Merge pull request #10481 from vic42/seesaw_soil_pr

New Feature: Support Adafruit STEMMA Seesaw capacitive soil moisture sensor (i2c)
This commit is contained in:
Theo Arends 2021-01-10 10:32:54 +01:00 committed by GitHub
commit 236e3c9cf6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 1440 additions and 0 deletions

View File

@ -89,3 +89,4 @@ Index | Define | Driver | Device | Address(es) | Description
55 | USE_EZODO | xsns_78 | EZODO | 0x61 - 0x70 | Disolved Oxygen sensor
55 | USE_EZORGB | xsns_78 | EZORGB | 0x61 - 0x70 | Color sensor
55 | USE_EZOPMP | xsns_78 | EZOPMP | 0x61 - 0x70 | Peristaltic Pump
56 | USE_SEESAW_SOIL | xsns_81 | SEESOIL | 0x36 - 0x39 | Adafruit seesaw soil moisture sensor

View File

@ -0,0 +1,917 @@
/*!
* @file Adafruit_seesaw.cpp
*
* @mainpage Adafruit seesaw arduino driver
*
* @section intro_sec Introduction
*
* This is part of Adafruit's seesaw driver for the Arduino platform. It is
* designed specifically to work with the Adafruit products that use seesaw
* technology.
*
* These chips use I2C to communicate, 2 pins (SCL+SDA) are required
* to interface with the board.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* @section author Author
*
* Written by Dean Miller for Adafruit Industries.
*
* @section license License
*
* BSD license, all text here must be included in any redistribution.
*
*/
#include "Adafruit_seesaw.h"
//#define SEESAW_I2C_DEBUG
/*!
*****************************************************************************************
* @brief Create a seesaw object on a given I2C bus
*
* @param i2c_bus the I2C bus connected to the seesaw, defaults to "Wire"
****************************************************************************************/
Adafruit_seesaw::Adafruit_seesaw(TwoWire *i2c_bus) {
if (i2c_bus == NULL) {
_i2cbus = &Wire;
} else {
_i2cbus = i2c_bus;
}
}
/*!
*****************************************************************************************
* @brief Start the seesaw
*
* This should be called when your sketch is
*connecting to the seesaw
*
* @param addr the I2C address of the seesaw
* @param flow the flow control pin to use
* @param reset pass true to reset the seesaw on startup. Defaults
*to true.
*
* @return true if we could connect to the seesaw, false otherwise
****************************************************************************************/
bool Adafruit_seesaw::begin(uint8_t addr, int8_t flow, bool reset) {
_i2caddr = addr;
_flow = flow;
if (_flow != -1)
::pinMode(_flow, INPUT);
_i2c_init();
if (reset) {
SWReset();
delay(500);
}
uint8_t c = this->read8(SEESAW_STATUS_BASE, SEESAW_STATUS_HW_ID);
if (c != SEESAW_HW_ID_CODE) {
return false;
}
return true;
}
/*!
*******************************************************************
* @brief perform a software reset. This resets all seesaw registers to
*their default values.
* This is called automatically from
*Adafruit_seesaw.begin()
********************************************************************/
void Adafruit_seesaw::SWReset() {
this->write8(SEESAW_STATUS_BASE, SEESAW_STATUS_SWRST, 0xFF);
}
/*!
**************************************************************************
* @brief Returns the available options compiled into the seesaw firmware.
* @return the available options compiled into the seesaw firmware. If the
*option is included, the corresponding bit is set. For example, if the ADC
*module is compiled in then (ss.getOptions() & (1UL << SEESAW_ADC_BASE)) > 0
***********************************************************************/
uint32_t Adafruit_seesaw::getOptions() {
uint8_t buf[4];
this->read(SEESAW_STATUS_BASE, SEESAW_STATUS_OPTIONS, buf, 4);
uint32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return ret;
}
/*!
*********************************************************************
* @brief Returns the version of the seesaw
* @return The version code. Bits [31:16] will be a date code, [15:0] will
*be the product id.
********************************************************************/
uint32_t Adafruit_seesaw::getVersion() {
uint8_t buf[4];
this->read(SEESAW_STATUS_BASE, SEESAW_STATUS_VERSION, buf, 4);
uint32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return ret;
}
/*!
**************************************************************************
* @brief Set the mode of a GPIO pin.
*
* @param pin the pin number. On the SAMD09 breakout, this corresponds to
*the number on the silkscreen.
* @param mode the mode to set the pin. One of INPUT, OUTPUT, or
*INPUT_PULLUP.
************************************************************************/
void Adafruit_seesaw::pinMode(uint8_t pin, uint8_t mode) {
if (pin >= 32)
pinModeBulk(0, 1ul << (pin - 32), mode);
else
pinModeBulk(1ul << pin, mode);
}
/*!
***************************************************************************
* @brief Set the output of a GPIO pin
*
* @param pin the pin number. On the SAMD09 breakout, this corresponds to
*the number on the silkscreen.
* @param value the value to write to the GPIO pin. This should be
*HIGH or LOW.
***************************************************************************/
void Adafruit_seesaw::digitalWrite(uint8_t pin, uint8_t value) {
if (pin >= 32)
digitalWriteBulk(0, 1ul << (pin - 32), value);
else
digitalWriteBulk(1ul << pin, value);
}
/*!
****************************************************************************
* @brief Read the current status of a GPIO pin
*
* @param pin the pin number. On the SAMD09 breakout, this corresponds to
*the number on the silkscreen.
*
* @return the status of the pin. HIGH or LOW (1 or 0).
***********************************************************************/
bool Adafruit_seesaw::digitalRead(uint8_t pin) {
if (pin >= 32)
return digitalReadBulkB((1ul << (pin - 32))) != 0;
else
return digitalReadBulk((1ul << pin)) != 0;
}
/*!
****************************************************************************
* @brief read the status of multiple pins on port A.
*
* @param pins a bitmask of the pins to write. On the SAMD09 breakout,
*this corresponds to the number on the silkscreen. For example, passing 0b0110
*will return the values of pins 2 and 3.
*
* @return the status of the passed pins. If 0b0110 was passed and pin 2 is
*high and pin 3 is low, 0b0010 (decimal number 2) will be returned.
*******************************************************************/
uint32_t Adafruit_seesaw::digitalReadBulk(uint32_t pins) {
uint8_t buf[4];
this->read(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK, buf, 4);
uint32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return ret & pins;
}
/*!
