mirror of https://github.com/arendst/Tasmota.git
POC Ade7880 Shelly3EM
This commit is contained in:
parent
16f0adec14
commit
14d1df0a3b
|
@ -24,6 +24,20 @@
|
||||||
|
|
||||||
#define ADE7880_ADDR 0x38
|
#define ADE7880_ADDR 0x38
|
||||||
|
|
||||||
|
#define ADE7880_APGAIN_INIT 0xFF14B7E3 // = -15419420
|
||||||
|
#define ADE7880_BPGAIN_INIT 0xFF14A7B1 // = -15423566
|
||||||
|
#define ADE7880_CPGAIN_INIT 0xFF14999C // = -15427171
|
||||||
|
#define ADE7880_AVGAIN_INIT 0xFFF43977 // = -771720
|
||||||
|
#define ADE7880_BVGAIN_INIT 0xFFF4DD00 // = -729855
|
||||||
|
#define ADE7880_CVGAIN_INIT 0xFFF4A306 // = -744697
|
||||||
|
#define ADE7880_AIGAIN_INIT 0x002FFED1 // = 3145425
|
||||||
|
#define ADE7880_BIGAIN_INIT 0x00309661 // = 3184225
|
||||||
|
#define ADE7880_CIGAIN_INIT 0x0030DBFD // = 3202045
|
||||||
|
#define ADE7880_NIGAIN_INIT 0x04D906AC // = 81331884 (14223020)
|
||||||
|
#define ADE7880_APHCAL_INIT 0xD895 // = 55445 (149)
|
||||||
|
#define ADE7880_BPHCAL_INIT 0xD8A9 // = 55456 (169)
|
||||||
|
#define ADE7880_CPHCAL_INIT 0xD89D // = 55453 (157)
|
||||||
|
|
||||||
enum Ade7880DspRegisters {
|
enum Ade7880DspRegisters {
|
||||||
ADE7880_AIGAIN = 0x4380, // 0x4380 R/W 24 32 ZPSE S 0x000000 Phase A current gain adjust.
|
ADE7880_AIGAIN = 0x4380, // 0x4380 R/W 24 32 ZPSE S 0x000000 Phase A current gain adjust.
|
||||||
ADE7880_AVGAIN, // 0x4381 R/W 24 32 ZPSE S 0x000000 Phase A voltage gain adjust.
|
ADE7880_AVGAIN, // 0x4381 R/W 24 32 ZPSE S 0x000000 Phase A voltage gain adjust.
|
||||||
|
@ -45,8 +59,61 @@ enum Ade7880DspRegisters {
|
||||||
ADE7880_BVRMSOS, // 0x4392 R/W 24 32 ZPSE S 0x000000 Phase B voltage rms offset.
|
ADE7880_BVRMSOS, // 0x4392 R/W 24 32 ZPSE S 0x000000 Phase B voltage rms offset.
|
||||||
ADE7880_CIRMSOS, // 0x4393 R/W 24 32 ZPSE S 0x000000 Phase C current rms offset.
|
ADE7880_CIRMSOS, // 0x4393 R/W 24 32 ZPSE S 0x000000 Phase C current rms offset.
|
||||||
ADE7880_CVRMSOS, // 0x4394 R/W 24 32 ZPSE S 0x000000 Phase C voltage rms offset.
|
ADE7880_CVRMSOS, // 0x4394 R/W 24 32 ZPSE S 0x000000 Phase C voltage rms offset.
|
||||||
ADE7880_NIRMSOS // 0x4395 R/W 24 32 ZPSE S 0x000000 Neutral current rms offset.
|
ADE7880_NIRMSOS, // 0x4395 R/W 24 32 ZPSE S 0x000000 Neutral current rms offset.
|
||||||
|
ADE7880_HPGAIN = 0x4398, // 0x4398 R/W 24 32 ZPSE S 0x000000 Harmonic powers gain adjust.
|
||||||
|
ADE7880_ISUMLVL, // 0x4399 R/W 24 32 ZPSE S 0x000000 Threshold used in comparison between the sum of phase currents and the neutral current.
