Revert "Experimental Sonoff B1 support"

This reverts commit 7825bc0f0a.
This commit is contained in:
Theo Arends 2017-08-13 11:23:07 +02:00
parent 7825bc0f0a
commit 1377b4b171
4 changed files with 104 additions and 377 deletions

View File

@ -1,7 +1,6 @@
/* 5.5.2c /* 5.5.2b
* Fix Sonoff Pow intermittent exception 0 * Fix Sonoff Pow intermittent exception 0
* Change Sonoff Pow sending Domoticz telemetry data only * Change Sonoff Pow sending Domoticz telemetry data only
* Add Sonoff B1 support (experimental)
* *
* 5.5.2 20170808 * 5.5.2 20170808
* Extent max number of WS2812 pixels from 256 to 512 (#667) * Extent max number of WS2812 pixels from 256 to 512 (#667)

View File

@ -25,7 +25,7 @@
- Select IDE Tools - Flash Size: "1M (no SPIFFS)" - Select IDE Tools - Flash Size: "1M (no SPIFFS)"
====================================================*/ ====================================================*/
#define VERSION 0x05050203 // 5.5.2c #define VERSION 0x05050202 // 5.5.2b
enum log_t {LOG_LEVEL_NONE, LOG_LEVEL_ERROR, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG_MORE, LOG_LEVEL_ALL}; enum log_t {LOG_LEVEL_NONE, LOG_LEVEL_ERROR, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG_MORE, LOG_LEVEL_ALL};
enum week_t {Last, First, Second, Third, Fourth}; enum week_t {Last, First, Second, Third, Fourth};
@ -303,7 +303,7 @@ uint8_t hlw_flg = 0; // Power monitor configured
uint8_t i2c_flg = 0; // I2C configured uint8_t i2c_flg = 0; // I2C configured
uint8_t spi_flg = 0; // SPI configured uint8_t spi_flg = 0; // SPI configured
uint8_t pwm_flg = 0; // PWM configured uint8_t pwm_flg = 0; // PWM configured
uint8_t sfl_flg = 0; // Sonoff Led flag (0 = No led, 1 = BN-SZ01, 2 = Sonoff Led, 5 = Sonoff B1) uint8_t sfl_flg = 0; // Sonoff Led flag (0 = No led, 1 = BN-SZ01, 2 = Sonoff Led)
uint8_t pwm_idxoffset = 0; // Allowed PWM command offset (change for Sonoff Led) uint8_t pwm_idxoffset = 0; // Allowed PWM command offset (change for Sonoff Led)
boolean mDNSbegun = false; boolean mDNSbegun = false;
@ -2318,7 +2318,7 @@ void stateloop()
button_handler(); button_handler();
switch_handler(); switch_handler();
if (sfl_flg) { // Sonoff B1, led or BN-SZ01 if (sfl_flg) { // Sonoff BN-SZ01 or Sonoff Led
sl_animate(); sl_animate();
} }
@ -2633,9 +2633,6 @@ void GPIO_init()
else if (SONOFF_LED == sysCfg.module) { else if (SONOFF_LED == sysCfg.module) {
sfl_flg = 2; sfl_flg = 2;
} }
else if (SONOFF_B1 == sysCfg.module) {
sfl_flg = 5;
}
else { else {
Maxdevice = 0; Maxdevice = 0;
for (byte i = 0; i < 4; i++) { for (byte i = 0; i < 4; i++) {
@ -2663,9 +2660,20 @@ void GPIO_init()
} }
} }
if (sfl_flg) { // Sonoff B1, Led or BN-SZ01 if (sfl_flg) { // Sonoff Led or BN-SZ01
if (sfl_flg < 5) {
pwm_idxoffset = sfl_flg; // 1 for BN-SZ01, 2 for Sonoff Led pwm_idxoffset = sfl_flg; // 1 for BN-SZ01, 2 for Sonoff Led
pin[GPIO_WS2812] = 99; // I do not allow both Sonoff Led AND WS2812 led
if (!my_module.gp.io[4]) {
pinMode(4, OUTPUT); // Stop floating outputs
digitalWrite(4, LOW);
}
if (!my_module.gp.io[5]) {
pinMode(5, OUTPUT); // Stop floating outputs
digitalWrite(5, LOW);
}
if (!my_module.gp.io[14]) {
pinMode(14, OUTPUT); // Stop floating outputs
digitalWrite(14, LOW);
} }
sl_init(); sl_init();
} }

View File

@ -118,8 +118,6 @@ enum fpins_t {