**************************************************************************
* @brief read the status of multiple pins on port B.
*
* @param pins a bitmask of the pins to write.
*
* @return the status of the passed pins. If 0b0110 was passed and pin 2 is
*high and pin 3 is low, 0b0010 (decimal number 2) will be returned.
************************************************************************/
uint32_t Adafruit_seesaw::digitalReadBulkB(uint32_t pins) {
uint8_t buf[8];
this->read(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK, buf, 8);
uint32_t ret = ((uint32_t)buf[4] << 24) | ((uint32_t)buf[5] << 16) |
((uint32_t)buf[6] << 8) | (uint32_t)buf[7];
return ret & pins;
}
/*!
**********************************************************************
* @brief Enable or disable GPIO interrupts on the passed pins
*
* @param pins a bitmask of the pins to write. On the SAMD09 breakout,
*this corresponds to the number on the silkscreen. For example, passing 0b0110
*will enable or disable interrups on pins 2 and 3.
* @param enabled pass true to enable the interrupts on the passed
*pins, false to disable the interrupts on the passed pins.
***********************************************************************/
void Adafruit_seesaw::setGPIOInterrupts(uint32_t pins, bool enabled) {
uint8_t cmd[] = {(uint8_t)(pins >> 24), (uint8_t)(pins >> 16),
(uint8_t)(pins >> 8), (uint8_t)pins};
if (enabled)
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_INTENSET, cmd, 4);
else
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_INTENCLR, cmd, 4);
}
/*!
****************************************************************
* @brief read the analog value on an ADC-enabled pin.
*
* @param pin the number of the pin to read. On the SAMD09 breakout, this
*corresponds to the number on the silkscreen. On the default seesaw firmware on
*the SAMD09 breakout, pins 2, 3, and 4 are ADC-enabled.
*
* @return the analog value. This is an integer between 0 and 1023
***********************************************************************/
uint16_t Adafruit_seesaw::analogRead(uint8_t pin) {
uint8_t buf[2];
uint8_t p;
switch (pin) {
case ADC_INPUT_0_PIN:
p = 0;
break;
case ADC_INPUT_1_PIN:
p = 1;
break;
case ADC_INPUT_2_PIN:
p = 2;
break;
case ADC_INPUT_3_PIN:
p = 3;
break;
default:
return 0;
break;
}
this->read(SEESAW_ADC_BASE, SEESAW_ADC_CHANNEL_OFFSET + p, buf, 2, 500);
uint16_t ret = ((uint16_t)buf[0] << 8) | buf[1];
delay(1);
return ret;
}
/*!
******************************************************************************
* @brief read the analog value on an capacitive touch-enabled pin.
*
* @param pin the number of the pin to read.
*
* @return the analog value. This is an integer between 0 and 1023
****************************************************************************/
uint16_t Adafruit_seesaw::touchRead(uint8_t pin) {
uint8_t buf[2];
uint8_t p = pin;
uint16_t ret = 65535;
do {
delay(1);
this->read(SEESAW_TOUCH_BASE, SEESAW_TOUCH_CHANNEL_OFFSET + p, buf, 2,
1000);
ret = ((uint16_t)buf[0] << 8) | buf[1];
} while (ret == 65535);
return ret;
}
/*!
***************************************************************************
* @brief set the mode of multiple GPIO pins at once.
*
* @param pins a bitmask of the pins to write. On the SAMD09 breakout,
*this corresponds to the number on the silkscreen. For example, passing 0b0110
*will set the mode of pins 2 and 3.
* @param mode the mode to set the pins to. One of INPUT, OUTPUT,
*or INPUT_PULLUP.
************************************************************************/
void Adafruit_seesaw::pinModeBulk(uint32_t pins, uint8_t mode) {
uint8_t cmd[] = {(uint8_t)(pins >> 24), (uint8_t)(pins >> 16),
(uint8_t)(pins >> 8), (uint8_t)pins};
switch (mode) {
case OUTPUT:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRSET_BULK, cmd, 4);
break;
case INPUT:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRCLR_BULK, cmd, 4);
break;
case INPUT_PULLUP:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRCLR_BULK, cmd, 4);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_PULLENSET, cmd, 4);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_SET, cmd, 4);
break;
case INPUT_PULLDOWN:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRCLR_BULK, cmd, 4);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_PULLENSET, cmd, 4);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_CLR, cmd, 4);
break;
}
}
/*!
*****************************************************************************************
* @brief set the mode of multiple GPIO pins at once. This supports both
*ports A and B.
*
* @param pinsa a bitmask of the pins to write on port A. On the SAMD09
*breakout, this corresponds to the number on the silkscreen. For example,
*passing 0b0110 will set the mode of pins 2 and 3.
* @param pinsb a bitmask of the pins to write on port B.
* @param mode the mode to set the pins to. One of INPUT, OUTPUT,
*or INPUT_PULLUP.
****************************************************************************************/
void Adafruit_seesaw::pinModeBulk(uint32_t pinsa, uint32_t pinsb,
uint8_t mode) {
uint8_t cmd[] = {(uint8_t)(pinsa >> 24), (uint8_t)(pinsa >> 16),
(uint8_t)(pinsa >> 8), (uint8_t)pinsa,
(uint8_t)(pinsb >> 24), (uint8_t)(pinsb >> 16),
(uint8_t)(pinsb >> 8), (uint8_t)pinsb};
switch (mode) {
case OUTPUT:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRSET_BULK, cmd, 8);
break;
case INPUT:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRCLR_BULK, cmd, 8);
break;
case INPUT_PULLUP:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRCLR_BULK, cmd, 8);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_PULLENSET, cmd, 8);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_SET, cmd, 8);
break;
case INPUT_PULLDOWN:
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_DIRCLR_BULK, cmd, 8);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_PULLENSET, cmd, 8);
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_CLR, cmd, 8);
break;
}
}
/*!
*****************************************************************************************
* @brief write a value to multiple GPIO pins at once.
*
* @param pins a bitmask of the pins to write. On the SAMD09 breakout,
*this corresponds to the number on the silkscreen. For example, passing 0b0110
*will write the passed value to pins 2 and 3.
* @param value pass HIGH to set the output on the passed pins to
*HIGH, low to set the output on the passed pins to LOW.
