Add support for BL0942 energy monitor (#13259)

This commit is contained in:
Theo Arends 2021-10-03 14:10:11 +02:00
parent 0643c2bafb
commit 14951ba2b6
3 changed files with 160 additions and 53 deletions

View File

@ -9,6 +9,7 @@ All notable changes to this project will be documented in this file.
- Commands ``EnergyTotal<phase>``, ``EnergyToday<phase>`` and ``EnergyYesterday<phase>`` to (re)set energy values
- Commands ``EnergyUsage`` and ``EnergyExport`` to (re)set energy usage and export values
- Berry add module ``import persist``
- Support for BL0942 energy monitor (#13259)
### Breaking Changed
- ESP32 LVGL updated to v8.0.2

View File

@ -124,6 +124,7 @@ The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmo
- Support for IKEA VINDRIKTNING particle concentration sensor [#12976](https://github.com/arendst/Tasmota/issues/12976)
- Support for Sensirion SCD40/SCD41 CO2 sensor [#13139](https://github.com/arendst/Tasmota/issues/13139)
- Support for BL0939 energy monitor as used in ESP32 based Sonoff Dual R3 V2 Pow [#13195](https://github.com/arendst/Tasmota/issues/13195)
- Support for BL0942 energy monitor [#13259](https://github.com/arendst/Tasmota/issues/13259)
- Initial support for Tasmota Mesh (TasMesh) providing node/broker communication using ESP-NOW [#11939](https://github.com/arendst/Tasmota/issues/11939)
- Initial support for Wi-Fi extender [#12784](https://github.com/arendst/Tasmota/issues/12784)
- Rule event support as JSON payload [#12496](https://github.com/arendst/Tasmota/issues/12496)

View File

@ -37,6 +37,8 @@
#define XNRG_14 14
//#define DEBUG_BL09XX
#define BL0939_PREF 713 // =(4046*1*0,51*1000)/(1,218*1,218*(390*5+0,51)) = 713,105
#define BL0939_UREF 17159 // =(79931*0,51*1000)/(1,218*(390*5+0,51)) = 17158,92
#define BL0939_IREF 266013 // =(324004*1)/1,218 = 266013,14
@ -45,15 +47,23 @@
#define BL0940_UREF 33000
#define BL0940_IREF 275000
#define BL0942_PREF 596
#define BL0942_UREF 15187
#define BL0942_IREF 251213
#define BL09XX_PULSES_NOT_INITIALIZED -1
#define BL09XX_BUFFER_SIZE 36
#define BL0939_BUFFER_SIZE 35
#define BL0940_BUFFER_SIZE 35
#define BL0942_BUFFER_SIZE 23
#define BL0939_MODEL 39
#define BL0940_MODEL 40
#define BL0942_MODEL 42
#define BL0939_ADDRESS 0x05
#define BL0940_ADDRESS 0x00
#define BL0942_ADDRESS 0x08
#define BL09XX_WRITE_COMMAND 0xA0 // 0xA8 according to documentation
#define BL09XX_REG_I_FAST_RMS_CTRL 0x10
@ -79,22 +89,26 @@ struct BL09XX {
long cf_pulses[2] = { 0, };
long cf_pulses_last_time[2] = { BL09XX_PULSES_NOT_INITIALIZED, BL09XX_PULSES_NOT_INITIALIZED};
float temperature;
int byte_counter = 0;
uint16_t tps1 = 0;
uint8_t *rx_buffer = nullptr;
uint8_t address;
uint8_t model;
uint8_t buffer_size = 0;
uint8_t byte_counter = 0;
uint8_t address = 0;
uint8_t model = 0;
uint8_t rx_pin;
bool received = false;
} Bl09XX;
const uint8_t bl09xx_init[5][6] = {
{ BL09XX_WRITE_COMMAND, BL09XX_REG_SOFT_RESET, 0x5A, 0x5A, 0x5A, 0x38 }, // Reset to default