GPIO_HLW_CF, // HLW8012 CF power (Sonoff Pow) GPIO_HLW_CF, // HLW8012 CF power (Sonoff Pow)
GPIO_ADC0, // ADC GPIO_ADC0, // ADC
GPIO_USER, // User configurable GPIO_USER, // User configurable
GPIO_DI, // my9231 PWM input
GPIO_DCKI, // my9231 CLK input
GPIO_MAX }; GPIO_MAX };
/********************************************************************************************/ /********************************************************************************************/
@ -151,7 +149,6 @@ enum module_t {
SONOFF_4CHPRO, SONOFF_4CHPRO,
HUAFAN_SS, HUAFAN_SS,
SONOFF_BRIDGE, SONOFF_BRIDGE,
SONOFF_B1,
MAXMODULE }; MAXMODULE };
/********************************************************************************************/ /********************************************************************************************/
@ -492,22 +489,6 @@ const mytmplt modules[MAXMODULE] PROGMEM = {
0, 0,
GPIO_LED1_INV, // GPIO13 Blue Led (0 = On, 1 = Off) GPIO_LED1_INV, // GPIO13 Blue Led (0 = On, 1 = Off)
0, 0, 0, 0 0, 0, 0, 0
},
{ "Sonoff B1", // Sonoff B1 (ESP8285 - my9231)
GPIO_KEY1, // GPIO00 Pad
GPIO_USER, // GPIO01 Serial RXD and Optional sensor pad
GPIO_USER, // GPIO02 Optional sensor SDA pad
GPIO_USER, // GPIO03 Serial TXD and Optional sensor pad
0, 0,
0, 0, 0, // Flash connection
0, 0,
0, // Flash connection
GPIO_DI, // GPIO12 my9231 DI
0,
GPIO_DCKI, // GPIO14 my9231 DCKI
0,
0, 0
} }
}; };

View File

@ -18,7 +18,7 @@
*/ */
/*********************************************************************************************\ /*********************************************************************************************\
* Sonoff B1, Led and BN-SZ01 * Sonoff Led and BN-SZ01
\*********************************************************************************************/ \*********************************************************************************************/
uint8_t ledTable[] = { uint8_t ledTable[] = {
@ -39,9 +39,9 @@ uint8_t ledTable[] = {
184,186,189,191,193,195,197,199,201,204,206,208,210,212,215,217, 184,186,189,191,193,195,197,199,201,204,206,208,210,212,215,217,
219,221,224,226,228,231,233,235,238,240,243,245,248,250,253,255 }; 219,221,224,226,228,231,233,235,238,240,243,245,248,250,253,255 };
uint8_t sl_dcolor[5]; uint8_t sl_dcolor[2];
uint8_t sl_tcolor[5]; uint8_t sl_tcolor[2];
uint8_t sl_lcolor[5]; uint8_t sl_lcolor[2];
uint8_t sl_power; uint8_t sl_power;
uint8_t sl_any; uint8_t sl_any;
@ -49,201 +49,54 @@ uint8_t sl_wakeupActive = 0;
uint8_t sl_wakeupDimmer = 0; uint8_t sl_wakeupDimmer = 0;
uint16_t sl_wakeupCntr = 0; uint16_t sl_wakeupCntr = 0;
/*********************************************************************************************\
* Sonoff B1 based on OpenLight https://github.com/icamgo/noduino-sdk
\*********************************************************************************************/
uint8_t sl_last_command;
void sl_di_pulse(byte times)
{
for (byte i = 0; i < times; i++) {
digitalWrite(pin[GPIO_DI], HIGH);
digitalWrite(pin[GPIO_DI], LOW);
}
}
void sl_dcki_pulse(byte times)
{
for (byte i = 0; i < times; i++) {
digitalWrite(pin[GPIO_DCKI], HIGH);
digitalWrite(pin[GPIO_DCKI], LOW);
}
}
void sl_send_command(uint8_t command)
{
uint8_t command_data;
sl_last_command = command;
// ets_intr_lock();
delayMicroseconds(12); // TStop > 12us.
