mirror of https://github.com/arendst/Tasmota.git
Merge remote-tracking branch 'arendst/development' into development
This commit is contained in:
commit
27bc24e033
|
@ -35,6 +35,7 @@ All notable changes to this project will be documented in this file.
|
||||||
- Zigbee exception when bad frame is received (#11192)
|
- Zigbee exception when bad frame is received (#11192)
|
||||||
- ESP32 flash script for Odroid and Core2 (#11227)
|
- ESP32 flash script for Odroid and Core2 (#11227)
|
||||||
- ESP32 WS2812 bitbang support (#11248)
|
- ESP32 WS2812 bitbang support (#11248)
|
||||||
|
- DS18x20 driver timing issue (#11270)
|
||||||
|
|
||||||
## [Released]
|
## [Released]
|
||||||
|
|
||||||
|
|
|
@ -109,3 +109,4 @@ The attached binaries can also be downloaded from http://ota.tasmota.com/tasmota
|
||||||
- Zigbee exception when bad frame is received [#11192](https://github.com/arendst/Tasmota/issues/11192)
|
- Zigbee exception when bad frame is received [#11192](https://github.com/arendst/Tasmota/issues/11192)
|
||||||
- ESP32 flash script for Odroid and Core2 [#11227](https://github.com/arendst/Tasmota/issues/11227)
|
- ESP32 flash script for Odroid and Core2 [#11227](https://github.com/arendst/Tasmota/issues/11227)
|
||||||
- ESP32 WS2812 bitbang support [#11248](https://github.com/arendst/Tasmota/issues/11248)
|
- ESP32 WS2812 bitbang support [#11248](https://github.com/arendst/Tasmota/issues/11248)
|
||||||
|
- DS18x20 driver timing issue (#11270)
|
||||||
|
|
|
@ -1092,7 +1092,7 @@ void Every250mSeconds(void)
|
||||||
}
|
}
|
||||||
#endif // FIRMWARE_MINIMAL
|
#endif // FIRMWARE_MINIMAL
|
||||||
if (ota_retry_counter < OTA_ATTEMPTS / 2) {
|
if (ota_retry_counter < OTA_ATTEMPTS / 2) {
|
||||||
if (!strcasecmp_P(TasmotaGlobal.mqtt_data, PSTR(".gz"))) {
|
if (strstr_P(TasmotaGlobal.mqtt_data, PSTR(".gz"))) { // Might be made case insensitive...
|
||||||
ota_retry_counter = 1;
|
ota_retry_counter = 1;
|
||||||
} else {
|
} else {
|
||||||
strcat_P(TasmotaGlobal.mqtt_data, PSTR(".gz"));
|
strcat_P(TasmotaGlobal.mqtt_data, PSTR(".gz"));
|
||||||
|
|
|
@ -1844,6 +1844,16 @@ uint16_t fadeGammaReverse(uint32_t channel, uint16_t vg) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint8_t LightGetCurFadeBri(void) {
|
||||||
|
uint8_t max_bri = 0;
|
||||||
|
uint8_t bri_i = 0;
|
||||||
|
for (uint8_t i = 0; i < LST_MAX; i++) {
|
||||||
|
bri_i = changeUIntScale(fadeGammaReverse(i, Light.fade_cur_10[i]), 4, 1023, 1, 100);
|
||||||
|
if (bri_i > max_bri) max_bri = bri_i ;
|
||||||
|
}
|
||||||
|
return max_bri;
|
||||||
|
}
|
||||||
|
|
||||||
bool LightApplyFade(void) { // did the value chanegd and needs to be applied
|
bool LightApplyFade(void) { // did the value chanegd and needs to be applied
|
||||||
static uint32_t last_millis = 0;
|
static uint32_t last_millis = 0;
|
||||||
uint32_t now = millis();
|
uint32_t now = millis();
|
||||||
|
@ -2711,12 +2721,18 @@ void CmndDimmer(void)
|
||||||
} else {
|
} else {
|
||||||
dimmer = light_state.getDimmer(XdrvMailbox.index);
|
dimmer = light_state.getDimmer(XdrvMailbox.index);
|
||||||
}
|
}
|
||||||
// Handle +/- special command
|
// Handle +/-/!/</> special commands
|
||||||
if (1 == XdrvMailbox.data_len) {
|
if (1 == XdrvMailbox.data_len) {
|
||||||
if ('+' == XdrvMailbox.data[0]) {
|
if ('+' == XdrvMailbox.data[0]) {
|
||||||
XdrvMailbox.payload = (dimmer > (100 - Settings.dimmer_step - 1)) ? 100 : dimmer + Settings.dimmer_step;
|
XdrvMailbox.payload = (dimmer > (100 - Settings.dimmer_step - 1)) ? 100 : dimmer + Settings.dimmer_step;
|
||||||
} else if ('-' == XdrvMailbox.data[0]) {
|
} else if ('-' == XdrvMailbox.data[0]) {
|
||||||
XdrvMailbox.payload = (dimmer < (Settings.dimmer_step + 1)) ? 1 : dimmer - Settings.dimmer_step;
|
XdrvMailbox.payload = (dimmer < (Settings.dimmer_step + 1)) ? 1 : dimmer - Settings.dimmer_step;
|
||||||
|
} else if ('!' == XdrvMailbox.data[0] && Light.fade_running) {
|
||||||
|
XdrvMailbox.payload = LightGetCurFadeBri();
|
||||||
|
} else if ('<' == XdrvMailbox.data[0] ) {
|
||||||
|
XdrvMailbox.payload = 1;
|
||||||
|
} else if ('>' == XdrvMailbox.data[0] ) {
|
||||||
|
XdrvMailbox.payload = 100;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// If value is ok, change it, otherwise report old value
|
// If value is ok, change it, otherwise report old value
|
||||||
|
|
|
@ -190,7 +190,7 @@ int32_t EZSP_EnergyScanComplete(int32_t res, const SBuffer &buf) {
|
||||||
// Dump energu scan results
|
// Dump energu scan results
|
||||||
//
|
//
|
||||||
void EnergyScanResults(void) {
|
void EnergyScanResults(void) {
|
||||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_SCAN "\":["));
