue;
}
camera_test_fps(pic_num, &results[format_s - all_format].fps[i], &results[format_s - all_format].size[i]);
TEST_ESP_OK(esp_camera_deinit());
}
}
printf("FPS Result\n");
printf("resolution , JPEG fps, JPEG size, RGB565 fps, RGB565 size, YUV422 fps, YUV422 size \n");
for (size_t i = 0; i <= max_size; i++) {
printf("%4d x %4d , %5.2f, %6d, %5.2f, %7d, %5.2f, %7d \n",
resolution[i].width, resolution[i].height,
results[0].fps[i], results[0].size[i],
results[1].fps[i], results[1].size[i],
results[2].fps[i], results[2].size[i]);
}
printf("----------------------------------------------------------------------------------------\n");
}
TEST_CASE("Camera driver init, deinit test", "[camera]")
{
uint64_t t1 = esp_timer_get_time();
TEST_ESP_OK(init_camera(20000000, PIXFORMAT_RGB565, FRAMESIZE_QVGA, 2));
uint64_t t2 = esp_timer_get_time();
ESP_LOGI(TAG, "Camera init time %llu ms", (t2 - t1) / 1000);
TEST_ESP_OK(esp_camera_deinit());
}
TEST_CASE("Camera driver take RGB565 picture test", "[camera]")
{
TEST_ESP_OK(init_camera(10000000, PIXFORMAT_RGB565, FRAMESIZE_QVGA, 2));
vTaskDelay(500 / portTICK_RATE_MS);
ESP_LOGI(TAG, "Taking picture...");
camera_fb_t *pic = esp_camera_fb_get();
if (pic) {
ESP_LOGI(TAG, "picture: %d x %d, size: %u", pic->width, pic->height, pic->len);
printf_img_base64(pic);
esp_camera_fb_return(pic);
}
TEST_ESP_OK(esp_camera_deinit());
TEST_ASSERT_NOT_NULL(pic);
}
TEST_CASE("Camera driver take YUV422 picture test", "[camera]")
{
TEST_ESP_OK(init_camera(10000000, PIXFORMAT_YUV422, FRAMESIZE_QVGA, 2));
vTaskDelay(500 / portTICK_RATE_MS);
ESP_LOGI(TAG, "Taking picture...");
camera_fb_t *pic = esp_camera_fb_get();
if (pic) {
ESP_LOGI(TAG, "picture: %d x %d, size: %u", pic->width, pic->height, pic->len);
printf_img_base64(pic);
esp_camera_fb_return(pic);
}
TEST_ESP_OK(esp_camera_deinit());
TEST_ASSERT_NOT_NULL(pic);
}
TEST_CASE("Camera driver take JPEG picture test", "[camera]")
{
TEST_ESP_OK(init_camera(20000000, PIXFORMAT_JPEG, FRAMESIZE_QVGA, 2));
vTaskDelay(500 / portTICK_RATE_MS);
ESP_LOGI(TAG, "Taking picture...");
camera_fb_t *pic = esp_camera_fb_get();
if (pic) {
ESP_LOGI(TAG, "picture: %d x %d, size: %u", pic->width, pic->height, pic->len);
printf_img_base64(pic);
esp_camera_fb_return(pic);
}
TEST_ESP_OK(esp_camera_deinit());
TEST_ASSERT_NOT_NULL(pic);
}
TEST_CASE("Camera driver performance test", "[camera]")
{
camera_performance_test(20 * 1000000, 16);
}
static void print_rgb565_img(uint8_t *img, int width, int height)
{
uint16_t *p = (uint16_t *)img;
const char temp2char[17] = "@MNHQ&#UJ*x7^i;.";
for (size_t j = 0; j < height; j++) {
for (size_t i = 0; i < width; i++) {
uint32_t c = p[j * width + i];
uint8_t r = c >> 11;
uint8_t g = (c >> 6) & 0x1f;
uint8_t b = c & 0x1f;
c = (r + g + b) / 3;
c >>= 1;
printf("%c", temp2char[15 - c]);
}
printf("\n");
}
}
static void print_rgb888_img(uint8_t *img, int width, int height)
{
uint8_t *p = (uint8_t *)img;
const char temp2char[17] = "@MNHQ&#UJ*x7^i;.";
for (size_t j = 0; j < height; j++) {
for (size_t i = 0; i < width; i++) {
uint8_t *c = p + 3 * (j * width + i);
uint8_t r = *c++;
uint8_t g = *c++;
uint8_t b = *c;
uint32_t v = (r + g + b) / 3;
v >>= 4;
printf("%c", temp2char[15 - v]);
}
printf("\n");
}
}
static void tjpgd_decode_rgb565(uint8_t *mjpegbuffer, uint32_t size, uint8_t *outbuffer)
{
jpg2rgb565(mjpegbuffer, size, outbuffer, JPG_SCALE_NONE);
}