// Send 12 DI pulse, after 6 pulse's falling edge store duty data, and 12
// pulse's rising edge convert to command mode.
sl_di_pulse(12);
delayMicroseconds(12); // Delay >12us, begin send CMD data
for (byte n = 0; n < 2; n++) { // Send CMD data
command_data = command;
for (byte i = 0; i < 4; i++) { // Send byte
digitalWrite(pin[GPIO_DCKI], LOW);
if (command_data & 0x80) {
digitalWrite(pin[GPIO_DI], HIGH);
} else {
digitalWrite(pin[GPIO_DI], LOW);
}
// digitalWrite(pin[GPIO_DI], (command_data & 0x80));
digitalWrite(pin[GPIO_DCKI], HIGH);
command_data = command_data << 1;
if (command_data & 0x80) {
digitalWrite(pin[GPIO_DI], HIGH);
} else {
digitalWrite(pin[GPIO_DI], LOW);
}
digitalWrite(pin[GPIO_DCKI], LOW);
digitalWrite(pin[GPIO_DI], LOW);
command_data = command_data << 1;
}
}
delayMicroseconds(12); // TStart > 12us. Delay 12 us.
// Send 16 DI pulse, at 14 pulse's falling edge store CMD data, and
// at 16 pulse's falling edge convert to duty mode.
sl_di_pulse(16);
delayMicroseconds(12); // TStop > 12us.
// ets_intr_unlock();
}
void sl_send_duty(uint16_t duty_r, uint16_t duty_g, uint16_t duty_b, uint16_t duty_w, uint16_t duty_c)
{
uint8_t bit_length = 8;
uint16_t duty_current = 0;
uint16_t duty[8] = { duty_r, duty_g, duty_b, 0, duty_w, duty_c, 0, 0 }; // Definition for RGBWC channels
// ets_intr_lock();
delayMicroseconds(12); // TStop > 12us.
for (byte channel = 0; channel < 8; channel++) { // RGB0WC00 8CH
duty_current = duty[channel]; // RGBWC Channel
for (byte i = 0; i < bit_length / 2; i++) { // Send 8bit/12bit/14bit/16bit Data
digitalWrite(pin[GPIO_DCKI], LOW);
if (duty_current & (0x01 << (bit_length - 1))) {
digitalWrite(pin[GPIO_DI], HIGH);
} else {
digitalWrite(pin[GPIO_DI], LOW);
}
digitalWrite(pin[GPIO_DCKI], HIGH);
duty_current = duty_current << 1;
if (duty_current & (0x01 << (bit_length - 1))) {
digitalWrite(pin[GPIO_DI], HIGH);
} else {
digitalWrite(pin[GPIO_DI], LOW);
}
digitalWrite(pin[GPIO_DCKI], LOW);
digitalWrite(pin[GPIO_DI], LOW);
duty_current = duty_current << 1;
}
}
delayMicroseconds(12); // TStart > 12us. Ready for send DI pulse.
sl_di_pulse(8); // Send 8 DI pulse. After 8 pulse falling edge, store old data.
delayMicroseconds(12); // TStop > 12us.
// ets_intr_unlock();
}
/********************************************************************************************/ /********************************************************************************************/
void sl_setDim(uint8_t myDimmer)
{
if ((1 == sfl_flg) && (100 == myDimmer)) {
myDimmer = 99; // BN-SZ01 starts flickering at dimmer = 100
}
float newDim = 100 / (float)myDimmer;
float fmyCld = (float)sysCfg.led_color[0] / newDim;
sl_dcolor[0] = (uint8_t)fmyCld;
float fmyWrm = (float)sysCfg.led_color[1] / newDim;
sl_dcolor[1] = (uint8_t)fmyWrm;
}
void sl_init(void) void sl_init(void)
{ {
pin[GPIO_WS2812] = 99; // I do not allow both Sonoff Led AND WS2812 led
if (sfl_flg < 5) {
if (!my_module.gp.io[4]) {
pinMode(4, OUTPUT); // Stop floating outputs