|
Response_P(PSTR("{\"" D_JSON_ZIGBEE_SCAN "\":{"));
|
||||||
for (uint32_t i = 0; i < USE_ZIGBEE_CHANNEL_COUNT; i++) {
|
for (uint32_t i = 0; i < USE_ZIGBEE_CHANNEL_COUNT; i++) {
|
||||||
int8_t energy = zigbee.energy[i];
|
int8_t energy = zigbee.energy[i];
|
||||||
|
|
||||||
|
@ -210,7 +210,7 @@ void EnergyScanResults(void) {
|
||||||
|
|
||||||
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Channel %2d: %s"), i + USE_ZIGBEE_CHANNEL_MIN, bar_str);
|
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Channel %2d: %s"), i + USE_ZIGBEE_CHANNEL_MIN, bar_str);
|
||||||
}
|
}
|
||||||
ResponseAppend_P(PSTR("]}"));
|
ResponseAppend_P(PSTR("}}"));
|
||||||
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -31,9 +31,9 @@
|
||||||
|
|
||||||
//#define CSE7761_SIMULATE
|
//#define CSE7761_SIMULATE
|
||||||
|
|
||||||
#define CSE7761_UREF 10000 // Gain 1 * 10000 in V
|
#define CSE7761_UREF 42563 // RmsUc
|
||||||
#define CSE7761_IREF 160000 // Gain 16 * 10000 in A
|
#define CSE7761_IREF 52241 // RmsIAC
|
||||||
#define CSE7761_PREF 50000 // in W
|
#define CSE7761_PREF 44513 // PowerPAC
|
||||||
|
|
||||||
#define CSE7761_REG_SYSCON 0x00 // System Control Register
|
#define CSE7761_REG_SYSCON 0x00 // System Control Register
|
||||||
#define CSE7761_REG_EMUCON 0x01 // Metering control register
|
#define CSE7761_REG_EMUCON 0x01 // Metering control register
|
||||||
|
@ -80,6 +80,7 @@ struct {
|
||||||
uint32_t current_rms[2] = { 0 };
|
uint32_t current_rms[2] = { 0 };
|
||||||
uint32_t energy[2] = { 0 };
|
uint32_t energy[2] = { 0 };
|
||||||
uint32_t active_power[2] = { 0 };
|
uint32_t active_power[2] = { 0 };
|
||||||
|
uint16_t coefficient[8] = { 0 };
|
||||||
uint8_t energy_update = 0;
|
uint8_t energy_update = 0;
|
||||||
uint8_t init = 4;
|
uint8_t init = 4;
|
||||||
uint8_t ready = 0;
|
uint8_t ready = 0;
|
||||||
|
@ -113,7 +114,7 @@ void Cse7761Write(uint32_t reg, uint32_t data) {
|
||||||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer);
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t Cse7761Read(uint32_t reg) {
|
uint32_t Cse7761Read(uint32_t reg, uint32_t size) {
|
||||||
while (Cse7761Serial->available()) { Cse7761Serial->read(); }
|
while (Cse7761Serial->available()) { Cse7761Serial->read(); }
|
||||||
|
|
||||||
Cse7761Write(reg, 0);
|
Cse7761Write(reg, 0);
|
||||||
|
@ -121,6 +122,8 @@ uint32_t Cse7761Read(uint32_t reg) {
|
||||||
uint8_t buffer[8] = { 0 };
|
uint8_t buffer[8] = { 0 };
|
||||||
uint32_t rcvd = 0;
|
uint32_t rcvd = 0;
|
||||||
uint32_t timeout = millis() + 3;
|
uint32_t timeout = millis() + 3;
|
||||||
|
|
||||||
|
// while (!TimeReached(timeout) && (rcvd <= size)) {
|
||||||
while (!TimeReached(timeout)) {
|
while (!TimeReached(timeout)) {
|
||||||
int value = Cse7761Serial->read();
|
int value = Cse7761Serial->read();
|
||||||
if ((value > -1) && (rcvd < sizeof(buffer) -1)) {
|
if ((value > -1) && (rcvd < sizeof(buffer) -1)) {
|
||||||
|
@ -154,24 +157,44 @@ uint32_t Cse7761Read(uint32_t reg) {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev) {
|
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev, uint32_t size) {
|
||||||
uint32_t value = Cse7761Read(reg);
|
uint32_t value = Cse7761Read(reg, size);
|
||||||
if (1 == value) { // CRC Error so use previous value read
|
if (1 == value) { // CRC Error so use previous value read
|
||||||
value = prev;
|
value = prev;
|
||||||
}
|
}
|
||||||
return value;
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint32_t Cse7761Ref(uint32_t unit) {
|
||||||
|
switch (unit) {
|
||||||
|
case RmsUC: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC];
|
||||||
|
case RmsIAC: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits
|
||||||
|
case PowerPAC: return 0x80000000 / CSE7761Data.coefficient[PowerPAC];
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
bool Cse7761ChipInit(void) {
|
bool Cse7761ChipInit(void) {
|
||||||
uint16_t calc_chksum = 0xFFFF;
|
uint16_t calc_chksum = 0xFFFF;
|
||||||
for (uint32_t i = 0; i < 8; i++) {
|
for (uint32_t i = 0; i < 8; i++) {
|
||||||
calc_chksum = Cse7761Read(CSE7761_REG_RMSIAC + i);
|
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i, 2);
|
||||||
|
calc_chksum += CSE7761Data.coefficient[i];
|
||||||
}
|
}
|
||||||
calc_chksum = ~calc_chksum;
|
calc_chksum = ~calc_chksum;
|
||||||
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET);
|
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET, 2);
|
||||||
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM);
|
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM, 2);
|
||||||
if (calc_chksum != coeff_chksum) {
|