static void tjpgd_decode_rgb888(uint8_t *mjpegbuffer, uint32_t size, uint8_t *outbuffer)
{
fmt2rgb888(mjpegbuffer, size, PIXFORMAT_JPEG, outbuffer);
}
typedef enum {
DECODE_RGB565,
DECODE_RGB888,
} decode_type_t;
static const decode_func_t g_decode_func[2][2] = {
{tjpgd_decode_rgb565,},
{tjpgd_decode_rgb888,},
};
static float jpg_decode_test(uint8_t decoder_index, decode_type_t type, const uint8_t *jpg, uint32_t length, uint32_t img_w, uint32_t img_h, uint32_t times)
{
uint8_t *jpg_buf = malloc(length);
if (NULL == jpg_buf) {
ESP_LOGE(TAG, "malloc for jpg buffer failed");
return 0;
}
memcpy(jpg_buf, jpg, length);
uint8_t *rgb_buf = heap_caps_malloc(img_w * img_h * 3, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if (NULL == rgb_buf) {
free(jpg_buf);
ESP_LOGE(TAG, "malloc for rgb buffer failed");
return 0;
}
decode_func_t decode = g_decode_func[type][decoder_index];
decode(jpg_buf, length, rgb_buf);
if (DECODE_RGB565 == type) {
ESP_LOGI(TAG, "jpeg decode to rgb565");
print_rgb565_img(rgb_buf, img_w, img_h);
} else {
ESP_LOGI(TAG, "jpeg decode to rgb888");
print_rgb888_img(rgb_buf, img_w, img_h);
}
uint64_t t_decode[times];
for (size_t i = 0; i < times; i++) {
uint64_t t1 = esp_timer_get_time();
decode(jpg_buf, length, rgb_buf);
t_decode[i] = esp_timer_get_time() - t1;
}
printf("resolution , t \n");
uint64_t t_total = 0;
for (size_t i = 0; i < times; i++) {
t_total += t_decode[i];
float t = t_decode[i] / 1000.0f;
printf("%4d x %4d , %5.2f ms \n", img_w, img_h, t);
}
float fps = times / (t_total / 1000000.0f);
printf("Decode FPS Result\n");
printf("resolution , fps \n");
printf("%4d x %4d , %5.2f \n", img_w, img_h, fps);
free(jpg_buf);
heap_caps_free(rgb_buf);
return fps;
}
static void img_jpeg_decode_test(uint16_t pic_index, uint16_t lib_index)
{
extern const uint8_t img1_start[] asm("_binary_testimg_jpeg_start");
extern const uint8_t img1_end[] asm("_binary_testimg_jpeg_end");
extern const uint8_t img2_start[] asm("_binary_test_inside_jpeg_start");
extern const uint8_t img2_end[] asm("_binary_test_inside_jpeg_end");
extern const uint8_t img3_start[] asm("_binary_test_outside_jpeg_start");
extern const uint8_t img3_end[] asm("_binary_test_outside_jpeg_end");
struct img_t {
const uint8_t *buf;
uint32_t length;
uint16_t w, h;
};
struct img_t imgs[3] = {
{
.buf = img1_start,
.length = img1_end - img1_start,
.w = 227,
.h = 149,
},
{
.buf = img2_start,
.length = img2_end - img2_start,
.w = 320,
.h = 240,
},
{
.buf = img3_start,
.length = img3_end - img3_start,
.w = 480,
.h = 320,
},
};
ESP_LOGI(TAG, "pic_index:%d", pic_index);
ESP_LOGI(TAG, "lib_index:%d", lib_index);
jpg_decode_test(lib_index, DECODE_RGB565, imgs[pic_index].buf, imgs[pic_index].length, imgs[pic_index].w, imgs[pic_index].h, 16);
}
TEST_CASE("Conversions image 227x149 jpeg decode test", "[camera]")
{
img_jpeg_decode_test(0, 0);
}
TEST_CASE("Conversions image 320x240 jpeg decode test", "[camera]")
{
img_jpeg_decode_test(1, 0);
}
TEST_CASE("Conversions image 480x320 jpeg decode test", "[camera]")
{
img_jpeg_decode_test(2, 0);
}

View File

@ -56,7 +56,7 @@ build_flags = ${env:tasmota32_base.build_flags} -DFIRMWARE_TASMOTA32
extends = env:tasmota32_base
board = esp32-cam
build_flags = ${env:tasmota32_base.build_flags} -DFIRMWARE_WEBCAM
lib_extra_dirs = lib/libesp32, lib/libesp32_div
lib_extra_dirs = lib/libesp32
[env:tasmota32-odroidgo]
extends = env:tasmota32_base