digitalWrite(4, LOW);
}
if (!my_module.gp.io[5]) {
pinMode(5, OUTPUT); // Stop floating outputs
digitalWrite(5, LOW);
}
if (!my_module.gp.io[14]) {
pinMode(14, OUTPUT); // Stop floating outputs
digitalWrite(14, LOW);
}
sysCfg.pwmvalue[0] = 0; // We use dimmer / led_color sysCfg.pwmvalue[0] = 0; // We use dimmer / led_color
if (2 == sfl_flg) { if (2 == sfl_flg) {
sysCfg.pwmvalue[1] = 0; // We use led_color sysCfg.pwmvalue[1] = 0; // We use led_color
} }
} else {
pinMode(pin[GPIO_DI], OUTPUT);
pinMode(pin[GPIO_DCKI], OUTPUT);
digitalWrite(pin[GPIO_DI], LOW);
digitalWrite(pin[GPIO_DCKI], LOW);
// Clear all duty register
sl_dcki_pulse(64);
sl_send_command(0x18); // ONE_SHOT_DISABLE, REACTION_FAST, BIT_WIDTH_8, FREQUENCY_DIVIDE_1, SCATTER_APDM
// Test
sl_send_duty(16, 0, 0, 0, 0); // Red
}
sl_power = 0; sl_power = 0;
sl_any = 0; sl_any = 0;
sl_wakeupActive = 0; sl_wakeupActive = 0;
} }
void sl_setDim(uint8_t myDimmer) void sl_setColor(char* colstr)
{ {
float temp; uint8_t my_color[2];
char *p;
if ((1 == sfl_flg) && (100 == myDimmer)) { uint16_t temp = strtol(colstr, &p, 16);
myDimmer = 99; // BN-SZ01 starts flickering at dimmer = 100 my_color[1] = temp & 0xFF; // Warm
temp >>= 8;
my_color[0] = temp & 0xFF; // Cold
if (temp < my_color[1]) {
temp = my_color[1];
} }
float newDim = 100 / (float)myDimmer; float mDim = (float)temp / 2.55;
for (byte i = 0; i < sfl_flg; i++) {
temp = (float)sysCfg.led_color[i] / newDim;
sl_dcolor[i] = (uint8_t)temp;
}
}
void sl_setColor()
{
uint8_t highest = 0;
float temp;
for (byte i = 0; i < sfl_flg; i++) {
if (highest < sl_dcolor[i]) {
highest = sl_dcolor[i];
}
}
float mDim = (float)highest / 2.55;
sysCfg.led_dimmer[0] = (uint8_t)mDim; sysCfg.led_dimmer[0] = (uint8_t)mDim;
float newDim = 100 / mDim; float newDim = 100 / mDim;
for (byte i = 0; i < sfl_flg; i++) { float fmyCold = (float)my_color[0] * newDim;
temp = (float)sl_dcolor[i] * newDim; float fmyWarm = (float)my_color[1] * newDim;
sysCfg.led_color[i] = (uint8_t)temp; sysCfg.led_color[0] = (uint8_t)fmyCold;
} sysCfg.led_color[1] = (uint8_t)fmyWarm;
}
char* sl_getColor(char* scolor)
{
sl_setDim(sysCfg.led_dimmer[0]);
scolor[0] = '\0';
for (byte i = 0; i < sfl_flg; i++) {
snprintf_P(scolor, 11, PSTR("%s%02X"), scolor, sl_dcolor[i]);
}
return scolor;
} }
void sl_prepPower(char *svalue, uint16_t ssvalue) void sl_prepPower(char *svalue, uint16_t ssvalue)
{ {
char scolor[11];
// do_cmnd_power(index, (sysCfg.led_dimmer[0]>0)); // do_cmnd_power(index, (sysCfg.led_dimmer[0]>0));
if (sysCfg.led_dimmer[0] && !(power&1)) { if (sysCfg.led_dimmer[0] && !(power&1)) {
do_cmnd_power(1, 7); // No publishPowerState do_cmnd_power(1, 7); // No publishPowerState
@ -254,9 +107,12 @@ void sl_prepPower(char *svalue, uint16_t ssvalue)
#ifdef USE_DOMOTICZ #ifdef USE_DOMOTICZ
mqtt_publishDomoticzPowerState(1); mqtt_publishDomoticzPowerState(1);
#endif // USE_DOMOTICZ #endif // USE_DOMOTICZ
if (sfl_flg > 1) { sl_setDim(sysCfg.led_dimmer[0]);