|
||||||
|
ADE7880_VLEVEL = 0x439F, // 0x439F R/W 28 32 ZP S 0x0000000 Register used in the algorithm that computes the fundamental active and reactive powers. Set this register according to Equation 22 for proper functioning of fundamental powers and harmonic computations.
|
||||||
|
ADE7880_AFWATTOS = 0x43A2, // 0x43A2 R/W 24 32 ZPSE S 0x000000 Phase A fundamental active power offset adjust.
|
||||||
|
ADE7880_BFWATTOS, // 0x43A3 R/W 24 32 ZPSE S 0x000000 Phase B fundamental active power offset adjust.
|
||||||
|
ADE7880_CFWATTOS, // 0x43A4 R/W 24 32 ZPSE S 0x000000 Phase C fundamental active power offset adjust.
|
||||||
|
ADE7880_AFVAROS, // 0x43A5 R/W 24 32 ZPSE S 0x000000 Phase A fundamental reactive power offset adjust.
|
||||||
|
ADE7880_BFVAROS, // 0x43A6 R/W 24 32 ZPSE S 0x000000 Phase B fundamental reactive power offset adjust.
|
||||||
|
ADE7880_CFVAROS, // 0x43A7 R/W 24 32 ZPSE S 0x000000 Phase C fundamental reactive power offset adjust.
|
||||||
|
ADE7880_AFIRMSOS, // 0x43A8 R/W 24 32 ZPSE S 0x000000 Phase A fundamental current rms offset.
|
||||||
|
ADE7880_BFIRMSOS, // 0x43A9 R/W 24 32 ZPSE S 0x000000 Phase B fundamental current rms offset.
|
||||||
|
ADE7880_CFIRMSOS, // 0x43AA R/W 24 32 ZPSE S 0x000000 Phase C fundamental current rms offset.
|
||||||
|
ADE7880_AFVRMSOS, // 0x43AB R/W 24 32 ZPSE S 0x000000 Phase A fundamental voltage rms offset.
|
||||||
|
ADE7880_BFVRMSOS, // 0x43AC R/W 24 32 ZPSE S 0x000000 Phase B fundamental voltage rms offset.
|
||||||
|
ADE7880_CFVRMSOS, // 0x43AD R/W 24 32 ZPSE S 0x000000 Phase C fundamental voltage rms offset.
|
||||||
|
ADE7880_HXWATTOS, // 0x43AE R/W 24 32 ZPSE S 0x000000 Active power offset adjust on harmonic X (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HYWATTOS, // 0x43AF R/W 24 32 ZPSE S 0x000000 Active power offset adjust on harmonic Y (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HZWATTOS, // 0x43B0 R/W 24 32 ZPSE S 0x000000 Active power offset adjust on harmonic Z (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HXVAROS, // 0x43B1 R/W 24 32 ZPSE S 0x000000 Active power offset adjust on harmonic X (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HYVAROS, // 0x43B2 R/W 24 32 ZPSE S 0x000000 Active power offset adjust on harmonic Y (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HZVAROS, // 0x43B3 R/W 24 32 ZPSE S 0x000000 Active power offset adjust on harmonic Z (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HXIRMSOS, // 0x43B4 R/W 24 32 ZPSE S 0x000000 Current rms offset on harmonic X (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HYIRMSOS, // 0x43B5 R/W 24 32 ZPSE S 0x000000 Current rms offset on harmonic Y (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HZIRMSOS, // 0x43B6 R/W 24 32 ZPSE S 0x000000 Current rms offset on harmonic Z (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HXVRMSOS, // 0x43B7 R/W 24 32 ZPSE S 0x000000 Voltage rms offset on harmonic X (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HYVRMSOS, // 0x43B8 R/W 24 32 ZPSE S 0x000000 Voltage rms offset on harmonic Y (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_HZVRMSOS, // 0x43B9 R/W 24 32 ZPSE S 0x000000 Voltage rms offset on harmonic Z (see Harmonics Calculations section for details).