****************************************************************************************/
void Adafruit_seesaw::digitalWriteBulk(uint32_t pins, uint8_t value) {
uint8_t cmd[] = {(uint8_t)(pins >> 24), (uint8_t)(pins >> 16),
(uint8_t)(pins >> 8), (uint8_t)pins};
if (value)
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_SET, cmd, 4);
else
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_CLR, cmd, 4);
}
/*!
*****************************************************************************************
* @brief write a value to multiple GPIO pins at once. This supports both
*ports A and B
*
* @param pinsa a bitmask of the pins to write on port A. On the SAMD09
*breakout, this corresponds to the number on the silkscreen. For example,
*passing 0b0110 will write the passed value to pins 2 and 3.
* @param pinsb a bitmask of the pins to write on port B.
* @param value pass HIGH to set the output on the passed pins to
*HIGH, low to set the output on the passed pins to LOW.
****************************************************************************************/
void Adafruit_seesaw::digitalWriteBulk(uint32_t pinsa, uint32_t pinsb,
uint8_t value) {
uint8_t cmd[] = {(uint8_t)(pinsa >> 24), (uint8_t)(pinsa >> 16),
(uint8_t)(pinsa >> 8), (uint8_t)pinsa,
(uint8_t)(pinsb >> 24), (uint8_t)(pinsb >> 16),
(uint8_t)(pinsb >> 8), (uint8_t)pinsb};
if (value)
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_SET, cmd, 8);
else
this->write(SEESAW_GPIO_BASE, SEESAW_GPIO_BULK_CLR, cmd, 8);
}
/*!
*****************************************************************************************
* @brief write a PWM value to a PWM-enabled pin
*
* @param pin the number of the pin to write. On the SAMD09 breakout, this
*corresponds to the number on the silkscreen. on the default seesaw firmware on
*the SAMD09 breakout, pins 5, 6, and 7 are PWM enabled.
* @param value the value to write to the pin
* @param width the width of the value to write. Defaults to 8. If
*16 is passed a 16 bit value will be written.
****************************************************************************************/
void Adafruit_seesaw::analogWrite(uint8_t pin, uint16_t value, uint8_t width) {
int8_t p = -1;
switch (pin) {
case PWM_0_PIN:
p = 0;
break;
case PWM_1_PIN:
p = 1;
break;
case PWM_2_PIN:
p = 2;
break;
case PWM_3_PIN:
p = 3;
break;
default:
break;
}
if (p > -1) {
if (width == 16) {
uint8_t cmd[] = {(uint8_t)p, (uint8_t)(value >> 8), (uint8_t)value};
this->write(SEESAW_TIMER_BASE, SEESAW_TIMER_PWM, cmd, 3);
} else {
uint16_t mappedVal = map(value, 0, 255, 0, 65535);
uint8_t cmd[] = {(uint8_t)p, (uint8_t)(mappedVal >> 8),
(uint8_t)mappedVal};
this->write(SEESAW_TIMER_BASE, SEESAW_TIMER_PWM, cmd, 3);
}
}
}
/*!
* @brief set the PWM frequency of a PWM-enabled pin. Note that on SAMD09,
* SAMD11 boards the frequency will be mapped to closest match
* fixed frequencies. Also note that PWM pins 4 and 5 share a
*timer, and PWM pins 6 and 7 share a timer. Changing the frequency for one pin
*will change the frequency for the other pin that is on the timer.
*
* @param pin the number of the pin to change frequency of. On the SAMD09
* breakout, this corresponds to the number on the silkscreen.
* on the default seesaw firmware on the SAMD09 breakout, pins 5,
*6, and 7 are PWM enabled.
* @param freq the frequency to set.
******************************************************************************/
void Adafruit_seesaw::setPWMFreq(uint8_t pin, uint16_t freq) {
int8_t p = -1;
switch (pin) {
case PWM_0_PIN:
p = 0;
break;
case PWM_1_PIN:
p = 1;
break;
case PWM_2_PIN:
p = 2;
break;
case PWM_3_PIN:
p = 3;
break;
default:
break;
}
if (p > -1) {
uint8_t cmd[] = {(uint8_t)p, (uint8_t)(freq >> 8), (uint8_t)freq};
this->write(SEESAW_TIMER_BASE, SEESAW_TIMER_FREQ, cmd, 3);
}
}
/*!
* @brief Enable the data ready interrupt on the passed sercom. Note that
*both the interrupt module and the passed sercom must be compiled into the
*seesaw firmware for this to function. If both of these things are true, the
*interrupt pin on the seesaw will fire when there is data to be read from the
*passed sercom. On the default seesaw firmeare on the SAMD09 breakout, no
*sercoms are enabled.
*
* @param sercom the sercom to enable the interrupt on.
****************************************************************************************/
void Adafruit_seesaw::enableSercomDataRdyInterrupt(uint8_t sercom) {
_sercom_inten.bit.DATA_RDY = 1;
this->write8(SEESAW_SERCOM0_BASE + sercom, SEESAW_SERCOM_INTEN,
_sercom_inten.reg);
}
/*!
***************************************************************************************
* @brief Disable the data ready interrupt on the passed sercom.
*
* @param sercom the sercom to disable the interrupt on.
****************************************************************************************/
void Adafruit_seesaw::disableSercomDataRdyInterrupt(uint8_t sercom) {
_sercom_inten.bit.DATA_RDY = 0;
this->write8(SEESAW_SERCOM0_BASE + sercom, SEESAW_SERCOM_INTEN,
_sercom_inten.reg);
}
/*!
*****************************************************************************************
* @brief Reads a character from the passed sercom if one is available.
*Note that on the default seesaw firmware on the SAMD09 breakout no sercoms are
*enabled.
*
* @param sercom the sercom to read data from.
* @returns One byte of data
****************************************************************************************/
char Adafruit_seesaw::readSercomData(uint8_t sercom) {
return this->read8(SEESAW_SERCOM0_BASE + sercom, SEESAW_SERCOM_DATA);
}
/*!
*****************************************************************************************
* @brief Set the seesaw I2C address. This will automatically call
*Adafruit_seesaw.begin() with the new address.
*
* @param addr the new address for the seesaw. This must be a valid 7 bit
*I2C address.
****************************************************************************************/
void Adafruit_seesaw::setI2CAddr(uint8_t addr) {
this->EEPROMWrite8(SEESAW_EEPROM_I2C_ADDR, addr);
delay(250);
this->begin(addr); // restart w/ the new addr
}
/*!
*****************************************************************************************
* @brief Read the I2C address of the seesaw
*
* @return the 7 bit I2C address of the seesaw... which you probably
*already know because you just read data from it.