snprintf_P(svalue, ssvalue, PSTR("{\"POWER\":\"%s\", \"Dimmer\":%d, \"Color\":\"%s\"}"), if (2 == sfl_flg) {
getStateText(power &1), sysCfg.led_dimmer[0], sl_getColor(scolor)); uint16_t color = (uint16_t)sl_dcolor[0] << 8;
color += (uint16_t)sl_dcolor[1];
snprintf_P(svalue, ssvalue, PSTR("{\"POWER\":\"%s\", \"Dimmer\":%d, \"Color\":\"%04X\"}"),
getStateText(power &1), sysCfg.led_dimmer[0], color);
} else { } else {
snprintf_P(svalue, ssvalue, PSTR("{\"POWER\":\"%s\", \"Dimmer\":%d}"), snprintf_P(svalue, ssvalue, PSTR("{\"POWER\":\"%s\", \"Dimmer\":%d}"),
getStateText(power &1), sysCfg.led_dimmer[0]); getStateText(power &1), sysCfg.led_dimmer[0]);
@ -277,38 +133,40 @@ void sl_animate()
// {"Wakeup":"Done"} // {"Wakeup":"Done"}
char svalue[32]; // was MESSZ char svalue[32]; // was MESSZ
uint8_t fadeValue; uint8_t fadeValue;
uint8_t cur_col[5];
if (0 == sl_power) { // Power Off if (0 == sl_power) { // Power Off
for (byte i = 0; i < sfl_flg; i++) { sl_tcolor[0] = 0;
sl_tcolor[i] = 0; sl_tcolor[1] = 0;
}
} }
else { else {
if (!sl_wakeupActive) { // Power On if (!sl_wakeupActive) { // Power On
sl_setDim(sysCfg.led_dimmer[0]); sl_setDim(sysCfg.led_dimmer[0]);
if (0 == sysCfg.led_fade) { if (0 == sysCfg.led_fade) {
for (byte i = 0; i < sfl_flg; i++) { sl_tcolor[0] = sl_dcolor[0];
sl_tcolor[i] = sl_dcolor[i]; sl_tcolor[1] = sl_dcolor[1];
}
} else { } else {
for (byte i = 0; i < sfl_flg; i++) { if (sl_tcolor[0] != sl_dcolor[0]) {
if (sl_tcolor[i] != sl_dcolor[i]) { if (sl_tcolor[0] < sl_dcolor[0]) {
if (sl_tcolor[i] < sl_dcolor[i]) { sl_tcolor[0] += ((sl_dcolor[0] - sl_tcolor[0]) >> sysCfg.led_speed) +1;
sl_tcolor[i] += ((sl_dcolor[i] - sl_tcolor[i]) >> sysCfg.led_speed) +1;
} }
if (sl_tcolor[i] > sl_dcolor[i]) { if (sl_tcolor[0] > sl_dcolor[0]) {
sl_tcolor[i] -= ((sl_tcolor[i] - sl_dcolor[i]) >> sysCfg.led_speed) +1; sl_tcolor[0] -= ((sl_tcolor[0] - sl_dcolor[0]) >> sysCfg.led_speed) +1;
} }
} }
if ((2 == sfl_flg) && (sl_tcolor[1] != sl_dcolor[1])) {
if (sl_tcolor[1] < sl_dcolor[1]) {
sl_tcolor[1] += ((sl_dcolor[1] - sl_tcolor[1]) >> sysCfg.led_speed) +1;
}
if (sl_tcolor[1] > sl_dcolor[1]) {
sl_tcolor[1] -= ((sl_tcolor[1] - sl_dcolor[1]) >> sysCfg.led_speed) +1;
}
} }
} }
} else { // Power On using wake up duration } else { // Power On using wake up duration
if (2 == sl_wakeupActive) { if (2 == sl_wakeupActive) {
sl_wakeupActive = 1; sl_wakeupActive = 1;
for (byte i = 0; i < sfl_flg; i++) { sl_tcolor[0] = 0;
sl_tcolor[i] = 0; sl_tcolor[1] = 0;
}
sl_wakeupCntr = 0; sl_wakeupCntr = 0;
sl_wakeupDimmer = 0; sl_wakeupDimmer = 0;
} }
@ -318,9 +176,8 @@ void sl_animate()
sl_wakeupDimmer++; sl_wakeupDimmer++;
if (sl_wakeupDimmer <= sysCfg.led_dimmer[0]) { if (sl_wakeupDimmer <= sysCfg.led_dimmer[0]) {
sl_setDim(sl_wakeupDimmer); sl_setDim(sl_wakeupDimmer);
for (byte i = 0; i < sfl_flg; i++) { sl_tcolor[0] = sl_dcolor[0];
sl_tcolor[i] = sl_dcolor[i]; sl_tcolor[1] = sl_dcolor[1];
}
} else { } else {