{ BL09XX_WRITE_COMMAND, BL09XX_REG_USR_WRPROT, 0x55, 0x00, 0x00, 0xF0 }, // Enable User Operation Write
{ BL09XX_WRITE_COMMAND, BL09XX_REG_MODE, 0x00, 0x10, 0x00, 0x37 }, // 0x0100 = CF_UNABLE energy pulse, AC_FREQ_SEL 50Hz, RMS_UPDATE_SEL 800mS
{ BL09XX_WRITE_COMMAND, BL09XX_REG_TPS_CTRL, 0xFF, 0x47, 0x00, 0xFE }, // 0x47FF = Over-current and leakage alarm on, Automatic temperature measurement, Interval 100mS
{ BL09XX_WRITE_COMMAND, BL09XX_REG_I_FAST_RMS_CTRL, 0x1C, 0x18, 0x00, 0x1B }}; // 0x181C = Half cycle, Fast RMS threshold 6172
const uint8_t bl09xx_init[5][4] = {
{ BL09XX_REG_SOFT_RESET, 0x5A, 0x5A, 0x5A }, // Reset to default
{ BL09XX_REG_USR_WRPROT, 0x55, 0x00, 0x00 }, // Enable User Operation Write
{ BL09XX_REG_MODE, 0x00, 0x10, 0x00 }, // 0x0100 = CF_UNABLE energy pulse, AC_FREQ_SEL 50Hz, RMS_UPDATE_SEL 800mS
{ BL09XX_REG_TPS_CTRL, 0xFF, 0x47, 0x00 }, // 0x47FF = Over-current and leakage alarm on, Automatic temperature measurement, Interval 100mS
{ BL09XX_REG_I_FAST_RMS_CTRL, 0x1C, 0x18, 0x00 } // 0x181C = Half cycle, Fast RMS threshold 6172
};
void Bl09XXReceived(void) {
bool Bl09XXDecode3940(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Sample from BL0940 (single channel)
// 55 F2 03 00 00 00 00 7E 02 00 D4 B0 72 AC 01 00 00 00 00 02 01 00 00 00 00 00 00 00 BA 01 00 FE 03 00 83
@ -114,8 +128,8 @@ void Bl09XXReceived(void) {
if ((Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) || // Bad header
(Bl09XX.tps1 && ((tps1 < (Bl09XX.tps1 -10)) || (tps1 > (Bl09XX.tps1 +10)))) // Invalid temperature change
) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data"));
return;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X, tps1:%d"), Bl09XX.rx_buffer[0], tps1);
return false;
}
Bl09XX.tps1 = tps1;
@ -139,21 +153,72 @@ void Bl09XXReceived(void) {
Bl09XX.cf_pulses[1] = abs(tmp >> 8); // CFB_CNT unsigned
}
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d/%d, P %d/%d, C %d/%d, T %d"),
Bl09XX.voltage, Bl09XX.current[0], Bl09XX.current[1], Bl09XX.power[0], Bl09XX.power[1], Bl09XX.cf_pulses[0], Bl09XX.cf_pulses[1], Bl09XX.tps1);
#endif
return true;
}
bool Bl09XXDecode42(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Hd Current- Voltage- IFRms--- Power--- CF------ Freq- 00 St 00 00 Ck
// 55 A3 B9 00 9E 4C 36 93 43 00 F4 98 FF 99 00 00 16 4E 00 01 01 00
// U 3558558, I 47523, P 26380, C 153
// 55 AC B9 00 79 4D 36 C4 43 00 EF 98 FF 99 00 00 16 4E 00 01 01 00
// U 3558777, I 47532, P 26385, C 153
// 55 40 BA 00 2D 50 36 FE 43 00 96 98 FF 99 00 00 16 4E 00 01 01 00
// U 3559469, I 47680, P 26474, C 153
// 55 91 B9 00 33 4C 36 FB 43 00 FC 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3558451, I 47505, P 26372, C 153
// 55 AF B9 00 05 51 36 D1 43 00 E4 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3559685, I 47535, P 26396, C 153
// 55 21 BA 00 3A 5E 36 10 44 00 8B 98 FF 99 00 00 16 4E 00 01 01 00
// U 3563066, I 47649, P 26485, C 153