****************************************************************************************/
uint8_t Adafruit_seesaw::getI2CAddr() {
return this->read8(SEESAW_EEPROM_BASE, SEESAW_EEPROM_I2C_ADDR);
}
/*!
*****************************************************************************************
* @brief Write a 1 byte to an EEPROM address
*
* @param addr the address to write to. On the default seesaw firmware on
*the SAMD09 breakout this is between 0 and 63.
* @param val to write between 0 and 255
****************************************************************************************/
void Adafruit_seesaw::EEPROMWrite8(uint8_t addr, uint8_t val) {
this->EEPROMWrite(addr, &val, 1);
}
/*!
*****************************************************************************************
* @brief write a string of bytes to EEPROM starting at the passed address
*
* @param addr the starting address to write the first byte. This will be
*automatically incremented with each byte written.
* @param buf the buffer of bytes to be written.
* @param size the number of bytes to write. Writing past the end
*of available EEPROM may result in undefined behavior.
****************************************************************************************/
void Adafruit_seesaw::EEPROMWrite(uint8_t addr, uint8_t *buf, uint8_t size) {
this->write(SEESAW_EEPROM_BASE, addr, buf, size);
}
/*!
*****************************************************************************************
* @brief Read 1 byte from the specified EEPROM address.
*
* @param addr the address to read from. One the default seesaw firmware
*on the SAMD09 breakout this is between 0 and 63.
*
* @return the value between 0 and 255 that was read from the passed
*address.
****************************************************************************************/
uint8_t Adafruit_seesaw::EEPROMRead8(uint8_t addr) {
return this->read8(SEESAW_EEPROM_BASE, addr);
}
/*!
*****************************************************************************************
* @brief Set the baud rate on SERCOM0.
*
* @param baud the baud rate to set. This is an integer value. Baud rates
*up to 115200 are supported.
****************************************************************************************/
void Adafruit_seesaw::UARTSetBaud(uint32_t baud) {
uint8_t cmd[] = {(uint8_t)(baud >> 24), (uint8_t)(baud >> 16),
(uint8_t)(baud >> 8), (uint8_t)baud};
this->write(SEESAW_SERCOM0_BASE, SEESAW_SERCOM_BAUD, cmd, 4);
}
/*!
*****************************************************************************************
* @brief activate or deactivate a key and edge on the keypad module
*
* @param key the key number to activate
* @param edge the edge to trigger on
* @param enable passing true will enable the passed event,
*passing false will disable it.
****************************************************************************************/
void Adafruit_seesaw::setKeypadEvent(uint8_t key, uint8_t edge, bool enable) {
keyState ks;
ks.bit.STATE = enable;
ks.bit.ACTIVE = (1 << edge);
uint8_t cmd[] = {key, ks.reg};
this->write(SEESAW_KEYPAD_BASE, SEESAW_KEYPAD_EVENT, cmd, 2);
}
/**
*****************************************************************************************
* @brief enable the keypad interrupt that fires when events are in the
*fifo.
****************************************************************************************/
void Adafruit_seesaw::enableKeypadInterrupt() {
this->write8(SEESAW_KEYPAD_BASE, SEESAW_KEYPAD_INTENSET, 0x01);
}
/**
*****************************************************************************************
* @brief disable the keypad interrupt that fires when events are in the
*fifo.
****************************************************************************************/
void Adafruit_seesaw::disableKeypadInterrupt() {
this->write8(SEESAW_KEYPAD_BASE, SEESAW_KEYPAD_INTENCLR, 0x01);
}
/**
*****************************************************************************************
* @brief Get the number of events currently in the fifo
* @return the number of events in the fifo
****************************************************************************************/
uint8_t Adafruit_seesaw::getKeypadCount() {
return this->read8(SEESAW_KEYPAD_BASE, SEESAW_KEYPAD_COUNT, 500);
}
/**
*****************************************************************************************
* @brief Read all keyEvents into the passed buffer
*
* @param buf pointer to where the keyEvents should be stored
* @param count the number of events to read
****************************************************************************************/
void Adafruit_seesaw::readKeypad(keyEventRaw *buf, uint8_t count) {
return this->read(SEESAW_KEYPAD_BASE, SEESAW_KEYPAD_FIFO, (uint8_t *)buf,
count, 1000);
}
/**
*****************************************************************************************
* @brief Read the temperature of the seesaw board in degrees Celsius.
*NOTE: not all seesaw firmwares have the temperature sensor enabled.
* @return Temperature in degrees Celsius as a floating point value.
****************************************************************************************/
float Adafruit_seesaw::getTemp() {
uint8_t buf[4];
this->read(SEESAW_STATUS_BASE, SEESAW_STATUS_TEMP, buf, 4, 1000);
int32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return (1.0 / (1UL << 16)) * ret;
}
/**
*****************************************************************************************
* @brief Read the current position of the encoder
* @return The encoder position as a 32 bit signed integer.
****************************************************************************************/
int32_t Adafruit_seesaw::getEncoderPosition() {
uint8_t buf[4];
this->read(SEESAW_ENCODER_BASE, SEESAW_ENCODER_POSITION, buf, 4);
int32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return ret;
}
/**
*****************************************************************************************
* @brief Set the current position of the encoder
* @param pos the position to set the encoder to.
****************************************************************************************/
void Adafruit_seesaw::setEncoderPosition(int32_t pos) {
uint8_t buf[] = {(uint8_t)(pos >> 24), (uint8_t)(pos >> 16),
(uint8_t)(pos >> 8), (uint8_t)(pos & 0xFF)};
this->write(SEESAW_ENCODER_BASE, SEESAW_ENCODER_POSITION, buf, 4);
}
/**
*****************************************************************************************
* @brief Read the change in encoder position since it was last read.
* @return The encoder change as a 32 bit signed integer.
****************************************************************************************/
int32_t Adafruit_seesaw::getEncoderDelta() {
uint8_t buf[4];
this->read(SEESAW_ENCODER_BASE, SEESAW_ENCODER_DELTA, buf, 4);
int32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return ret;
}
/**
*****************************************************************************************
* @brief Enable the interrupt to fire when the encoder changes position.
****************************************************************************************/
void Adafruit_seesaw::enableEncoderInterrupt() {
this->write8(SEESAW_ENCODER_BASE, SEESAW_ENCODER_INTENSET, 0x01);
}
/**
*****************************************************************************************
* @brief Disable the interrupt from firing when the encoder changes
*position.