snprintf_P(svalue, sizeof(svalue), PSTR("{\"Wakeup\":\"Done\"}")); snprintf_P(svalue, sizeof(svalue), PSTR("{\"Wakeup\":\"Done\"}"));
mqtt_publish_topic_P(2, PSTR("WAKEUP"), svalue); mqtt_publish_topic_P(2, PSTR("WAKEUP"), svalue);
@ -329,162 +186,45 @@ void sl_animate()
} }
} }
} }
for (byte i = 0; i < sfl_flg; i++) { if ((sl_lcolor[0] != sl_tcolor[0]) || (sl_lcolor[1] != sl_tcolor[1]) || sl_any) {
if (sl_lcolor[i] != sl_tcolor[i]) {
sl_any = 1;
}
}
if (sl_any) {
sl_any = 0; sl_any = 0;
sl_lcolor[0] = sl_tcolor[0];
sl_lcolor[1] = sl_tcolor[1];
for (byte i = 0; i < sfl_flg; i++) { for (byte i = 0; i < sfl_flg; i++) {
sl_lcolor[i] = sl_tcolor[i];
cur_col[i] = (sysCfg.led_table) ? ledTable[sl_lcolor[i]] : sl_lcolor[i];
if (sfl_flg < 5) {
if (pin[GPIO_PWM1 +i] < 99) { if (pin[GPIO_PWM1 +i] < 99) {
analogWrite(pin[GPIO_PWM1 +i], cur_col[i] * (PWM_RANGE / 255)); analogWrite(pin[GPIO_PWM1 +i], ((sysCfg.led_table) ? ledTable[sl_lcolor[i]] : sl_lcolor[i]) * (PWM_RANGE / 255));
} }
} }
} }
if (5 == sfl_flg) {
sl_send_duty(cur_col[0], cur_col[1], cur_col[2], cur_col[3], cur_col[4]);
}
}
} }
/*********************************************************************************************\ /*********************************************************************************************\
* Hue support * Hue support
\*********************************************************************************************/ \*********************************************************************************************/
void sl_rgb2hsb(float *hue, float *sat, float *bri)
{
sl_setDim(sysCfg.led_dimmer[0]);
float r = (float)(sl_dcolor[0] / 255.0f);
float g = (float)(sl_dcolor[1] / 255.0f);
float b = (float)(sl_dcolor[2] / 255.0f);
float max = fmax(fmax(r, g), b);
float min = fmin(fmin(r, g), b);
*bri = (max + min) / 2.0f;
if (max == min) {
*hue = *sat = 0.0f;
} else {
float d = max - min;
*sat = (*bri > 0.5f) ? d / (2.0f - max - min) : d / (max + min);
if (r > g && r > b) {
*hue = (g - b) / d + (g < b ? 6.0f : 0.0f);
}
else if (g > b) {
*hue = (b - r) / d + 2.0f;
}
else {
*hue = (r - g) / d + 4.0f;
}
*hue /= 6.0f;
}
}
float sl_hue2rgb(float p, float q, float t)
{
if (t < 0.0f) {
t += 1.0f;
}
if (t > 1.0f) {
t -= 1.0f;
}
if (t < 1.0f / 6.0f) {
return p + (q - p) * 6.0f * t;
}
if (t < 1.0f / 2.0f) {
return q;
}
if (t < 2.0f / 3.0f) {
return p + (q - p) * (2.0f / 3.0f - t) * 6.0f;
}
return p;
}
void sl_hsb2rgb(float hue, float sat, float bri)
{
float r;
float g;
float b;
if (sat == 0.0f) {
r = g = b = bri;
} else {
float q = bri < 0.5f ? bri * (1.0f + sat) : bri + sat - bri * sat;
float p = 2.0f * bri - q;
r = sl_hue2rgb(p, q, hue + 1.0f / 3.0f);
g = sl_hue2rgb(p, q, hue);
b = sl_hue2rgb(p, q, hue - 1.0f / 3.0f);
}
sl_dcolor[0] = (uint8_t)(r * 255 + 0.5f);
sl_dcolor[1] = (uint8_t)(g * 255 + 0.5f);
sl_dcolor[2] = (uint8_t)(b * 255 + 0.5f);
sl_setColor();
}
/********************************************************************************************/
