mirror of https://github.com/arendst/Tasmota.git
Fix CSE7761 read crc calculation
This commit is contained in:
parent
404ff843f2
commit
22408beacd
|
@ -25,25 +25,63 @@
|
||||||
* Based on datasheet from ChipSea
|
* Based on datasheet from ChipSea
|
||||||
\*********************************************************************************************/
|
\*********************************************************************************************/
|
||||||
|
|
||||||
#define XNRG_19 19
|
#define XNRG_19 19
|
||||||
|
|
||||||
#define CSE7761_K1 2 // Current channel sampling resistance in milli Ohm
|
#define CSE7761_REMOVE_CHECKS
|
||||||
#define CSE7761_K2 2 // Voltage divider resistance in 1k/1M
|
|
||||||
|
|
||||||
#define CSE7761_2POWER22 4194304
|
#define CSE7761_DUAL_K1 2 // Current channel sampling resistance in milli Ohm
|
||||||
#define CSE7761_2POWER23 8388608
|
#define CSE7761_DUAL_K2 2 // Voltage divider resistance in 1k/1M
|
||||||
#define CSE7761_2POWER31 2147483648
|
#define CSE7761_DUAL_CLK1 3579545.0f // System clock (3.579545MHz) as used in frequency calculation
|
||||||
|
|
||||||
enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAc, EnergyBC };
|
#define CSE7761_2POWER22 4194304
|
||||||
|
#define CSE7761_2POWER23 8388608
|
||||||
|
#define CSE7761_2POWER31 2147483648
|
||||||
|
|
||||||
|
#define CSE7761_REG_SYSCON 0x00 // System Control Register
|
||||||
|
#define CSE7761_REG_EMUCON 0x01 // Metering control register
|
||||||
|
#define CSE7761_REG_EMUCON2 0x13 // Metering control register 2
|
||||||
|
|
||||||
|
#define CSE7761_REG_UFREQ 0x23 // Voltage Frequency Register
|
||||||
|
#define CSE7761_REG_RMSIA 0x24 // The effective value of channel A current
|
||||||
|
#define CSE7761_REG_RMSIB 0x25 // The effective value of channel B current
|
||||||
|
#define CSE7761_REG_RMSU 0x26 // Voltage RMS
|
||||||
|
#define CSE7761_REG_POWERPA 0x2C // Channel A active power, update rate 27.2Hz
|
||||||
|
#define CSE7761_REG_POWERPB 0x2D // Channel B active power, update rate 27.2Hz
|
||||||
|
#define CSE7761_REG_SYSSTATUS 0x43 // System status register
|
||||||
|
|
||||||
|
#define CSE7761_REG_COEFFOFFSET 0x6E // Coefficient checksum offset (0xFFFF)
|
||||||
|
#define CSE7761_REG_COEFFCHKSUM 0x6F // Coefficient checksum
|
||||||
|
#define CSE7761_REG_RMSIAC 0x70 // Channel A effective current conversion coefficient
|
||||||
|
#define CSE7761_REG_RMSIBC 0x71 // Channel B effective current conversion coefficient
|
||||||
|
#define CSE7761_REG_RMSUC 0x72 // Effective voltage conversion coefficient
|
||||||
|
#define CSE7761_REG_POWERPAC 0x73 // Channel A active power conversion coefficient
|
||||||
|
#define CSE7761_REG_POWERPBC 0x74 // Channel B active power conversion coefficient
|
||||||
|
#define CSE7761_REG_POWERSC 0x75 // Apparent power conversion coefficient
|
||||||
|
#define CSE7761_REG_ENERGYAC 0x76 // Channel A energy conversion coefficient
|
||||||
|
#define CSE7761_REG_ENERGYBC 0x77 // Channel B energy conversion coefficient
|
||||||
|
|
||||||
|
#define CSE7761_SPECIAL_COMMAND 0xEA // Start special command
|
||||||
|
#define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets
|
||||||
|
#define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power,
|
||||||
|
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
|
||||||
|
// The channel indicated by the signal of power overload is channel A
|
||||||
|
#define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power,
|
||||||
|
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