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Not calibrated"));
|
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration"));
|
||||||
|
CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF;
|
||||||
|
// CSE7761Data.coefficient[RmsIBC] = 0xCC05;
|
||||||
|
CSE7761Data.coefficient[RmsUC] = CSE7761_UREF;
|
||||||
|
CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF;
|
||||||
|
// CSE7761Data.coefficient[PowerPBC] = 0xADD7;
|
||||||
|
}
|
||||||
|
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
|
||||||
|
Settings.energy_voltage_calibration = Cse7761Ref(RmsUC);
|
||||||
|
Settings.energy_current_calibration = Cse7761Ref(RmsIAC);
|
||||||
|
Settings.energy_power_calibration = Cse7761Ref(PowerPAC);
|
||||||
}
|
}
|
||||||
|
|
||||||
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
|
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
|
||||||
|
@ -180,7 +203,7 @@ bool Cse7761ChipInit(void) {
|
||||||
uint32_t timeout = millis() + 8;
|
uint32_t timeout = millis() + 8;
|
||||||
while (!TimeReached(timeout)) { }
|
while (!TimeReached(timeout)) { }
|
||||||
|
|
||||||
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS);
|
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS, 1);
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
sys_status = 0x11;
|
sys_status = 0x11;
|
||||||
#endif
|
#endif
|
||||||
|
@ -315,34 +338,31 @@ void Cse7761GetData(void) {
|
||||||
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
|
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
|
||||||
// and when the highest bit is 1, the reading will be processed as zero
|
// and when the highest bit is 1, the reading will be processed as zero
|
||||||
// The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit.
|
// The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit.
|
||||||
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms);
|
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms, 3);
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
// value = 2342160; // 234.2V
|
value = 2342160; // 237.7V
|
||||||
value = 2000000; // 200V
|
|
||||||
#endif
|
#endif
|
||||||
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
|
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
|
||||||
|
|
||||||
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0]);
|
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3);
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
value = 455;
|
value = 455;
|
||||||
#endif
|
#endif
|
||||||
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
|
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
|
||||||
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0]);
|
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0], 4);
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
value = 217;
|
value = 217;
|
||||||
#endif
|
#endif
|
||||||
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
|
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
|
||||||
|
|
||||||
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1]);
|
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1], 3);
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
// value = 29760; // 0.186A
|
value = 29760; // 0.185A
|
||||||
value = 800000; // 5A
|
|
||||||
#endif
|
#endif
|
||||||
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
|
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
|
||||||
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1]);
|
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1], 4);
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
// value = 2126641; // 42.5W
|
value = 2126641; // 44.05W
|
||||||
value = 50000000; // 1000W
|
|
||||||
#endif
|
#endif
|
||||||
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
|
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
|
||||||
|
|
||||||
|
@ -352,24 +372,25 @@ void Cse7761GetData(void) {
|
||||||
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
|
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
|
||||||
|
|
||||||
if (Energy.power_on) { // Powered on
|
if (Energy.power_on) { // Powered on
|
||||||
|
// Voltage = RmsU * RmsUC * 10 / 0x400000
|
||||||
|
// Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V
|
||||||
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
|
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
|
||||||
|
|
||||||
for (uint32_t channel = 0; channel < 2; channel++) {
|
for (uint32_t channel = 0; channel < 2; channel++) {
|
||||||
Energy.data_valid[channel] = 0;
|
Energy.data_valid[channel] = 0;
|
||||||
|
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
|
||||||
|
// Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W
|
||||||
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W
|
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W
|
||||||
if (0 == Energy.active_power[channel]) {
|
if (0 == Energy.active_power[channel]) {
|
||||||
Energy.current[channel] = 0;
|
Energy.current[channel] = 0;
|
||||||
} else {
|
} else {
|
||||||
|
// Current = RmsIA * RmsIAC / 0x800000
|
||||||
|
// Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
|
||||||
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
|
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
|
||||||
CSE7761Data.energy[channel] += Energy.active_power[channel];
|
CSE7761Data.energy[channel] += Energy.active_power[channel];
|
||||||
CSE7761Data.energy_update++;
|
CSE7761Data.energy_update++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
/*
|
|
||||||
} else { // Powered off
|
|
||||||
Energy.data_valid[0] = ENERGY_WATCHDOG;
|
|
||||||
Energy.data_valid[1] = ENERGY_WATCHDOG;
|
|
||||||
*/
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -387,7 +408,7 @@ void Cse7761EverySecond(void) {
|
||||||
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
|
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
|
||||||
}
|
}
|
||||||
else if (2 == CSE7761Data.init) {
|
else if (2 == CSE7761Data.init) {
|
||||||
uint16_t syscon = Cse7761Read(0x00); // Default 0x0A04
|
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
|
||||||
#ifdef CSE7761_SIMULATE
|
#ifdef CSE7761_SIMULATE
|
||||||
syscon = 0x0A04;
|
syscon = 0x0A04;
|
||||||
#endif
|
#endif
|
||||||
|
@ -428,11 +449,6 @@ void Cse7761SnsInit(void) {
|
||||||
SetSerial(38400, TS_SERIAL_8E1);
|
SetSerial(38400, TS_SERIAL_8E1);
|
||||||
ClaimSerial();
|
ClaimSerial();
|
||||||
}
|
}
|
||||||
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
|
|
||||||
Settings.energy_voltage_calibration = CSE7761_UREF;
|
|
||||||
Settings.energy_current_calibration = CSE7761_IREF;
|
|
||||||
Settings.energy_power_calibration = CSE7761_PREF;
|
|
||||||
}
|
|
||||||
} else {
|
} else {
|
||||||
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
||||||
}
|
}
|
||||||
|
@ -455,15 +471,15 @@ bool Cse7761Command(void) {
|
||||||
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
|
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
|
||||||
|
|
||||||
if (CMND_POWERCAL == Energy.command_code) {
|
if (CMND_POWERCAL == Energy.command_code) {
|
||||||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_PREF; }
|
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(PowerPAC); }
|
||||||
// Service in xdrv_03_energy.ino
|
// Service in xdrv_03_energy.ino
|
||||||
}
|
}
|
||||||
else if (CMND_VOLTAGECAL == Energy.command_code) {
|
else if (CMND_VOLTAGECAL == Energy.command_code) {
|
||||||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_UREF; }
|
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); }
|
||||||
// Service in xdrv_03_energy.ino
|
// Service in xdrv_03_energy.ino
|
||||||
}
|
}
|
||||||
else if (CMND_CURRENTCAL == Energy.command_code) {
|
else if (CMND_CURRENTCAL == Energy.command_code) {
|
||||||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_IREF; }
|
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); }
|
||||||
// Service in xdrv_03_energy.ino
|
// Service in xdrv_03_energy.ino
|
||||||
}
|
}
|
||||||
else if (CMND_POWERSET == Energy.command_code) {
|
else if (CMND_POWERSET == Energy.command_code) {
|
||||||
|
|
|
@ -51,17 +51,21 @@ struct DS18X20STRUCT {
|
||||||
uint8_t address[8];
|
uint8_t address[8];
|
||||||
uint8_t index;
|
uint8_t index;
|
||||||
uint8_t valid;
|
uint8_t valid;
|
||||||
float temperature;
|
float temperature;
|
||||||
} ds18x20_sensor[DS18X20_MAX_SENSORS];
|
} ds18x20_sensor[DS18X20_MAX_SENSORS];
|
||||||
uint8_t ds18x20_sensors = 0;
|
|
||||||
int8_t ds18x20_pin = 0; // Shelly GPIO3 input only
|
struct {
|
||||||
int8_t ds18x20_pin_out = 0; // Shelly GPIO00 output only
|
|
||||||
bool ds18x20_dual_mode = false; // Single pin mode
|
|
||||||
char ds18x20_types[17];
|
|
||||||
#ifdef W1_PARASITE_POWER
|
#ifdef W1_PARASITE_POWER
|
||||||
uint8_t ds18x20_sensor_curr = 0;
|
uint32_t w1_power_until = 0;
|
||||||
unsigned long w1_power_until = 0;
|
uint8_t current_sensor = 0;
|
||||||
#endif
|
#endif
|
||||||
|
char name[17];
|
||||||
|
uint8_t sensors = 0;
|
||||||
|
uint8_t input_mode = 0; // INPUT or INPUT_PULLUP (=2)
|
||||||
|
int8_t pin = 0; // Shelly GPIO3 input only
|
||||||
|
int8_t pin_out = 0; // Shelly GPIO00 output only
|
||||||
|
bool dual_mode = false; // Single pin mode
|
||||||
|
} DS18X20Data;
|
||||||
|
|
||||||