|
||||||
|
ADE7880_AIRMS = 0x43C0, // 0x43C0 R 24 32 ZP S N/A Phase A current rms value.
|
||||||
|
ADE7880_AVRMS, // 0x43C1 R 24 32 ZP S N/A Phase A voltage rms value.
|
||||||
|
ADE7880_BIRMS, // 0x43C2 R 24 32 ZP S N/A Phase B current rms value.
|
||||||
|
ADE7880_BVRMS, // 0x43C3 R 24 32 ZP S N/A Phase B voltage rms value.
|
||||||
|
ADE7880_CIRMS, // 0x43C4 R 24 32 ZP S N/A Phase C current rms value.
|
||||||
|
ADE7880_CVRMS, // 0x43C5 R 24 32 ZP S N/A Phase C voltage rms value.
|
||||||
|
ADE7880_NIRMS, // 0x43C6 R 24 32 ZP S N/A Neutral current rms value.
|
||||||
|
ADE7880_ISUM // 0x43C7 R 28 32 ZP S N/A Sum of IAWV, IBWV and ICWV registers.
|
||||||
|
};
|
||||||
|
|
||||||
|
enum Ade7880InternalDspRegisters {
|
||||||
|
ADE7880_Run = 0xE228 // 0xE228 R/W 16 16 U 0x0000 Run register starts and stops the DSP. See the Digital Signal Processor section for more details.
|
||||||
|
};
|
||||||
|
|
||||||
|
enum Ade7880BillableRegisters {
|
||||||
|
ADE7880_AWATTHR = 0xE400, // 0xE400 R 32 32 S 0x00000000 Phase A total active energy accumulation.
|
||||||
|
ADE7880_BWATTHR, // 0xE401 R 32 32 S 0x00000000 Phase B total active energy accumulation.
|
||||||
|
ADE7880_CWATTHR, // 0xE402 R 32 32 S 0x00000000 Phase C total active energy accumulation.
|
||||||
|
ADE7880_AFWATTHR, // 0xE403 R 32 32 S 0x00000000 Phase A fundamental active energy accumulation.
|
||||||
|
ADE7880_BFWATTHR, // 0xE404 R 32 32 S 0x00000000 Phase B fundamental active energy accumulation.
|
||||||
|
ADE7880_CFWATTHR, // 0xE405 R 32 32 S 0x00000000 Phase C fundamental active energy accumulation.
|
||||||
|
ADE7880_AFVARHR = 0xE409, // 0xE409 R 32 32 S 0x00000000 Phase A fundamental reactive energy accumulation.
|
||||||
|
ADE7880_BFVARHR, // 0xE40A R 32 32 S 0x00000000 Phase B fundamental reactive energy accumulation.
|
||||||
|
ADE7880_CFVARHR, // 0xE40B R 32 32 S 0x00000000 Phase C fundamental reactive energy accumulation.
|
||||||
|
ADE7880_AVAHR, // 0xE40C R 32 32 S 0x00000000 Phase A apparent energy accumulation.
|
||||||
|
ADE7880_BVAHR, // 0xE40D R 32 32 S 0x00000000 Phase B apparent energy accumulation.
|
||||||
|
ADE7880_CVAHR // 0xE40E R 32 32 S 0x00000000 Phase C apparent energy accumulation.
|
||||||
};
|
};
|
||||||
|
|
||||||
enum Ade7880PowerQualityRegisters {
|
enum Ade7880PowerQualityRegisters {
|
||||||
|
@ -105,8 +172,10 @@ enum Ade7880PowerQualityRegisters {
|
||||||
ADE7880_CFCYC, // 0xE705 R/W 8 8 U 0x01 Number of CF pulses between two consecutive energy latches. See the Synchronizing Energy Registers with CFx Outputs section.
|
ADE7880_CFCYC, // 0xE705 R/W 8 8 U 0x01 Number of CF pulses between two consecutive energy latches. See the Synchronizing Energy Registers with CFx Outputs section.
|
||||||
ADE7880_HSDC_CFG, // 0xE706 R/W 8 8 U 0x00 HSDC configuration register. See Table 52.