|
||||||
|
// The channel indicated by the signal of power overload is channel B
|
||||||
|
#define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation
|
||||||
|
#define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation
|
||||||
|
|
||||||
|
enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAC, EnergyBC };
|
||||||
|
|
||||||
#include <TasmotaSerial.h>
|
#include <TasmotaSerial.h>
|
||||||
|
|
||||||
TasmotaSerial *Cse7761Serial = nullptr;
|
TasmotaSerial *Cse7761Serial = nullptr;
|
||||||
|
|
||||||
struct {
|
struct {
|
||||||
|
uint32_t frequency = 0;
|
||||||
uint32_t voltage_rms = 0;
|
uint32_t voltage_rms = 0;
|
||||||
uint32_t current_rms[2] = { 0 };
|
uint32_t current_rms[2] = { 0 };
|
||||||
uint32_t active_power[2] = { 0 };
|
int active_power[2] = { 0 };
|
||||||
uint16_t coefficient[8] = { 0 };
|
uint16_t coefficient[8] = { 0 };
|
||||||
uint8_t init = 0;
|
uint8_t init = 0;
|
||||||
bool found = false;
|
bool found = false;
|
||||||
|
@ -74,10 +112,10 @@ void Cse7761Write(uint32_t reg, uint32_t data) {
|
||||||
|
|
||||||
Cse7761Serial->write(buffer, len);
|
Cse7761Serial->write(buffer, len);
|
||||||
|
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Send %d, Data %*_H"), len, len, buffer);
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Send %d, Data %*_H"), len, len, buffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t Cse7761Read(uint32_t reg, uint32_t request) {
|
uint32_t Cse7761Read(uint32_t reg) {
|
||||||
Cse7761Serial->flush();
|
Cse7761Serial->flush();
|
||||||
Cse7761Write(reg, 0);
|
Cse7761Write(reg, 0);
|
||||||
|
|
||||||
|
@ -92,21 +130,25 @@ uint32_t Cse7761Read(uint32_t reg, uint32_t request) {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!rcvd) {
|
if (!rcvd) {
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d"), rcvd);
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rcvd %d"), rcvd);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d, Data %*_H"), rcvd, rcvd, buffer);
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rcvd %d, Data %*_H"), rcvd, rcvd, buffer);
|
||||||
|
|
||||||
int result = 0;
|
int result = 0;
|
||||||
uint8_t crc = 0xA5 + reg;
|
uint8_t crc = 0xA5 + reg;
|
||||||
|
rcvd--;
|
||||||
for (uint32_t i = 0; i < rcvd -1; i++) {
|
for (uint32_t i = 0; i < rcvd -1; i++) {
|
||||||
result = (result << 8) | buffer[i];
|
result = (result << 8) | buffer[i];
|
||||||
crc += buffer[i];
|
crc += buffer[i];
|
||||||
}
|
}
|
||||||
crc = ~crc;
|
crc = ~crc;
|
||||||
if (crc != buffer[rcvd]) {
|
if (crc != buffer[rcvd]) {
|
||||||
|
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: CRC error"));
|
||||||
|
#ifndef CSE7761_REMOVE_CHECKS
|
||||||
result = 0;
|
result = 0;
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
|
@ -115,22 +157,23 @@ uint32_t Cse7761Read(uint32_t reg, uint32_t request) {
|
||||||
bool Cse7761ChipInit(void) {
|
bool Cse7761ChipInit(void) {
|
||||||
uint16_t calc_chksum = 0xFFFF;
|
uint16_t calc_chksum = 0xFFFF;
|
||||||
for (uint32_t i = 0; i < 8; i++) {
|
for (uint32_t i = 0; i < 8; i++) {
|
||||||
CSE7761Data.coefficient[i] = Cse7761Read(0x70 + i, 2);
|
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i);
|
||||||
calc_chksum += CSE7761Data.coefficient[i];
|
calc_chksum += CSE7761Data.coefficient[i];
|
||||||
}
|
}
|
||||||
uint16_t dummy = Cse7761Read(0x6E, 2);
|
calc_chksum = ~calc_chksum;
|
||||||
uint16_t coeff_chksum = Cse7761Read(0x6F, 2);
|
uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET);
|
||||||
|