/*********************************************************************************************\
|
/*********************************************************************************************\
|
||||||
* Embedded tuned OneWire library
|
* Embedded tuned OneWire library
|
||||||
|
@ -77,100 +81,94 @@ unsigned char onewire_rom_id[8] = { 0 };
|
||||||
|
|
||||||
/*------------------------------------------------------------------------------------------*/
|
/*------------------------------------------------------------------------------------------*/
|
||||||
|
|
||||||
uint8_t OneWireReset(void)
|
uint8_t OneWireReset(void) {
|
||||||
{
|
|
||||||
uint8_t retries = 125;
|
uint8_t retries = 125;
|
||||||
|
|
||||||
if (!ds18x20_dual_mode) {
|
if (!DS18X20Data.dual_mode) {
|
||||||
pinMode(ds18x20_pin, Settings.flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT); // SetOption74 - Enable internal pullup for single DS18x20 sensor
|
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
|
||||||
do {
|
do {
|
||||||
if (--retries == 0) {
|
if (--retries == 0) {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
delayMicroseconds(2);
|
delayMicroseconds(2);
|
||||||
} while (!digitalRead(ds18x20_pin));
|
} while (!digitalRead(DS18X20Data.pin));
|
||||||
pinMode(ds18x20_pin, OUTPUT);
|
pinMode(DS18X20Data.pin, OUTPUT);
|
||||||
digitalWrite(ds18x20_pin, LOW);
|
digitalWrite(DS18X20Data.pin, LOW);
|
||||||
delayMicroseconds(480);
|
delayMicroseconds(480);
|
||||||
pinMode(ds18x20_pin, Settings.flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT); // SetOption74 - Enable internal pullup for single DS18x20 sensor
|
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
|
||||||
delayMicroseconds(70);
|
delayMicroseconds(70);
|
||||||
uint8_t r = !digitalRead(ds18x20_pin);
|
uint8_t r = !digitalRead(DS18X20Data.pin);
|
||||||
delayMicroseconds(410);
|
delayMicroseconds(410);
|
||||||
return r;
|
return r;
|
||||||
} else {
|
} else {
|
||||||
digitalWrite(ds18x20_pin_out, HIGH);
|
digitalWrite(DS18X20Data.pin_out, HIGH);
|
||||||
do {
|
do {
|
||||||
if (--retries == 0) {
|
if (--retries == 0) {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
delayMicroseconds(2);
|
delayMicroseconds(2);
|
||||||
} while (!digitalRead(ds18x20_pin));
|
} while (!digitalRead(DS18X20Data.pin));
|
||||||
digitalWrite(ds18x20_pin_out, LOW);
|
digitalWrite(DS18X20Data.pin_out, LOW);
|
||||||
delayMicroseconds(480);
|
delayMicroseconds(480);
|
||||||
digitalWrite(ds18x20_pin_out, HIGH);
|
digitalWrite(DS18X20Data.pin_out, HIGH);
|
||||||
delayMicroseconds(70);
|
delayMicroseconds(70);
|
||||||
uint8_t r = !digitalRead(ds18x20_pin);
|
uint8_t r = !digitalRead(DS18X20Data.pin);
|
||||||
delayMicroseconds(410);
|
delayMicroseconds(410);
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void OneWireWriteBit(uint8_t v)
|
void OneWireWriteBit(uint8_t v) {
|
||||||
{
|
|
||||||
static const uint8_t delay_low[2] = { 65, 10 };
|
static const uint8_t delay_low[2] = { 65, 10 };
|
||||||
static const uint8_t delay_high[2] = { 5, 55 };
|
static const uint8_t delay_high[2] = { 5, 55 };
|
||||||
|
|
||||||
v &= 1;
|
v &= 1;
|
||||||
if (!ds18x20_dual_mode) {
|
if (!DS18X20Data.dual_mode) {
|
||||||
digitalWrite(ds18x20_pin, LOW);
|
digitalWrite(DS18X20Data.pin, LOW);
|
||||||
pinMode(ds18x20_pin, OUTPUT);
|
pinMode(DS18X20Data.pin, OUTPUT);
|
||||||
delayMicroseconds(delay_low[v]);
|
delayMicroseconds(delay_low[v]);
|
||||||
digitalWrite(ds18x20_pin, HIGH);
|
digitalWrite(DS18X20Data.pin, HIGH);
|
||||||
} else {
|
} else {
|
||||||
digitalWrite(ds18x20_pin_out, LOW);
|
digitalWrite(DS18X20Data.pin_out, LOW);
|
||||||
delayMicroseconds(delay_low[v]);
|
delayMicroseconds(delay_low[v]);
|
||||||
digitalWrite(ds18x20_pin_out, HIGH);
|
digitalWrite(DS18X20Data.pin_out, HIGH);
|
||||||
}
|
}
|
||||||
delayMicroseconds(delay_high[v]);
|
delayMicroseconds(delay_high[v]);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t OneWire1ReadBit(void)
|
uint8_t OneWire1ReadBit(void) {
|
||||||
{
|
pinMode(DS18X20Data.pin, OUTPUT);
|
||||||
pinMode(ds18x20_pin, OUTPUT);
|
digitalWrite(DS18X20Data.pin, LOW);
|
||||||
digitalWrite(ds18x20_pin, LOW);
|
|
||||||
delayMicroseconds(3);
|
delayMicroseconds(3);
|
||||||
pinMode(ds18x20_pin, Settings.flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT); // SetOption74 - Enable internal pullup for single DS18x20 sensor
|
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
|
||||||
delayMicroseconds(10);
|
delayMicroseconds(10);
|
||||||
uint8_t r = digitalRead(ds18x20_pin);
|
uint8_t r = digitalRead(DS18X20Data.pin);
|
||||||
delayMicroseconds(53);
|
delayMicroseconds(53);