|
ADE7880_HSDC_CFG, // 0xE706 R/W 8 8 U 0x00 HSDC configuration register. See Table 52.
|
||||||
ADE7880_Version, // 0xE707 R 8 8 U Version of die.
|
ADE7880_Version, // 0xE707 R 8 8 U Version of die.
|
||||||
ADE7880_Reserved = 0xE7E4, // 0xE7E4 R 8 8 U 0x08 This register must remain at this value for checksum functionality to work. If this register shows a different value while being read, reset the chip before working with the checksum feature.
|
ADE7880_DSPWP_SET = 0xE7E3, // 0xE7E3 W 8 8 U 0x00 Write protect DSP (0x80) or enable write (0x00). See page 40.
|
||||||
|
ADE7880_Reserved, // 0xE7E4 R 8 8 U 0x08 This register must remain at this value for checksum functionality to work. If this register shows a different value while being read, reset the chip before working with the checksum feature.
|
||||||
ADE7880_LAST_RWDATA8 = 0xE7FD, // 0xE7FD R 8 8 U N/A Contains the data from the last successful 8-bit register communication.
|
ADE7880_LAST_RWDATA8 = 0xE7FD, // 0xE7FD R 8 8 U N/A Contains the data from the last successful 8-bit register communication.
|
||||||
|
ADE7880_DSPWP_SEL, // 0xE7FE W 8 8 U 0xAD Select DSP writeprotect. See page 40.
|
||||||
ADE7880_FVRMS = 0xE880, // 0xE880 R 24 32 S N/A The rms value of the fundamental component of the phase voltage.
|
ADE7880_FVRMS = 0xE880, // 0xE880 R 24 32 S N/A The rms value of the fundamental component of the phase voltage.
|
||||||
ADE7880_FIRMS, // 0xE881 R 24 32 S N/A The rms value of the fundamental component of the phase current
|
ADE7880_FIRMS, // 0xE881 R 24 32 S N/A The rms value of the fundamental component of the phase current
|
||||||
ADE7880_FWATT, // 0xE882 R 24 32 S N/A The active power of the fundamental component.
|
ADE7880_FWATT, // 0xE882 R 24 32 S N/A The active power of the fundamental component.
|
||||||
|
@ -164,9 +233,15 @@ enum Ade7880PowerQualityRegisters {
|
||||||
};
|
};
|
||||||
|
|
||||||
struct Ade7880 {
|
struct Ade7880 {
|
||||||
uint32_t current_rms[4] = { 0, 0, 0, 0 };
|
int32_t nirms;
|
||||||
|
int32_t isum;
|
||||||
|
int32_t active_energy[3];
|
||||||
|
int32_t apparent_energy[3];
|
||||||
|
uint16_t angle[3];
|
||||||
|
|
||||||
|
uint8_t cycle_count;
|
||||||
|
uint8_t irq0_state;
|
||||||
|
uint8_t irq1_state;
|
||||||
} Ade7880;
|
} Ade7880;
|
||||||
|
|
||||||
int Ade7880RegSize(uint16_t reg) {
|
int Ade7880RegSize(uint16_t reg) {
|
||||||
|
@ -207,9 +282,23 @@ void Ade7880Write(uint16_t reg, uint32_t val) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool Ade7880VerifyWrite(uint16_t reg) {
|
||||||
|
if (0xCA != Ade7880Read(ADE7880_LAST_OP)) { // Indicates the type, read (0x35) or write (0xCA), of the last successful read/write operation.
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (reg != Ade7880Read(ADE7880_LAST_ADD)) { // The address of the register successfully accessed during the last read/write operation.