// 55 BE B9 00 B2 55 36 9D 42 00 D7 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3560882, I 47550, P 26409, C 153
// All above from a single test with a 40W buld on 230V
if (Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X"), Bl09XX.rx_buffer[0]);
return false;
}
Bl09XX.voltage = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // V_RMS unsigned
int32_t tmp;
Bl09XX.current[0] = Bl09XX.rx_buffer[3] << 16 | Bl09XX.rx_buffer[2] << 8 | Bl09XX.rx_buffer[1]; // IA_RMS unsigned
tmp = Bl09XX.rx_buffer[12] << 24 | Bl09XX.rx_buffer[11] << 16 | Bl09XX.rx_buffer[10] << 8; // WATT_A signed
Bl09XX.power[0] = abs(tmp >> 8); // WATT_A unsigned
tmp = Bl09XX.rx_buffer[15] << 24 | Bl09XX.rx_buffer[14] << 16 | Bl09XX.rx_buffer[13] << 8; // CFA_CNT signed
Bl09XX.cf_pulses[0] = abs(tmp >> 8); // CFA_CNT unsigned
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d, P %d, C %d"),
Bl09XX.voltage, Bl09XX.current[0], Bl09XX.power[0], Bl09XX.cf_pulses[0]);
#endif
return true;
}
void Bl09XXUpdateEnergy() {
if (Energy.power_on) { // Powered on
Energy.voltage[0] = (float)Bl09XX.voltage / Settings->energy_voltage_calibration;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Voltage %f, Temp %f"), Energy.voltage[0], Bl09XX.temperature);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Voltage %f, Temp %f"), Energy.voltage[0], Bl09XX.temperature);
for (uint32_t chan = 0; chan < Energy.phase_count; chan++) {
if (Bl09XX.power[chan] > Settings->energy_power_calibration) { // We need at least 1W
Energy.active_power[chan] = (float)Bl09XX.power[chan] / Settings->energy_power_calibration;
Energy.current[chan] = (float)Bl09XX.current[chan] / Settings->energy_current_calibration;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I %f, P %f"), chan, Energy.current[chan], Energy.active_power[chan]);
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I %f, P %f"), chan, Energy.current[chan], Energy.active_power[chan]);
#endif
} else {
Energy.active_power[chan] = 0;
Energy.current[chan] = 0;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I zero, P zero"), chan);
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I zero, P zero"), chan);
#endif
}
}
} else { // Powered off
@ -163,7 +228,6 @@ void Bl09XXReceived(void) {
Energy.current[0] = Energy.current[1] = 0;
}
}
void Bl09XXSerialInput(void) {
while (Bl09XXSerial->available()) {
yield();
@ -174,22 +238,29 @@ void Bl09XXSerialInput(void) {
}
if (Bl09XX.received) {
Bl09XX.rx_buffer[Bl09XX.byte_counter++] = serial_in_byte;
if (BL09XX_BUFFER_SIZE == Bl09XX.byte_counter) {
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, Bl09XX.rx_buffer, BL09XX_BUFFER_SIZE -1);
if (Bl09XX.buffer_size == Bl09XX.byte_counter -1) {
#ifdef DEBUG_BL09XX
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, Bl09XX.rx_buffer, Bl09XX.buffer_size);
#endif
uint8_t checksum = BL09XX_READ_COMMAND | Bl09XX.address;
for (uint32_t i = 0; i < BL09XX_BUFFER_SIZE -2; i++) { checksum += Bl09XX.rx_buffer[i]; }