****************************************************************************************/
void Adafruit_seesaw::disableEncoderInterrupt() {
this->write8(SEESAW_ENCODER_BASE, SEESAW_ENCODER_INTENCLR, 0x01);
}
/**
*****************************************************************************************
* @brief Write 1 byte to the specified seesaw register.
*
* @param regHigh the module address register (ex. SEESAW_NEOPIXEL_BASE)
* @param regLow the function address register (ex.
*SEESAW_NEOPIXEL_PIN)
* @param value the value between 0 and 255 to write
****************************************************************************************/
void Adafruit_seesaw::write8(byte regHigh, byte regLow, byte value) {
this->write(regHigh, regLow, &value, 1);
}
/**
*****************************************************************************************
* @brief read 1 byte from the specified seesaw register.
*
* @param regHigh the module address register (ex. SEESAW_STATUS_BASE)
* @param regLow the function address register (ex.
*SEESAW_STATUS_VERSION)
* @param delay a number of microseconds to delay before reading
*out the data. Different delay values may be necessary to ensure the seesaw
*chip has time to process the requested data. Defaults to 125.
*
* @return the value between 0 and 255 read from the passed register
****************************************************************************************/
uint8_t Adafruit_seesaw::read8(byte regHigh, byte regLow, uint16_t delay) {
uint8_t ret;
this->read(regHigh, regLow, &ret, 1, delay);
return ret;
}
/**
*****************************************************************************************
* @brief Initialize I2C. On arduino this just calls i2c->begin()
****************************************************************************************/
void Adafruit_seesaw::_i2c_init() {
#ifdef SEESAW_I2C_DEBUG
Serial.println("I2C Begin");
#endif
_i2cbus->begin();
}
/**
*****************************************************************************************
* @brief Read a specified number of bytes into a buffer from the seesaw.
*
* @param regHigh the module address register (ex. SEESAW_STATUS_BASE)
* @param regLow the function address register (ex.
*SEESAW_STATUS_VERSION)
* @param buf the buffer to read the bytes into
* @param num the number of bytes to read.
* @param delay an optional delay in between setting the read
*register and reading out the data. This is required for some seesaw functions
*(ex. reading ADC data)
****************************************************************************************/
void Adafruit_seesaw::read(uint8_t regHigh, uint8_t regLow, uint8_t *buf,
uint8_t num, uint16_t delay) {
uint8_t pos = 0;
// on arduino we need to read in 32 byte chunks
while (pos < num) {
uint8_t read_now = min(32, num - pos);
_i2cbus->beginTransmission((uint8_t)_i2caddr);
_i2cbus->write((uint8_t)regHigh);
_i2cbus->write((uint8_t)regLow);
#ifdef SEESAW_I2C_DEBUG
Serial.print("I2C read $");
Serial.print((uint16_t)regHigh << 8 | regLow, HEX);
Serial.print(" : ");
#endif
if (_flow != -1)
while (!::digitalRead(_flow))
;
_i2cbus->endTransmission();
// TODO: tune this
delayMicroseconds(delay);
if (_flow != -1)
while (!::digitalRead(_flow))
;
_i2cbus->requestFrom((uint8_t)_i2caddr, read_now);
for (int i = 0; i < read_now; i++) {
buf[pos] = _i2cbus->read();
#ifdef SEESAW_I2C_DEBUG
Serial.print("0x");
Serial.print(buf[pos], HEX);
Serial.print(",");
#endif
pos++;
}
#ifdef SEESAW_I2C_DEBUG
Serial.println();
#endif
}
}
/*!
*****************************************************************************************
* @brief Write a specified number of bytes to the seesaw from the passed
*buffer.
*
* @param regHigh the module address register (ex. SEESAW_GPIO_BASE)
* @param regLow the function address register (ex. SEESAW_GPIO_BULK_SET)
* @param buf the buffer the the bytes from
* @param num the number of bytes to write.
****************************************************************************************/
void Adafruit_seesaw::write(uint8_t regHigh, uint8_t regLow, uint8_t *buf,
uint8_t num) {
_i2cbus->beginTransmission((uint8_t)_i2caddr);
_i2cbus->write((uint8_t)regHigh);
_i2cbus->write((uint8_t)regLow);
_i2cbus->write((uint8_t *)buf, num);
#ifdef SEESAW_I2C_DEBUG
Serial.print("I2C write $");
Serial.print((uint16_t)regHigh << 8 | regLow, HEX);
Serial.print(" : ");
for (int i = 0; i < num; i++) {
Serial.print("0x");
Serial.print(buf[i], HEX);
Serial.print(",");
}
Serial.println();
#endif
if (_flow != -1)
while (!::digitalRead(_flow))
;
_i2cbus->endTransmission();
}
/*!
*****************************************************************************************
* @brief The print wrapper for the seesaw class. Calling this allows you
*to use ss.print() or ss.println() and write to the UART on SERCOM0 of the
*seesaw. Note that this functionality is only available when the UART (sercom)
*module is compiled into the seesaw firmware. On the default seesaw firmware on
*the SAMD09 breakout this functionality is not available.
*
* @param character the character to write.
* @returns The number of bytes written (1)
****************************************************************************************/
size_t Adafruit_seesaw::write(uint8_t character) {
// TODO: add support for multiple sercoms
this->write8(SEESAW_SERCOM0_BASE, SEESAW_SERCOM_DATA, character);
delay(1); // TODO: this can be optimized... it's only needed for longer writes
return 1;
}
/*!
************************************************************************
* @brief The print wrapper for the seesaw class allowing the user to
*print a string. Calling this allows you to use ss.print() or ss.println() and
*write to the UART on SERCOM0 of the seesaw. Note that this functionality is
*only available when the UART (sercom) module is compiled into the seesaw
*firmware. On the default seesaw firmware on the SAMD09 breakout this
*functionality is not available.
*
* @param str the string to write
* @return number of bytes written (not including trailing 0)
*********************************************************************/
size_t Adafruit_seesaw::write(const char *str) {
uint8_t buf[32];
uint8_t len = 0;
while (*str) {
buf[len] = *str;
str++;
len++;
}
this->write(SEESAW_SERCOM0_BASE, SEESAW_SERCOM_DATA, buf, len);
return len;
}
/*!
**********************************************************************
* @brief Write only the module base address register and the function
*address register.