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Ade7880WriteVerify(uint16_t reg, uint32_t val) {
|
||||||
|
Ade7880Write(reg, val);
|
||||||
|
return Ade7880VerifyWrite(reg);
|
||||||
|
}
|
||||||
|
|
||||||
int32_t Ade7880Read(uint16_t reg) {
|
int32_t Ade7880Read(uint16_t reg) {
|
||||||
uint32_t response = 0;
|
uint32_t response = 0;
|
||||||
|
|
||||||
int size = Ade7880RegSize(reg);
|
int size = Ade7880RegSize(reg);
|
||||||
if (size) {
|
if (size) {
|
||||||
Wire.beginTransmission(ADE7880_ADDR);
|
Wire.beginTransmission(ADE7880_ADDR);
|
||||||
|
@ -226,6 +315,142 @@ int32_t Ade7880Read(uint16_t reg) {
|
||||||
return response;
|
return response;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int32_t Ade7880ReadVerify(uint16_t reg) {
|
||||||
|
int32_t result = Ade7880Read(reg);
|
||||||
|
if (0x35 != Ade7880Read(ADE7880_LAST_OP)) { // Indicates the type, read (0x35) or write (0xCA), of the last successful read/write operation.
|
||||||
|
|
||||||
|
}
|
||||||
|
if (reg != Ade7880Read(ADE7880_LAST_ADD)) { // The address of the register successfully accessed during the last read/write operation.
|
||||||
|
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Ade7880Init(void) {
|
||||||
|
// Init sequence about 100mS after reset - See page 40 (takes about 60ms)
|
||||||
|
uint32_t status1 = Ade7880ReadVerify(ADE7880_STATUS1); // 0x01A08000
|
||||||
|
if (bitSet(status1, 15)) { // RSTDONE
|
||||||
|
// Power on or Reset
|
||||||
|
Ade7880WriteVerify(ADE7880_CONFIG2, 0x02); // ADE7880_I2C_LOCK
|
||||||
|
Ade7880WriteVerify(ADE7880_STATUS1, 0x3FFE8930); // Acknowledge RSTDONE
|
||||||
|
status1 = Ade7880ReadVerify(ADE7880_STATUS1); // 0x01A00007
|
||||||
|
|
||||||
|
uint8_t version = Ade7880ReadVerify(ADE7880_Version); // 0x01
|
||||||
|
}
|
||||||
|
|
||||||
|
delayMicroseconds(240);
|
||||||
|
|
||||||
|
Ade7880WriteVerify(ADE7880_Gain, 0x0000); // Gain register set to 1 for current, and voltage
|
||||||
|
Ade7880WriteVerify(ADE7880_APGAIN, ADE7880_APGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_BPGAIN, ADE7880_BPGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_CPGAIN, ADE7880_CPGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_AVGAIN, ADE7880_AVGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_BVGAIN, ADE7880_BVGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_CVGAIN, ADE7880_CVGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_AIGAIN, ADE7880_AIGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_BIGAIN, ADE7880_BIGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_CIGAIN, ADE7880_CIGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_NIGAIN, ADE7880_NIGAIN_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_APHCAL, ADE7880_APHCAL_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_BPHCAL, ADE7880_BPHCAL_INIT);
|
||||||
|
Ade7880WriteVerify(ADE7880_CPHCAL, ADE7880_CPHCAL_INIT);
|
||||||
|
if (ADE7880_AVGAIN_INIT != Ade7880ReadVerify(ADE7880_AVGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_AVGAIN, ADE7880_AVGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_BVGAIN_INIT != Ade7880ReadVerify(ADE7880_BVGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_BVGAIN, ADE7880_BVGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_CVGAIN_INIT != Ade7880ReadVerify(ADE7880_CVGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_CVGAIN, ADE7880_CVGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_AIGAIN_INIT != Ade7880ReadVerify(ADE7880_AIGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_AIGAIN, ADE7880_AIGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_BIGAIN_INIT != Ade7880ReadVerify(ADE7880_BIGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_BIGAIN, ADE7880_BIGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_CIGAIN_INIT != Ade7880ReadVerify(ADE7880_CIGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_CIGAIN, ADE7880_CIGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_NIGAIN_INIT != Ade7880ReadVerify(ADE7880_NIGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_NIGAIN, ADE7880_NIGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_APGAIN_INIT != Ade7880ReadVerify(ADE7880_APGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_APGAIN, ADE7880_APGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_BPGAIN_INIT != Ade7880ReadVerify(ADE7880_BPGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_BPGAIN, ADE7880_BPGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_CPGAIN_INIT != Ade7880ReadVerify(ADE7880_CPGAIN)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_CPGAIN, ADE7880_CPGAIN_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_APHCAL_INIT != Ade7880ReadVerify(ADE7880_APHCAL)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_APHCAL, ADE7880_APHCAL_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_BPHCAL_INIT != Ade7880ReadVerify(ADE7880_BPHCAL)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_BPHCAL, ADE7880_BPHCAL_INIT);
|
||||||
|
}
|
||||||
|
if (ADE7880_CPHCAL_INIT != Ade7880ReadVerify(ADE7880_CPHCAL)) {
|
||||||
|
Ade7880WriteVerify(ADE7880_CPHCAL, ADE7880_CPHCAL_INIT);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ade7880WriteVerify(ADE7880_LCYCMODE, 0x09);
|
||||||
|
Ade7880WriteVerify(ADE7880_LINECYC, 0x0064);
|
||||||
|
Ade7880WriteVerify(ADE7880_MASK0, 0x00000020); // IRQ0 at end of an integration over an integer number of half line cycles set in the LINECYC register.
|
||||||
|
Ade7880VerifyWrite(ADE7880_MASK0);
|
||||||
|
Ade7880Write(ADE7880_MASK0, 0x00000020);
|
||||||
|
Ade7880Write(ADE7880_MASK0, 0x00000020);
|
||||||
|
Ade7880Write(ADE7880_MASK0, 0x00000020);
|
||||||
|
|
||||||
|
Ade7880Write(ADE7880_DSPWP_SEL, 0xAD); // Select DSP write protection
|
||||||
|
Ade7880Write(ADE7880_DSPWP_SET, 0x80); // Write protect DSP area
|
||||||
|
|
||||||
|
Ade7880WriteVerify(ADE7880_Run, 0x0201); // Start DSP
|
||||||
|
}
|
||||||
|
|
||||||
|
void Ade7880Cycle(void) {
|
||||||
|
// Cycle sequence (takes 5ms)
|
||||||
|
uint32_t status0 = Ade7880ReadVerify(ADE7880_STATUS0); // 0x000FEFE0
|
||||||
|
if (!bitSet(status0, 5)) { // LENERGY
|
||||||
|
return;
|
||||||
|
} else {
|
||||||
|
Ade7880WriteVerify(ADE7880_STATUS0, 0x00000020); // Acknowledge LENERGY
|
||||||
|
status0 = Ade7880ReadVerify(ADE7880_STATUS0); // 0x000FEFC0
|
||||||
|
}
|
||||||
|
if (Ade7880.cycle_count < 3) {
|
||||||
|
Ade7880.cycle_count++;
|
||||||
|
return; // Skip first two cycles
|
||||||
|
}
|
||||||
|
// Incandescent light bulb, 242V, 0.11A, Pf100%, 27.9W
|
||||||
|
Energy.voltage[0] = (float)Ade7880ReadVerify(ADE7880_AVRMS) / 10000; // 0x0024CC94 = 241.1668 V
|
||||||
|
Energy.current[0] = (float)Ade7880ReadVerify(ADE7880_AIRMS) / 1000000; // 0x00002D6D = 0.011629 A
|
||||||
|
Energy.voltage[1] = (float)Ade7880ReadVerify(ADE7880_BVRMS) / 10000; // 0x000003E8
|
||||||
|
Energy.current[1] = (float)Ade7880ReadVerify(ADE7880_BIRMS) / 1000000; // 0x0000053C = 0.001340 A
|
||||||
|
Energy.voltage[2] = (float)Ade7880ReadVerify(ADE7880_CVRMS) / 10000; // 0x0000037D
|
||||||
|
Energy.current[2] = (float)Ade7880ReadVerify(ADE7880_CIRMS) / 1000000; // 0x00000547 = 0.001351 A
|
||||||
|
Ade7880.nirms = Ade7880ReadVerify(ADE7880_NIRMS); // 0x000026DF = 0.009951 A ??