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM);
|
||||||
if (calc_chksum != coeff_chksum) {
|
if (calc_chksum != coeff_chksum) {
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Coefficients invalid"));
|
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Coefficients CRC error"));
|
||||||
// return false;
|
#ifndef CSE7761_REMOVE_CHECKS
|
||||||
|
return false;
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
delay(3);
|
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
|
||||||
Cse7761Write(0xEA, 0xE5); // Enable write operation
|
delay(8);
|
||||||
delay(5);
|
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS);
|
||||||
uint8_t sys_status = Cse7761Read(0x43, 1);
|
|
||||||
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
|
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
|
||||||
delay(3);
|
|
||||||
/*
|
/*
|
||||||
System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
|
System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
|
||||||
Bit name Function description
|
Bit name Function description
|
||||||
|
@ -140,25 +183,25 @@ bool Cse7761ChipInit(void) {
|
||||||
=0, means ADC current channel B is closed
|
=0, means ADC current channel B is closed
|
||||||
9 NC -, the default is 1.
|
9 NC -, the default is 1.
|
||||||
8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
|
8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
|
||||||
=1XX, PGA of current channel B=16
|
=1XX, PGA of current channel B=16 (Sonoff Dual R3 Pow)
|
||||||
=011, PGA of current channel B=8
|
=011, PGA of current channel B=8
|
||||||
=010, PGA of current channel B=4
|
=010, PGA of current channel B=4
|
||||||
=001, PGA of current channel B=2
|
=001, PGA of current channel B=2
|
||||||
=000, PGA of current channel B=1 (Sonoff Dual R3 Pow)
|
=000, PGA of current channel B=1
|
||||||
5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
|
5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
|
||||||
=1XX, PGA of current channel U=16
|
=1XX, PGA of current channel U=16
|
||||||
=011, PGA of current channel U=8
|
=011, PGA of current channel U=8
|
||||||
=010, PGA of current channel U=4
|
=010, PGA of current channel U=4
|
||||||
=001, PGA of current channel U=2 (Sonoff Dual R3 Pow)
|
=001, PGA of current channel U=2
|
||||||
=000, PGA of current channel U=1
|
=000, PGA of current channel U=1 (Sonoff Dual R3 Pow)
|
||||||
2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
|
2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
|
||||||
=1XX, PGA of current channel A=16
|
=1XX, PGA of current channel A=16 (Sonoff Dual R3 Pow)
|
||||||
=011, PGA of current channel A=8
|
=011, PGA of current channel A=8
|
||||||
=010, PGA of current channel A=4
|
=010, PGA of current channel A=4
|
||||||
=001, PGA of current channel A=2
|
=001, PGA of current channel A=2
|
||||||
=000, PGA of current channel A=1 (Sonoff Dual R3 Pow)
|
=000, PGA of current channel A=1
|
||||||
*/
|
*/
|
||||||
Cse7761Write(0x80, 0xFF04); // Set SYSCON
|
Cse7761Write(CSE7761_REG_SYSCON | 0x80, 0xFF04);
|
||||||
/*
|
/*
|
||||||
Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
|
Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
|
||||||
Bit name Function description
|
Bit name Function description
|
||||||
|
@ -205,14 +248,14 @@ bool Cse7761ChipInit(void) {
|
||||||
=1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
|
=1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
|
||||||
=0 (default), turn off PFA pulse output and active energy register accumulation.