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t OneWire2ReadBit(void)
|
uint8_t OneWire2ReadBit(void) {
|
||||||
{
|
digitalWrite(DS18X20Data.pin_out, LOW);
|
||||||
digitalWrite(ds18x20_pin_out, LOW);
|
|
||||||
delayMicroseconds(3);
|
delayMicroseconds(3);
|
||||||
digitalWrite(ds18x20_pin_out, HIGH);
|
digitalWrite(DS18X20Data.pin_out, HIGH);
|
||||||
delayMicroseconds(10);
|
delayMicroseconds(10);
|
||||||
uint8_t r = digitalRead(ds18x20_pin);
|
uint8_t r = digitalRead(DS18X20Data.pin);
|
||||||
delayMicroseconds(53);
|
delayMicroseconds(53);
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*------------------------------------------------------------------------------------------*/
|
/*------------------------------------------------------------------------------------------*/
|
||||||
|
|
||||||
void OneWireWrite(uint8_t v)
|
void OneWireWrite(uint8_t v) {
|
||||||
{
|
|
||||||
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
|
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
|
||||||
OneWireWriteBit((bit_mask & v) ? 1 : 0);
|
OneWireWriteBit((bit_mask & v) ? 1 : 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t OneWireRead(void)
|
uint8_t OneWireRead(void) {
|
||||||
{
|
|
||||||
uint8_t r = 0;
|
uint8_t r = 0;
|
||||||
|
|
||||||
if (!ds18x20_dual_mode) {
|
if (!DS18X20Data.dual_mode) {
|
||||||
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
|
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
|
||||||
if (OneWire1ReadBit()) {
|
if (OneWire1ReadBit()) {
|
||||||
r |= bit_mask;
|
r |= bit_mask;
|
||||||
|
@ -186,26 +184,14 @@ uint8_t OneWireRead(void)
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
|
|
||||||
void OneWireSelect(const uint8_t rom[8])
|
void OneWireSelect(const uint8_t rom[8]) {
|
||||||
{
|
|
||||||
OneWireWrite(W1_MATCH_ROM);
|
OneWireWrite(W1_MATCH_ROM);
|
||||||
for (uint32_t i = 0; i < 8; i++) {
|
for (uint32_t i = 0; i < 8; i++) {
|
||||||
OneWireWrite(rom[i]);
|
OneWireWrite(rom[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void OneWireResetSearch(void)
|
uint8_t OneWireSearch(uint8_t *newAddr) {
|
||||||
{
|
|
||||||
onewire_last_discrepancy = 0;
|
|
||||||
onewire_last_device_flag = false;
|
|
||||||
onewire_last_family_discrepancy = 0;
|
|
||||||
for (uint32_t i = 0; i < 8; i++) {
|
|
||||||
onewire_rom_id[i] = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t OneWireSearch(uint8_t *newAddr)
|
|
||||||
{
|
|
||||||
uint8_t id_bit_number = 1;
|
uint8_t id_bit_number = 1;
|
||||||
uint8_t last_zero = 0;
|
uint8_t last_zero = 0;
|
||||||
uint8_t rom_byte_number = 0;
|
uint8_t rom_byte_number = 0;
|
||||||
|
@ -224,7 +210,7 @@ uint8_t OneWireSearch(uint8_t *newAddr)
|
||||||
}
|
}
|
||||||
OneWireWrite(W1_SEARCH_ROM);
|
OneWireWrite(W1_SEARCH_ROM);
|
||||||
do {
|
do {
|
||||||
if (!ds18x20_dual_mode) {
|
if (!DS18X20Data.dual_mode) {
|
||||||
id_bit = OneWire1ReadBit();
|
id_bit = OneWire1ReadBit();
|
||||||
cmp_id_bit = OneWire1ReadBit();
|
cmp_id_bit = OneWire1ReadBit();
|
||||||
} else {
|
} else {
|
||||||
|
@ -283,8 +269,7 @@ uint8_t OneWireSearch(uint8_t *newAddr)
|
||||||
return search_result;
|
return search_result;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool OneWireCrc8(uint8_t *addr)
|
bool OneWireCrc8(uint8_t *addr) {
|
||||||
{
|
|
||||||
uint8_t crc = 0;
|
uint8_t crc = 0;
|
||||||
uint8_t len = 8;
|
uint8_t len = 8;
|
||||||
|
|
||||||
|
@ -304,57 +289,60 @@ bool OneWireCrc8(uint8_t *addr)
|
||||||
|
|
||||||
/********************************************************************************************/
|
/********************************************************************************************/
|
||||||
|
|
||||||
void Ds18x20Init(void)
|
void Ds18x20Init(void) {
|
||||||
{
|
DS18X20Data.pin = Pin(GPIO_DSB);
|
||||||
uint64_t ids[DS18X20_MAX_SENSORS];
|
DS18X20Data.input_mode = Settings.flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT; // SetOption74 - Enable internal pullup for single DS18x20 sensor
|
||||||
|
|
||||||
ds18x20_pin = Pin(GPIO_DSB);
|
|
||||||
|
|
||||||
if (PinUsed(GPIO_DSB_OUT)) {
|
if (PinUsed(GPIO_DSB_OUT)) {
|
||||||
ds18x20_pin_out = Pin(GPIO_DSB_OUT);
|
DS18X20Data.pin_out = Pin(GPIO_DSB_OUT);
|
||||||
ds18x20_dual_mode = true; // Dual pins mode as used by Shelly
|
DS18X20Data.dual_mode = true; // Dual pins mode as used by Shelly
|
||||||
pinMode(ds18x20_pin_out, OUTPUT);
|
pinMode(DS18X20Data.pin_out, OUTPUT);
|
||||||
pinMode(ds18x20_pin, Settings.flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT); // SetOption74 - Enable internal pullup for single DS18x20 sensor
|
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