*
* @param regHigh the module address register (ex. SEESAW_STATUS_BASE)
* @param regLow the function address register (ex.
*SEESAW_STATUS_SWRST)
**********************************************************************/
void Adafruit_seesaw::writeEmpty(uint8_t regHigh, uint8_t regLow) {
_i2cbus->beginTransmission((uint8_t)_i2caddr);
_i2cbus->write((uint8_t)regHigh);
_i2cbus->write((uint8_t)regLow);
if (_flow != -1)
while (!::digitalRead(_flow))
;
_i2cbus->endTransmission();
}

View File

@ -0,0 +1,314 @@
/*!
* @file Adafruit_seesaw.h
*
* This is part of Adafruit's seesaw driver for the Arduino platform. It is
* designed specifically to work with the Adafruit products that use seesaw
* technology.
*
* These chips use I2C to communicate, 2 pins (SCL+SDA) are required
* to interface with the board.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Dean Miller for Adafruit Industries.
*
* BSD license, all text here must be included in any redistribution.
*
*/
#ifndef LIB_SEESAW_H
#define LIB_SEESAW_H
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <Wire.h>
/*=========================================================================
I2C ADDRESS/BITS
-----------------------------------------------------------------------*/
#define SEESAW_ADDRESS (0x49) ///< Default Seesaw I2C address
/*=========================================================================*/
/*=========================================================================
REGISTERS
-----------------------------------------------------------------------*/
/** Module Base Addreses
* The module base addresses for different seesaw modules.
*/
enum {
SEESAW_STATUS_BASE = 0x00,
SEESAW_GPIO_BASE = 0x01,
SEESAW_SERCOM0_BASE = 0x02,
SEESAW_TIMER_BASE = 0x08,
SEESAW_ADC_BASE = 0x09,
SEESAW_DAC_BASE = 0x0A,
SEESAW_INTERRUPT_BASE = 0x0B,
SEESAW_DAP_BASE = 0x0C,
SEESAW_EEPROM_BASE = 0x0D,
SEESAW_NEOPIXEL_BASE = 0x0E,
SEESAW_TOUCH_BASE = 0x0F,
SEESAW_KEYPAD_BASE = 0x10,
SEESAW_ENCODER_BASE = 0x11,
};
/** GPIO module function addres registers
*/
enum {
SEESAW_GPIO_DIRSET_BULK = 0x02,
SEESAW_GPIO_DIRCLR_BULK = 0x03,
SEESAW_GPIO_BULK = 0x04,
SEESAW_GPIO_BULK_SET = 0x05,
SEESAW_GPIO_BULK_CLR = 0x06,
SEESAW_GPIO_BULK_TOGGLE = 0x07,
SEESAW_GPIO_INTENSET = 0x08,
SEESAW_GPIO_INTENCLR = 0x09,
SEESAW_GPIO_INTFLAG = 0x0A,
SEESAW_GPIO_PULLENSET = 0x0B,
SEESAW_GPIO_PULLENCLR = 0x0C,
};
/** status module function addres registers
*/
enum {
SEESAW_STATUS_HW_ID = 0x01,
SEESAW_STATUS_VERSION = 0x02,
SEESAW_STATUS_OPTIONS = 0x03,
SEESAW_STATUS_TEMP = 0x04,
SEESAW_STATUS_SWRST = 0x7F,
};
/** timer module function addres registers
*/
enum {
SEESAW_TIMER_STATUS = 0x00,
SEESAW_TIMER_PWM = 0x01,
SEESAW_TIMER_FREQ = 0x02,
};
/** ADC module function addres registers
*/
enum {
SEESAW_ADC_STATUS = 0x00,
SEESAW_ADC_INTEN = 0x02,
SEESAW_ADC_INTENCLR = 0x03,
SEESAW_ADC_WINMODE = 0x04,
SEESAW_ADC_WINTHRESH = 0x05,
SEESAW_ADC_CHANNEL_OFFSET = 0x07,
};
/** Sercom module function addres registers
*/
enum {
SEESAW_SERCOM_STATUS = 0x00,
SEESAW_SERCOM_INTEN = 0x02,
SEESAW_SERCOM_INTENCLR = 0x03,
SEESAW_SERCOM_BAUD = 0x04,
SEESAW_SERCOM_DATA = 0x05,
};
/** neopixel module function addres registers
*/
enum {
SEESAW_NEOPIXEL_STATUS = 0x00,
SEESAW_NEOPIXEL_PIN = 0x01,
SEESAW_NEOPIXEL_SPEED = 0x02,
SEESAW_NEOPIXEL_BUF_LENGTH = 0x03,
SEESAW_NEOPIXEL_BUF = 0x04,
SEESAW_NEOPIXEL_SHOW = 0x05,
};
/** touch module function addres registers
*/
enum {
SEESAW_TOUCH_CHANNEL_OFFSET = 0x10,
};
/** keypad module function addres registers
*/
enum {
SEESAW_KEYPAD_STATUS = 0x00,
SEESAW_KEYPAD_EVENT = 0x01,
SEESAW_KEYPAD_INTENSET = 0x02,
SEESAW_KEYPAD_INTENCLR = 0x03,
SEESAW_KEYPAD_COUNT = 0x04,
SEESAW_KEYPAD_FIFO = 0x10,
};
/** keypad module edge definitions
*/
enum {
SEESAW_KEYPAD_EDGE_HIGH = 0,
SEESAW_KEYPAD_EDGE_LOW,
SEESAW_KEYPAD_EDGE_FALLING,
SEESAW_KEYPAD_EDGE_RISING,
};
/** encoder module edge definitions
*/
enum {
SEESAW_ENCODER_STATUS = 0x00,
SEESAW_ENCODER_INTENSET = 0x02,
SEESAW_ENCODER_INTENCLR = 0x03,
SEESAW_ENCODER_POSITION = 0x04,
SEESAW_ENCODER_DELTA = 0x05,
};
#define ADC_INPUT_0_PIN 2 ///< default ADC input pin
#define ADC_INPUT_1_PIN 3 ///< default ADC input pin
#define ADC_INPUT_2_PIN 4 ///< default ADC input pin
#define ADC_INPUT_3_PIN 5 ///< default ADC input pin
#define PWM_0_PIN 4 ///< default PWM output pin
#define PWM_1_PIN 5 ///< default PWM output pin
#define PWM_2_PIN 6 ///< default PWM output pin
#define PWM_3_PIN 7 ///< default PWM output pin
#ifndef INPUT_PULLDOWN
#define INPUT_PULLDOWN \
0x03 ///< for compatibility with platforms that do not already define
///< INPUT_PULLDOWN
#endif
/*=========================================================================*/
#define SEESAW_HW_ID_CODE 0x55 ///< seesaw HW ID code
#define SEESAW_EEPROM_I2C_ADDR \
0x3F ///< EEPROM address of i2c address to start up with (for devices that
///< support this feature)
/** raw key event stucture for keypad module */
union keyEventRaw {
struct {
uint8_t EDGE : 2; ///< the edge that was triggered
uint8_t NUM : 6; ///< the event number
} bit; ///< bitfield format
uint8_t reg; ///< register format
};
/** extended key event stucture for keypad module */
union keyEvent {
struct {
uint8_t EDGE : 2; ///< the edge that was triggered
uint16_t NUM : 14; ///< the event number
} bit; ///< bitfield format
uint16_t reg; ///< register format
};
/** key state struct that will be written to seesaw chip keypad module */
union keyState {
struct {
uint8_t STATE : 1; ///< the current state of the key
uint8_t ACTIVE : 4; ///< the registered events for that key
} bit; ///< bitfield format
uint8_t reg; ///< register format
};
/**************************************************************************/
/*!