|
=0 (default), turn off PFA pulse output and active energy register accumulation.
|
||||||
*/
|
*/
|
||||||
Cse7761Write(0x81, 0x1003); // Set EMUCON
|
Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003);
|
||||||
/*
|
/*
|
||||||
Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
|
Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
|
||||||
Bit name Function description
|
Bit name Function description
|
||||||
15-13 NC -
|
15-13 NC -
|
||||||
12 SDOCmos
|
12 SDOCmos
|
||||||
=1, SDO pin CMOS open-drain output (Sonoff Dual R3 Pow)
|
=1, SDO pin CMOS open-drain output
|
||||||
=0, SDO pin CMOS output
|
=0, SDO pin CMOS output (Sonoff Dual R3 Pow)
|
||||||
11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
|
11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
|
||||||
Clear after reading is not supported in UART mode
|
Clear after reading is not supported in UART mode
|
||||||
=1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
|
=1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
|
||||||
|
@ -249,33 +292,50 @@ bool Cse7761ChipInit(void) {
|
||||||
=0, turn off the peak detection function (Sonoff Dual R3 Pow)
|
=0, turn off the peak detection function (Sonoff Dual R3 Pow)
|
||||||
0 NC Default is 1
|
0 NC Default is 1
|
||||||
*/
|
*/
|
||||||
Cse7761Write(0x93, 0x0FC1); // Set EMUCON2
|
Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1);
|
||||||
} else {
|
} else {
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write enable failed"));
|
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write enable failed"));
|
||||||
// return false;
|
#ifndef CSE7761_REMOVE_CHECKS
|
||||||
|
return false;
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
delay(80);
|
delay(80);
|
||||||
Cse7761Write(0xEA, 0xDC); // Close write operation
|
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Cse7761GetData(void) {
|
void Cse7761GetData(void) {
|
||||||
CSE7761Data.voltage_rms = Cse7761Read(0x26, 3);
|
CSE7761Data.voltage_rms = Cse7761Read(CSE7761_REG_RMSU);
|
||||||
CSE7761Data.current_rms[0] = Cse7761Read(0x24, 3);
|
CSE7761Data.frequency = Cse7761Read(CSE7761_REG_UFREQ);
|
||||||
CSE7761Data.active_power[0] = Cse7761Read(0x2C, 4);
|
CSE7761Data.current_rms[0] = Cse7761Read(CSE7761_REG_RMSIA);
|
||||||
CSE7761Data.current_rms[1] = Cse7761Read(0x25, 3);
|
CSE7761Data.active_power[0] = Cse7761Read(CSE7761_REG_POWERPA);
|
||||||
CSE7761Data.active_power[1] = Cse7761Read(0x2D, 4);
|
CSE7761Data.current_rms[1] = Cse7761Read(CSE7761_REG_RMSIB);
|
||||||
|
CSE7761Data.active_power[1] = Cse7761Read(CSE7761_REG_POWERPB);
|
||||||
|
|
||||||
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: U %d, F %d, I %d/%d, P %d/%d"),
|
||||||
|
CSE7761Data.voltage_rms, CSE7761Data.frequency,
|
||||||
|
CSE7761Data.current_rms[0], CSE7761Data.current_rms[1],
|
||||||
|
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
|
||||||
|
|
||||||
|
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
|
||||||
|
// and when the highest bit is 1, the reading will be processed as zero
|
||||||
|
if (CSE7761Data.voltage_rms & 0x800000) { CSE7761Data.voltage_rms = 0; }
|
||||||
|
if (CSE7761Data.current_rms[0] & 0x800000) { CSE7761Data.current_rms[0] = 0; }
|
||||||
|
if (CSE7761Data.current_rms[1] & 0x800000) { CSE7761Data.current_rms[1] = 0; }
|
||||||
|
|
||||||
|
// The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit.