for (uint32_t i = 0; i < Bl09XX.buffer_size -1; i++) { checksum += Bl09XX.rx_buffer[i]; }
checksum ^= 0xFF;
if (checksum == Bl09XX.rx_buffer[34]) {
if (checksum == Bl09XX.rx_buffer[Bl09XX.buffer_size -1]) {
Energy.data_valid[0] = 0;
Bl09XXReceived();
bool ok;
if (BL0942_MODEL == Bl09XX.model)
ok = Bl09XXDecode42();
else
ok = Bl09XXDecode3940();
if (ok)
Bl09XXUpdateEnergy();
Bl09XX.received = false;
return;
} else {
//AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE "received 0x%02X instead of 0x%02X"), Bl09XX.rx_buffer[34], checksum);
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE " received 0x%02X instead of 0x%02X"), Bl09XX.rx_buffer[Bl09XX.buffer_size -1], checksum);
do { // Sync buffer with data (issue #1907 and #3425)
memmove(Bl09XX.rx_buffer, Bl09XX.rx_buffer +1, BL09XX_BUFFER_SIZE -1);
memmove(Bl09XX.rx_buffer, Bl09XX.rx_buffer +1, Bl09XX.buffer_size -1);
Bl09XX.byte_counter--;
} while ((Bl09XX.byte_counter > 1) && (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]));
if (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]) {
@ -225,55 +296,88 @@ void Bl09XXEverySecond(void) {
Bl09XXSerial->write(BL09XX_FULL_PACKET);
}
void Bl09XXSnsInit(void) {
void Bl09XXInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
int rx_pin = Pin((BL0939_MODEL == Bl09XX.model) ? GPIO_BL0939_RX : GPIO_BL0940_RX);
Bl09XXSerial = new TasmotaSerial(rx_pin, Pin(GPIO_TXD), 1);
Bl09XXSerial = new TasmotaSerial(Bl09XX.rx_pin, Pin(GPIO_TXD), 1);
if (Bl09XXSerial->begin(4800, 1)) {
if (Bl09XXSerial->hardwareSerial()) {
ClaimSerial();
}
if (HLW_UREF_PULSE == Settings->energy_voltage_calibration) {
Settings->energy_voltage_calibration = (BL0939_MODEL == Bl09XX.model) ? BL0939_UREF : BL0940_UREF;
Settings->energy_current_calibration = (BL0939_MODEL == Bl09XX.model) ? BL0939_IREF : BL0940_IREF;
Settings->energy_power_calibration = (BL0939_MODEL == Bl09XX.model) ? BL0939_PREF : BL0940_PREF;
switch (Bl09XX.model) {
case BL0939_MODEL:
Settings->energy_voltage_calibration = BL0939_UREF;
Settings->energy_current_calibration = BL0939_IREF;
Settings->energy_power_calibration = BL0939_PREF;
break;
case BL0940_MODEL:
Settings->energy_voltage_calibration = BL0940_UREF;
Settings->energy_current_calibration = BL0940_IREF;
Settings->energy_power_calibration = BL0940_PREF;
break;
case BL0942_MODEL:
default:
Settings->energy_voltage_calibration = BL0942_UREF;
Settings->energy_current_calibration = BL0942_IREF;
Settings->energy_power_calibration = BL0942_PREF;
break;
}
}
if ((BL0940_MODEL == Bl09XX.model) && (Settings->energy_current_calibration < (BL0940_IREF / 20))) {
Settings->energy_current_calibration *= 100;
}
Energy.use_overtemp = true; // Use global temperature for overtemp detection
for (uint32_t i = 0; i < 5; i++) {
Bl09XXSerial->write(bl09xx_init[i][0] | Bl09XX.address);
for (uint32_t j = 1; j < 6; j++) {
Bl09XXSerial->write(bl09xx_init[i][j]);
// Bl09XXSerial->write(pgm_read_byte(bl09xx_init + (6 * i) + j)); // Wrong byte order!