|
||||||
|
Ade7880.isum = Ade7880ReadVerify(ADE7880_ISUM); // 0x00000FBE = 0.004030 A ??
|
||||||
|
Energy.active_power[0] = (float)Ade7880ReadVerify(ADE7880_AWATT) / 100; // 0xFFFFF524 = -27.79 W (reverse connected)
|
||||||
|
Energy.active_power[1] = (float)Ade7880ReadVerify(ADE7880_BWATT) / 100; // 0x00000000
|
||||||
|
Energy.active_power[2] = (float)Ade7880ReadVerify(ADE7880_CWATT) / 100; // 0x00000000
|
||||||
|
Energy.apparent_power[0] = (float)Ade7880ReadVerify(ADE7880_AVA) / 100; // 0xFFFFF50D
|
||||||
|
Energy.apparent_power[1] = (float)Ade7880ReadVerify(ADE7880_BVA) / 100; // 0xFFFFFFFF
|
||||||
|
Energy.apparent_power[2] = (float)Ade7880ReadVerify(ADE7880_CVA) / 100; // 0xFFFFFFFF
|
||||||
|
// Billable
|
||||||
|
Ade7880.active_energy[0] = Ade7880ReadVerify(ADE7880_AWATTHR); // 0xFFFFFF8F = -1.12 Whr ??
|
||||||
|
Ade7880.active_energy[1] = Ade7880ReadVerify(ADE7880_BWATTHR); // 0x00000000
|
||||||
|
Ade7880.active_energy[2] = Ade7880ReadVerify(ADE7880_CWATTHR); // 0x00000000
|
||||||
|
Ade7880.apparent_energy[0] = Ade7880ReadVerify(ADE7880_AVAHR); // 0xFFFFFB9C = -11.23 VAr ??
|
||||||
|
Ade7880.apparent_energy[1] = Ade7880ReadVerify(ADE7880_BVAHR); // 0xFFFFFFC7
|
||||||
|
Ade7880.apparent_energy[2] = Ade7880ReadVerify(ADE7880_CVAHR); // 0xFFFFFFC6
|
||||||
|
|
||||||
|
uint16_t comp_mode = Ade7880ReadVerify(ADE7880_COMPMODE); // 0x01FF
|
||||||
|
|
||||||
|
Ade7880.angle[0] = Ade7880ReadVerify(ADE7880_ANGLE0); // 0x13FD
|
||||||
|
Ade7880.angle[1] = Ade7880ReadVerify(ADE7880_ANGLE1); // 0x0706
|
||||||
|
Ade7880.angle[2] = Ade7880ReadVerify(ADE7880_ANGLE2); // 0x0859
|
||||||
|
}
|
||||||
|
|
||||||
void Ade7880Reset(void) {
|
void Ade7880Reset(void) {
|
||||||
pinMode(16, OUTPUT); // Reset pin ADE7880
|
pinMode(16, OUTPUT); // Reset pin ADE7880
|
||||||
digitalWrite(16, 0);
|
digitalWrite(16, 0);
|
||||||
|
@ -235,28 +460,33 @@ void Ade7880Reset(void) {
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ade7880Isr0(void) {
|
void Ade7880Isr0(void) {
|
||||||
// Init sequence about 100mS after reset
|
// Poll sequence
|
||||||
uint32_t status1 = Ade7880Read(ADE7880_STATUS1); // 0x01A08000
|
if (!Ade7880.irq0_state) { Ade7880.irq0_state = 1; }
|
||||||
|
}
|
||||||
uint32_t last_op = Ade7880Read(ADE7880_LAST_OP); // 0x35 - Read
|
|
||||||
uint32_t last_address = Ade7880Read(ADE7880_LAST_ADD); // ADE7880_STATUS1
|
|
||||||
|
|
||||||
Ade7880Write(ADE7880_CONFIG2, 0x02); // ADE7880_I2C_LOCK
|
|
||||||
|
|
||||||
// Ade7953Write(0x102, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF
|
|
||||||
// Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120
|
|
||||||
// Ade7953Write(0x120, 0x0030); // Configure optimum setting
|
|
||||||
|
|
||||||
|
void Ade7880Service0(void) {
|
||||||
|
// Poll sequence
|
||||||
|
Ade7880Cycle();
|
||||||
|
Ade7880.irq0_state = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ade7880Isr1(void) {