@brief Class that stores state and functions for interacting with seesaw
helper IC
*/
/**************************************************************************/
class Adafruit_seesaw : public Print {
public:
// constructors
Adafruit_seesaw(TwoWire *Wi = NULL);
~Adafruit_seesaw(void){};
bool begin(uint8_t addr = SEESAW_ADDRESS, int8_t flow = -1,
bool reset = true);
uint32_t getOptions();
uint32_t getVersion();
void SWReset();
void pinMode(uint8_t pin, uint8_t mode);
void pinModeBulk(uint32_t pins, uint8_t mode);
void pinModeBulk(uint32_t pinsa, uint32_t pinsb, uint8_t mode);
virtual void analogWrite(uint8_t pin, uint16_t value, uint8_t width = 8);
void digitalWrite(uint8_t pin, uint8_t value);
void digitalWriteBulk(uint32_t pins, uint8_t value);
void digitalWriteBulk(uint32_t pinsa, uint32_t pinsb, uint8_t value);
bool digitalRead(uint8_t pin);
uint32_t digitalReadBulk(uint32_t pins);
uint32_t digitalReadBulkB(uint32_t pins);
void setGPIOInterrupts(uint32_t pins, bool enabled);
virtual uint16_t analogRead(uint8_t pin);
uint16_t touchRead(uint8_t pin);
virtual void setPWMFreq(uint8_t pin, uint16_t freq);
void enableSercomDataRdyInterrupt(uint8_t sercom = 0);
void disableSercomDataRdyInterrupt(uint8_t sercom = 0);
char readSercomData(uint8_t sercom = 0);
void EEPROMWrite8(uint8_t addr, uint8_t val);
void EEPROMWrite(uint8_t addr, uint8_t *buf, uint8_t size);
uint8_t EEPROMRead8(uint8_t addr);
void setI2CAddr(uint8_t addr);
uint8_t getI2CAddr();
void UARTSetBaud(uint32_t baud);
void setKeypadEvent(uint8_t key, uint8_t edge, bool enable = true);
void enableKeypadInterrupt();
void disableKeypadInterrupt();
uint8_t getKeypadCount();
void readKeypad(keyEventRaw *buf, uint8_t count);
float getTemp();
int32_t getEncoderPosition();
int32_t getEncoderDelta();
void enableEncoderInterrupt();
void disableEncoderInterrupt();
void setEncoderPosition(int32_t pos);
virtual size_t write(uint8_t);
virtual size_t write(const char *str);
protected:
uint8_t _i2caddr; /*!< The I2C address used to communicate with the seesaw */
TwoWire *_i2cbus; /*!< The I2C Bus used to communicate with the seesaw */
int8_t _flow; /*!< The flow control pin to use */
void write8(byte regHigh, byte regLow, byte value);
uint8_t read8(byte regHigh, byte regLow, uint16_t delay = 125);
void read(uint8_t regHigh, uint8_t regLow, uint8_t *buf, uint8_t num,
uint16_t delay = 125);
void write(uint8_t regHigh, uint8_t regLow, uint8_t *buf, uint8_t num);
void writeEmpty(uint8_t regHigh, uint8_t regLow);
void _i2c_init();
/*=========================================================================
REGISTER BITFIELDS
-----------------------------------------------------------------------*/
/** Sercom interrupt enable register
*/
union sercom_inten {
struct {
uint8_t DATA_RDY : 1; ///< this bit is set when data becomes available
} bit; ///< bitfields
uint8_t reg; ///< full register
};
sercom_inten _sercom_inten; ///< sercom interrupt enable register instance
/*=========================================================================*/
};
#endif

View File

@ -0,0 +1,5 @@
# Adafruit_Seesaw [![Build Status](https://github.com/adafruit/Adafruit_Seesaw/workflows/Arduino%20Library%20CI/badge.svg)](https://github.com/adafruit/Adafruit_Seesaw/actions)[![Documentation](https://github.com/adafruit/ci-arduino/blob/master/assets/doxygen_badge.svg)](http://adafruit.github.io/Adafruit_Seesaw/html/index.html)
Arduino driver for seesaw multi-use chip
Check out the [documentation](https://adafruit.github.io/Adafruit_Seesaw/html/class_adafruit__seesaw.html) for a listing and explanation of the available methods!