|
||||||
}
|
}
|
||||||
|
|
||||||
OneWireResetSearch();
|
onewire_last_discrepancy = 0;
|
||||||
|
onewire_last_device_flag = false;
|
||||||
|
onewire_last_family_discrepancy = 0;
|
||||||
|
for (uint32_t i = 0; i < 8; i++) {
|
||||||
|
onewire_rom_id[i] = 0;
|
||||||
|
}
|
||||||
|
|
||||||
ds18x20_sensors = 0;
|
uint64_t ids[DS18X20_MAX_SENSORS];
|
||||||
while (ds18x20_sensors < DS18X20_MAX_SENSORS) {
|
DS18X20Data.sensors = 0;
|
||||||
if (!OneWireSearch(ds18x20_sensor[ds18x20_sensors].address)) {
|
while (DS18X20Data.sensors < DS18X20_MAX_SENSORS) {
|
||||||
|
if (!OneWireSearch(ds18x20_sensor[DS18X20Data.sensors].address)) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
if (OneWireCrc8(ds18x20_sensor[ds18x20_sensors].address) &&
|
if (OneWireCrc8(ds18x20_sensor[DS18X20Data.sensors].address) &&
|
||||||
((ds18x20_sensor[ds18x20_sensors].address[0] == DS18S20_CHIPID) ||
|
((ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18S20_CHIPID) ||
|
||||||
(ds18x20_sensor[ds18x20_sensors].address[0] == DS1822_CHIPID) ||
|
(ds18x20_sensor[DS18X20Data.sensors].address[0] == DS1822_CHIPID) ||
|
||||||
(ds18x20_sensor[ds18x20_sensors].address[0] == DS18B20_CHIPID) ||
|
(ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18B20_CHIPID) ||
|
||||||
(ds18x20_sensor[ds18x20_sensors].address[0] == MAX31850_CHIPID))) {
|
(ds18x20_sensor[DS18X20Data.sensors].address[0] == MAX31850_CHIPID))) {
|
||||||
ds18x20_sensor[ds18x20_sensors].index = ds18x20_sensors;
|
ds18x20_sensor[DS18X20Data.sensors].index = DS18X20Data.sensors;
|
||||||
ids[ds18x20_sensors] = ds18x20_sensor[ds18x20_sensors].address[0]; // Chip id
|
ids[DS18X20Data.sensors] = ds18x20_sensor[DS18X20Data.sensors].address[0]; // Chip id
|
||||||
for (uint32_t j = 6; j > 0; j--) {
|
for (uint32_t j = 6; j > 0; j--) {
|
||||||
ids[ds18x20_sensors] = ids[ds18x20_sensors] << 8 | ds18x20_sensor[ds18x20_sensors].address[j];
|
ids[DS18X20Data.sensors] = ids[DS18X20Data.sensors] << 8 | ds18x20_sensor[DS18X20Data.sensors].address[j];
|
||||||
}
|
}
|
||||||
ds18x20_sensors++;
|
DS18X20Data.sensors++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (uint32_t i = 0; i < ds18x20_sensors; i++) {
|
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
|
||||||
for (uint32_t j = i + 1; j < ds18x20_sensors; j++) {
|
for (uint32_t j = i + 1; j < DS18X20Data.sensors; j++) {
|
||||||
if (ids[ds18x20_sensor[i].index] > ids[ds18x20_sensor[j].index]) { // Sort ascending
|
if (ids[ds18x20_sensor[i].index] > ids[ds18x20_sensor[j].index]) { // Sort ascending
|
||||||
std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index);
|
std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), ds18x20_sensors);
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ds18x20Convert(void)
|
void Ds18x20Convert(void) {
|
||||||
{
|
|
||||||
OneWireReset();
|
OneWireReset();
|
||||||
#ifdef W1_PARASITE_POWER
|
#ifdef W1_PARASITE_POWER
|
||||||
// With parasite power address one sensor at a time
|
// With parasite power address one sensor at a time
|
||||||
if (++ds18x20_sensor_curr >= ds18x20_sensors)
|
if (++DS18X20Data.current_sensor >= DS18X20Data.sensors)
|
||||||
ds18x20_sensor_curr = 0;
|
DS18X20Data.current_sensor = 0;
|
||||||
OneWireSelect(ds18x20_sensor[ds18x20_sensor_curr].address);
|
OneWireSelect(ds18x20_sensor[DS18X20Data.current_sensor].address);
|
||||||
#else
|
#else
|
||||||
OneWireWrite(W1_SKIP_ROM); // Address all Sensors on Bus
|
OneWireWrite(W1_SKIP_ROM); // Address all Sensors on Bus
|
||||||
#endif
|
#endif
|
||||||
|
@ -362,8 +350,7 @@ void Ds18x20Convert(void)
|
||||||
// delay(750); // 750ms should be enough for 12bit conv
|
// delay(750); // 750ms should be enough for 12bit conv
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Ds18x20Read(uint8_t sensor)
|
bool Ds18x20Read(uint8_t sensor) {
|
||||||
{
|
|
||||||
uint8_t data[9];
|
uint8_t data[9];
|
||||||
int8_t sign = 1;
|
int8_t sign = 1;
|
||||||
|
|
||||||
|
@ -379,16 +366,6 @@ bool Ds18x20Read(uint8_t sensor)
|
||||||
if (OneWireCrc8(data)) {
|
if (OneWireCrc8(data)) {
|
||||||
switch(ds18x20_sensor[index].address[0]) {
|
switch(ds18x20_sensor[index].address[0]) {
|
||||||
case DS18S20_CHIPID: {
|
case DS18S20_CHIPID: {
|
||||||
/*
|
|
||||||
if (data[1] > 0x80) {
|
|
||||||
data[0] = (~data[0]) +1;
|
|
||||||
sign = -1; // App-Note fix possible sign error
|
|
||||||
}
|
|
||||||
float temp9 = (float)(data[0] >> 1) * sign;
|
|
||||||
ds18x20_sensor[index].temperature = ConvertTemp((temp9 - 0.25) + ((16.0 - data[6]) / 16.0));
|
|
||||||
|
|
||||||
Replaced by below based on issue #8777
|
|
||||||
*/
|
|
||||||