if (BL0942_MODEL != Bl09XX.model) {
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Send Init string for model BL09%02d"), Bl09XX.model);
#endif
Energy.use_overtemp = true; // Use global temperature for overtemp detection
for (uint32_t i = 0; i < 5; i++) {
uint8_t crc, byte;
crc = byte = BL09XX_WRITE_COMMAND | Bl09XX.address;
Bl09XXSerial->write(byte);
for (uint32_t j = 0; j < 4; j++) {
crc += byte = bl09xx_init[i][j];
Bl09XXSerial->write(byte);
}
Bl09XXSerial->write(0xFF ^ crc);
delay(1);
}
delay(1);
} else {
Energy.use_overtemp = false; // Use global temperature for overtemp detection
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Bl09XXDrvInit(void) {
void Bl09XXPreInit(void) {
if (PinUsed(GPIO_BL0939_RX) && PinUsed(GPIO_TXD)) {
Bl09XX.model = BL0939_MODEL;
Bl09XX.address = BL0939_ADDRESS;
Bl09XX.buffer_size = BL0939_BUFFER_SIZE;
Bl09XX.rx_pin = Pin(GPIO_BL0939_RX);
} else if (PinUsed(GPIO_BL0940_RX) && PinUsed(GPIO_TXD)) {
Bl09XX.model = BL0940_MODEL;
Bl09XX.address = BL0940_ADDRESS;
Bl09XX.buffer_size = BL0940_BUFFER_SIZE;
Bl09XX.rx_pin = Pin(GPIO_BL0940_RX);
}
else if (PinUsed(GPIO_BL0942_RX) && PinUsed(GPIO_TXD)) {
Bl09XX.model = BL0942_MODEL;
Bl09XX.address = BL0942_ADDRESS;
Bl09XX.buffer_size = BL0942_BUFFER_SIZE;
Bl09XX.rx_pin = Pin(GPIO_BL0942_RX);
}
if (Bl09XX.model) {
Bl09XX.rx_buffer = (uint8_t*)(malloc(BL09XX_BUFFER_SIZE));
Bl09XX.rx_buffer = (uint8_t*)(malloc(Bl09XX.buffer_size));
if (Bl09XX.rx_buffer != nullptr) {
Energy.voltage_common = true; // Use common voltage
Energy.frequency_common = true; // Use common frequency
Energy.use_overtemp = true; // Use global temperature for overtemp detection
Energy.phase_count = (BL0939_MODEL == Bl09XX.model) ? 2 : 1; // Handle two channels as two phases
TasmotaGlobal.energy_driver = XNRG_14;
AddLog(LOG_LEVEL_DEBUG,PSTR("BL9: Enabling BL09%02d"), Bl09XX.model);
}
}
}
@ -305,21 +409,22 @@ bool Bl09XXCommand(void) {
}
void Bl09XXShow(bool json) {
if (json) {
ResponseAppend_P(JSON_SNS_F_TEMP, "BL09XX", Settings->flag2.temperature_resolution, &Bl09XX.temperature);
if (0 == TasmotaGlobal.tele_period) {
if (BL0942_MODEL != Bl09XX.model) {
if (json) {
ResponseAppend_P(JSON_SNS_F_TEMP, "BL09XX", Settings->flag2.temperature_resolution, &Bl09XX.temperature);
if (0 == TasmotaGlobal.tele_period) {
#ifdef USE_DOMOTICZ
DomoticzFloatSensor(DZ_TEMP, Bl09XX.temperature);
DomoticzFloatSensor(DZ_TEMP, Bl09XX.temperature);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, Bl09XX.temperature);
KnxSensor(KNX_TEMPERATURE, Bl09XX.temperature);
#endif // USE_KNX
}
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp("", Bl09XX.temperature);
} else {
WSContentSend_Temp("", Bl09XX.temperature);
#endif // USE_WEBSERVER
}
}
}
@ -349,10 +454,10 @@ bool Xnrg14(uint8_t function) {
result = Bl09XXCommand();
break;
case FUNC_INIT:
Bl09XXSnsInit();
Bl09XXInit();
break;
case FUNC_PRE_INIT:
Bl09XXDrvInit();
Bl09XXPreInit();
break;
}
return result;