View File

@ -0,0 +1,10 @@
name=Adafruit seesaw Library
version=1.3.1
author=Adafruit
maintainer=Adafruit <info@adafruit.com>
sentence=This is a library for the Adafruit seesaw helper IC.
paragraph=This is a library for the Adafruit seesaw helper IC.
category=Other
url=https://github.com/adafruit/Adafruit_Seesaw
architectures=*
depends=Adafruit ST7735 and ST7789 Library

View File

@ -0,0 +1,193 @@
/*
xsns_81_seesaw_soil - I2C Capacitance & temperature sensor support for Tasmota
Copyright (C) 2021 Wayne Ross, Theo Arends, Peter Franck
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_SEESAW_SOIL
/*********************************************************************************************\
* SEESAW_SOIL - Capacitance & Temperature Sensor
*
* I2C Address: 0x36, 0x37, 0x38, 0x39
*
* NOTE: #define SEESAW_SOIL_PUBLISH enables immediate MQTT on soil moisture change
* otherwise the moisture value will only be emitted every TelePeriod
* #define SEESAW_SOIL_RAW enables displaying analog capacitance input in the
* web page for calibration purposes
\*********************************************************************************************/
#define XSNS_81 81
#define XI2C_56 56 // See I2CDEVICES.md
#include "Adafruit_seesaw.h"
#define SEESAW_SOIL_MAX_SENSORS 4
#define SEESAW_SOIL_START_ADDRESS 0x36
const char SeeSoilName[] = "SeeSoil"; // spaces not allowed for Homeassistant integration/mqtt topics
uint8_t SeeSoilCount = 0; // global sensor count
struct SEESAW_SOIL {
Adafruit_seesaw *ss; // instance pointer
uint16_t capacitance;
float temperature;
uint8_t address;
} SeeSoil[SEESAW_SOIL_MAX_SENSORS];
// Used to convert capacitance into a moisture.
// From observation, a free air reading is at 320
// Immersed in tap water, reading is 1014
// Appears to be a 10-bit device, readings close to 1020
// So let's make a scale that converts those (apparent) facts into a percentage
#define MAX_CAPACITANCE 1020.0f // subject to calibration
#define MIN_CAPACITANCE 320 // subject to calibration
#define CAP_TO_MOIST(c) ((max((int)(c),MIN_CAPACITANCE)-MIN_CAPACITANCE)/(MAX_CAPACITANCE-MIN_CAPACITANCE))
/********************************************************************************************/
void SEESAW_SOILDetect(void) {
Adafruit_seesaw *SSptr=0;
for (uint32_t i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) {
int addr = SEESAW_SOIL_START_ADDRESS + i;
if (!I2cSetDevice(addr)) { continue; }
if (!SSptr) { // don't have an object,
SSptr = new Adafruit_seesaw(); // allocate one
}
if (SSptr->begin(addr)) {
SeeSoil[SeeSoilCount].ss = SSptr; // save copy of pointer
SSptr = 0; // mark that we took it
SeeSoil[SeeSoilCount].address = addr;
SeeSoil[SeeSoilCount].temperature = NAN;
SeeSoil[SeeSoilCount].capacitance = 0;
I2cSetActiveFound(SeeSoil[SeeSoilCount].address, SeeSoilName);
SeeSoilCount++;
}
}
if (SSptr) {
delete SSptr; // used object for detection, didn't find anything so we don't need this object
}
}
void SEESAW_SOILEverySecond(void) { // update sensor values and publish if changed
#ifdef SEESAW_SOIL_PUBLISH
uint32_t old_moist;
#endif // SEESAW_SOIL_PUBLISH
for (uint32_t i = 0; i < SeeSoilCount; i++) {
SeeSoil[i].temperature = ConvertTemp(SeeSoil[i].ss->getTemp());
#ifdef SEESAW_SOIL_PUBLISH
old_moist = uint32_t (CAP_TO_MOIST(SeeSoil[i].capacitance)*100);
#endif // SEESAW_SOIL_PUBLISH
SeeSoil[i].capacitance = SeeSoil[i].ss->touchRead(0);
#ifdef SEESAW_SOIL_PUBLISH
if (uint32_t (CAP_TO_MOIST(SeeSoil[i].capacitance)*100) != old_moist) {
Response_P(PSTR("{")); // send values to MQTT & rules
SEESAW_SOILJson(i);
ResponseJsonEnd();
MqttPublishTeleSensor();
}
#endif // SEESAW_SOIL_PUBLISH
}
}
void SEESAW_SOILShow(bool json) {
char temperature[FLOATSZ];
char sensor_name[sizeof(SeeSoilName) + 3];
for (uint32_t i = 0; i < SeeSoilCount; i++) {
dtostrfd(SeeSoil[i].temperature, Settings.flag2.temperature_resolution, temperature);
SEESAW_SOILName(i, sensor_name, sizeof(sensor_name));
if (json) {
ResponseAppend_P(PSTR(",")); // compose tele json
SEESAW_SOILJson(i);
if (0 == TasmotaGlobal.tele_period) {
#ifdef USE_DOMOTICZ
DomoticzTempHumPressureSensor(SeeSoil[i].temperature, CAP_TO_MOIST(SeeSoil[i].capacitance)*100, -42.0f);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, SeeSoil[i].temperature);
KnxSensor(KNX_HUMIDITY, CAP_TO_MOIST(SeeSoil[i].capacitance) * 100);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
#ifdef SEESAW_SOIL_RAW
WSContentSend_PD(HTTP_SNS_ANALOG, sensor_name, 0, SeeSoil[i].capacitance); // dump raw value
#endif // SEESAW_SOIL_RAW
WSContentSend_PD(HTTP_SNS_MOISTURE, sensor_name,
uint32_t (CAP_TO_MOIST(SeeSoil[i].capacitance)*100)); // web page formats as integer (%d) percent
WSContentSend_PD(HTTP_SNS_TEMP, sensor_name, temperature, TempUnit());
#endif // USE_WEBSERVER
}
} // for each sensor connected
}
void SEESAW_SOILJson(int no) { // common json
char temperature[FLOATSZ];
char sensor_name[sizeof(SeeSoilName) + 3];
SEESAW_SOILName(no, sensor_name, sizeof(sensor_name));
dtostrfd(SeeSoil[no].temperature, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR ("\"%s\":{\"" D_JSON_ID "\":\"%02X\",\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_MOISTURE "\":%u}"),
sensor_name, SeeSoil[no].address, temperature, uint32_t (CAP_TO_MOIST(SeeSoil[no].capacitance)*100));
}
void SEESAW_SOILName(int no, char *name, int len) // generates a sensor name
{
if (SeeSoilCount > 1) {
snprintf_P(name, len, PSTR("%s%c%u"), SeeSoilName, IndexSeparator(), no + 1);
}
else {
strlcpy(name, SeeSoilName, len);
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns81(uint8_t function)
{
if (!I2cEnabled(XI2C_56)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
SEESAW_SOILDetect();
}
else if (SeeSoilCount){
switch (function) {
case FUNC_EVERY_SECOND:
SEESAW_SOILEverySecond();
break;
case FUNC_JSON_APPEND:
SEESAW_SOILShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
SEESAW_SOILShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_SEESAW_SOIL
#endif // USE_I2C