|
||||||
|
|
||||||
if (Energy.power_on) { // Powered on
|
if (Energy.power_on) { // Powered on
|
||||||
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms * ((double)CSE7761Data.coefficient[RmsUC] / (CSE7761_K2 * 2 * CSE7761_2POWER22))) / 1000; // V
|
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms * ((double)CSE7761Data.coefficient[RmsUC] / (CSE7761_DUAL_K2 * 2 * CSE7761_2POWER22))) / 1000; // V
|
||||||
|
Energy.frequency[0] = CSE7761_DUAL_CLK1 / 8 / ((float)CSE7761Data.frequency + 1);
|
||||||
|
|
||||||
for (uint32_t channel = 0; channel < 2; channel++) {
|
for (uint32_t channel = 0; channel < 2; channel++) {
|
||||||
Energy.data_valid[channel] = 0;
|
Energy.data_valid[channel] = 0;
|
||||||
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] * ((double)CSE7761Data.coefficient[PowerPAC + channel] / (CSE7761_K1 * CSE7761_K2 * 2 * CSE7761_2POWER31)); // W
|
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] * ((double)CSE7761Data.coefficient[PowerPAC + channel] / (CSE7761_DUAL_K1 * CSE7761_DUAL_K2 * 2 * CSE7761_2POWER31)); // W
|
||||||
if (0 == Energy.active_power[channel]) {
|
if (0 == Energy.active_power[channel]) {
|
||||||
Energy.current[channel] = 0;
|
Energy.current[channel] = 0;
|
||||||
} else {
|
} else {
|
||||||
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] * ((double)CSE7761Data.coefficient[RmsIAC + channel] / (CSE7761_K1 * 2 * CSE7761_2POWER23)); // mA
|
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] * ((double)CSE7761Data.coefficient[RmsIAC + channel] / (CSE7761_DUAL_K1 * 2 * CSE7761_2POWER23)); // mA
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -295,13 +355,17 @@ void Cse7761GetData(void) {
|
||||||
void Cse7761EverySecond(void) {
|
void Cse7761EverySecond(void) {
|
||||||
if (CSE7761Data.init) {
|
if (CSE7761Data.init) {
|
||||||
if (2 == CSE7761Data.init) {
|
if (2 == CSE7761Data.init) {
|
||||||
Cse7761Write(0xEA, 0x96); // Reset chip
|
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
|
||||||
}
|
}
|
||||||
else if (1 == CSE7761Data.init) {
|
else if (1 == CSE7761Data.init) {
|
||||||
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
|
uint16_t syscon = Cse7761Read(0x00); // Default 0x0A04
|
||||||
|
#ifndef CSE7761_REMOVE_CHECKS
|
||||||
if (0x0A04 == syscon) {
|
if (0x0A04 == syscon) {
|
||||||
CSE7761Data.found = Cse7761ChipInit();
|
CSE7761Data.found = Cse7761ChipInit();
|
||||||
}
|
}
|
||||||
|
#else
|
||||||
|
CSE7761Data.found = Cse7761ChipInit();
|
||||||
|
#endif
|
||||||
if (CSE7761Data.found) {
|
if (CSE7761Data.found) {
|
||||||
AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
|
AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
|
||||||
}
|
}
|
||||||
|
@ -320,7 +384,7 @@ void Cse7761SnsInit(void) {
|
||||||
Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7761_RX), Pin(GPIO_CSE7761_TX), 1);
|
Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7761_RX), Pin(GPIO_CSE7761_TX), 1);
|
||||||
if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
|
if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
|
||||||
if (Cse7761Serial->hardwareSerial()) {
|
if (Cse7761Serial->hardwareSerial()) {
|
||||||
// SetSerial(38400, TS_SERIAL_8E1);
|
SetSerial(38400, TS_SERIAL_8E1);
|
||||||
ClaimSerial();
|
ClaimSerial();
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
|
Loading…
Reference in New Issue