|
void Ade7880Isr1(void) {
|
||||||
// Poll sequence
|
// Init sequence
|
||||||
|
if (!Ade7880.irq1_state) { Ade7880.irq1_state = 1; }
|
||||||
|
}
|
||||||
|
|
||||||
|
void Ade7880Service1(void) {
|
||||||
|
// Init sequence
|
||||||
|
Ade7880Init();
|
||||||
|
Ade7880.irq1_state = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ade7880EnergyEverySecond(void) {
|
void Ade7880EnergyEverySecond(void) {
|
||||||
|
for (uint32_t i = 0; i < 3; i++) {
|
||||||
|
if (Ade7880.active_energy[i] != 0) {
|
||||||
|
Energy.kWhtoday_delta[i] += Energy.active_power[i] * 1000 / 36;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ade7880DrvInit(void) {
|
void Ade7880DrvInit(void) {
|
||||||
|
@ -269,19 +499,25 @@ void Ade7880DrvInit(void) {
|
||||||
|
|
||||||
Ade7880Reset();
|
Ade7880Reset();
|
||||||
|
|
||||||
delay(200); // Need 200mS to init ADE7880
|
uint32_t timeout = millis() + 400;
|
||||||
|
while (!TimeReached(timeout)) { // Wait up to 400 mSec
|
||||||
|
if (1 == Ade7880.irq0_state) {
|
||||||
|
Ade7880Service1();
|
||||||
|
|
||||||
if (I2cSetDevice(ADE7880_ADDR)) {
|
if (I2cSetDevice(ADE7880_ADDR)) {
|
||||||
I2cSetActiveFound(ADE7880_ADDR, "ADE7880");
|
I2cSetActiveFound(ADE7880_ADDR, "ADE7880");
|
||||||
Energy.phase_count = 3; // Three phases
|
Energy.phase_count = 3; // Three phases
|
||||||
// Energy.use_overtemp = true; // Use global temperature for overtemp detection
|
// Energy.use_overtemp = true; // Use global temperature for overtemp detection
|
||||||
|
|
||||||
TasmotaGlobal.energy_driver = XNRG_23;
|
TasmotaGlobal.energy_driver = XNRG_23;
|
||||||
}
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Ade7880Command(void) {
|
bool Ade7880Command(void) {
|
||||||
// Will need calibration for all three phases
|
// Investigate for need calibration of all three phases
|
||||||
bool serviced = true;
|
bool serviced = true;
|
||||||
|
|
||||||
|
|
||||||
|
@ -293,11 +529,15 @@ bool Ade7880Command(void) {
|
||||||
\*********************************************************************************************/
|
\*********************************************************************************************/
|
||||||
|
|
||||||
bool Xnrg23(uint8_t function) {
|
bool Xnrg23(uint8_t function) {
|
||||||
if (!I2cEnabled(XI2C_07)) { return false; }
|
if (!I2cEnabled(XI2C_65)) { return false; }
|
||||||
|
|
||||||
bool result = false;
|
bool result = false;
|
||||||
|
|
||||||
switch (function) {
|
switch (function) {
|
||||||
|
case FUNC_LOOP:
|
||||||
|
if (1 == Ade7880.irq0_state) { Ade7880Service0(); }
|
||||||
|
if (1 == Ade7880.irq1_state) { Ade7880Service1(); }
|
||||||
|
break;
|
||||||
case FUNC_ENERGY_EVERY_SECOND:
|
case FUNC_ENERGY_EVERY_SECOND:
|
||||||
Ade7880EnergyEverySecond();
|
Ade7880EnergyEverySecond();
|
||||||
break;
|
break;
|
||||||
|
|
Loading…
Reference in New Issue