void sl_replaceHSB(String *response) void sl_replaceHSB(String *response)
{ {
float hue;
float sat;
float bri;
if (5 == sfl_flg) {
sl_rgb2hsb(&hue, &sat, &bri);
response->replace("{h}", String((uint16_t)(65535.0f * hue)));
response->replace("{s}", String((uint8_t)(254.0f * sat)));
response->replace("{b}", String((uint8_t)(254.0f * bri)));
} else {
response->replace("{h}", "0"); response->replace("{h}", "0");
response->replace("{s}", "0"); response->replace("{s}", "0");
response->replace("{b}", String((uint8_t)(2.54f * (float)sysCfg.led_dimmer[0]))); response->replace("{b}", String((uint8_t)(2.54f * (float)sysCfg.led_dimmer[0])));
} }
}
void sl_getHSB(float *hue, float *sat, float *bri) void sl_getHSB(float *hue, float *sat, float *bri)
{ {
if (5 == sfl_flg) {
sl_rgb2hsb(hue, sat, bri);
} else {
*hue = 0; *hue = 0;
*sat = 0; *sat = 0;
*bri = (2.54f * (float)sysCfg.led_dimmer[0]); *bri = (2.54f * (float)sysCfg.led_dimmer[0]);
} }
}
void sl_setHSB(float hue, float sat, float bri) void sl_setHSB(float hue, float sat, float bri)
{ {
char svalue[MESSZ]; char svalue[MESSZ];
/*
char log[LOGSZ];
char stemp1[10];
char stemp2[10];
char stemp3[10];
dtostrf(hue, 1, 3, stemp1);
dtostrf(sat, 1, 3, stemp2);
dtostrf(bri, 1, 3, stemp3);
snprintf_P(log, sizeof(log), PSTR("LED: Hue %s, Sat %s, Bri %s"), stemp1, stemp2, stemp3);
addLog(LOG_LEVEL_DEBUG, log);
*/
if (5 == sfl_flg) {
sl_hsb2rgb(hue, sat, bri);
sl_prepPower(svalue, sizeof(svalue));
mqtt_publish_topic_P(5, "COLOR", svalue);
} else {
uint8_t tmp = (uint8_t)(bri * 100); uint8_t tmp = (uint8_t)(bri * 100);
sysCfg.led_dimmer[0] = tmp; sysCfg.led_dimmer[0] = tmp;
sl_prepPower(svalue, sizeof(svalue)); sl_prepPower(svalue, sizeof(svalue));
mqtt_publish_topic_P(5, "DIMMER", svalue); mqtt_publish_topic_P(5, "DIMMER", svalue);
} }
}
/*********************************************************************************************\ /*********************************************************************************************\
* Commands * Commands
@ -494,19 +234,18 @@ boolean sl_command(char *type, uint16_t index, char *dataBufUc, uint16_t data_le
{ {
boolean serviced = true; boolean serviced = true;
boolean coldim = false; boolean coldim = false;
char scolor[11];
char *p;
if ((sfl_flg > 1) && !strcmp_P(type,PSTR("COLOR"))) { if ((2 == sfl_flg) && !strcmp_P(type,PSTR("COLOR"))) {
if ((2 * sfl_flg) == data_len) { uint8_t my_color[2];
for (byte i = 0; i < sfl_flg; i++) { char *p;
strlcpy(scolor, dataBufUc + (i *2), 3); if (4 == data_len) {
sl_dcolor[i] = (uint8_t)strtol(scolor, &p, 16); sl_setColor(dataBufUc);
}
sl_setColor();
coldim = true; coldim = true;
} else { } else {
snprintf_P(svalue, ssvalue, PSTR("{\"Color\":\"%s\"}"), sl_getColor(scolor)); sl_setDim(sysCfg.led_dimmer[0]);
uint16_t color = (uint16_t)sl_dcolor[0] << 8;
color += (uint16_t)sl_dcolor[1];
snprintf_P(svalue, ssvalue, PSTR("{\"Color\":\"%04X\"}"), color);
} }
} }
else if (!strcmp_P(type,PSTR("DIMMER"))) { else if (!strcmp_P(type,PSTR("DIMMER"))) {