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
|
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
|
||||||
ds18x20_sensor[index].temperature = ConvertTemp(tempS * 0.0625 - 0.250);
|
ds18x20_sensor[index].temperature = ConvertTemp(tempS * 0.0625 - 0.250);
|
||||||
|
|
||||||
|
@ -408,7 +385,7 @@ bool Ds18x20Read(uint8_t sensor)
|
||||||
OneWireSelect(ds18x20_sensor[index].address);
|
OneWireSelect(ds18x20_sensor[index].address);
|
||||||
OneWireWrite(W1_WRITE_EEPROM); // Save scratchpad to EEPROM
|
OneWireWrite(W1_WRITE_EEPROM); // Save scratchpad to EEPROM
|
||||||
#ifdef W1_PARASITE_POWER
|
#ifdef W1_PARASITE_POWER
|
||||||
w1_power_until = millis() + 10; // 10ms specified duration for EEPROM write
|
DS18X20Data.w1_power_until = millis() + 10; // 10ms specified duration for EEPROM write
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
uint16_t temp12 = (data[1] << 8) + data[0];
|
uint16_t temp12 = (data[1] << 8) + data[0];
|
||||||
|
@ -433,8 +410,7 @@ bool Ds18x20Read(uint8_t sensor)
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ds18x20Name(uint8_t sensor)
|
void Ds18x20Name(uint8_t sensor) {
|
||||||
{
|
|
||||||
uint8_t index = sizeof(ds18x20_chipids);
|
uint8_t index = sizeof(ds18x20_chipids);
|
||||||
while (index) {
|
while (index) {
|
||||||
if (ds18x20_sensor[ds18x20_sensor[sensor].index].address[0] == ds18x20_chipids[index]) {
|
if (ds18x20_sensor[ds18x20_sensor[sensor].index].address[0] == ds18x20_chipids[index]) {
|
||||||
|
@ -442,46 +418,44 @@ void Ds18x20Name(uint8_t sensor)
|
||||||
}
|
}
|
||||||
index--;
|
index--;
|
||||||
}
|
}
|
||||||
GetTextIndexed(ds18x20_types, sizeof(ds18x20_types), index, kDs18x20Types);
|
GetTextIndexed(DS18X20Data.name, sizeof(DS18X20Data.name), index, kDs18x20Types);
|
||||||
if (ds18x20_sensors > 1) {
|
if (DS18X20Data.sensors > 1) {
|
||||||
#ifdef DS18x20_USE_ID_AS_NAME
|
#ifdef DS18x20_USE_ID_AS_NAME
|
||||||
char address[17];
|
char address[17];
|
||||||
for (uint32_t j = 0; j < 3; j++) {
|
for (uint32_t j = 0; j < 3; j++) {
|
||||||
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[sensor].index].address[3-j]); // Only last 3 bytes
|
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[sensor].index].address[3-j]); // Only last 3 bytes
|
||||||
}
|
}
|
||||||
snprintf_P(ds18x20_types, sizeof(ds18x20_types), PSTR("%s%c%s"), ds18x20_types, IndexSeparator(), address);
|
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%s"), DS18X20Data.name, IndexSeparator(), address);
|
||||||
#else
|
#else
|
||||||
snprintf_P(ds18x20_types, sizeof(ds18x20_types), PSTR("%s%c%d"), ds18x20_types, IndexSeparator(), sensor +1);
|
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%d"), DS18X20Data.name, IndexSeparator(), sensor +1);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/********************************************************************************************/
|
/********************************************************************************************/
|
||||||
|
|
||||||
void Ds18x20EverySecond(void)
|
void Ds18x20EverySecond(void) {
|
||||||
{
|
if (!DS18X20Data.sensors) { return; }
|
||||||
if (!ds18x20_sensors) { return; }
|
|
||||||
|
|
||||||
#ifdef W1_PARASITE_POWER
|
#ifdef W1_PARASITE_POWER
|
||||||
// skip access if there is still an eeprom write ongoing
|
// skip access if there is still an eeprom write ongoing
|
||||||
unsigned long now = millis();
|
unsigned long now = millis();
|
||||||
if (now < w1_power_until)
|
if (now < DS18X20Data.w1_power_until) { return; }
|
||||||
return;
|
|
||||||
#endif
|
#endif
|
||||||
if (TasmotaGlobal.uptime & 1
|
if (TasmotaGlobal.uptime & 1
|
||||||
#ifdef W1_PARASITE_POWER
|
#ifdef W1_PARASITE_POWER
|
||||||
// if more than 1 sensor and only parasite power: convert every cycle
|
// if more than 1 sensor and only parasite power: convert every cycle
|
||||||
|| ds18x20_sensors >= 2
|
|| DS18X20Data.sensors >= 2
|
||||||
#endif
|
#endif
|
||||||
) {
|
) {
|
||||||
// 2mS
|
// 2mS
|
||||||
Ds18x20Convert(); // Start conversion, takes up to one second
|
Ds18x20Convert(); // Start conversion, takes up to one second
|
||||||
} else {
|
} else {
|
||||||
for (uint32_t i = 0; i < ds18x20_sensors; i++) {
|
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
|
||||||
// 12mS per device
|
// 12mS per device
|
||||||
if (!Ds18x20Read(i)) { // Read temperature
|
if (!Ds18x20Read(i)) { // Read temperature
|
||||||
Ds18x20Name(i);
|
Ds18x20Name(i);
|
||||||
AddLogMissed(ds18x20_types, ds18x20_sensor[ds18x20_sensor[i].index].valid);
|
AddLogMissed(DS18X20Data.name, ds18x20_sensor[ds18x20_sensor[i].index].valid);
|
||||||
#ifdef USE_DS18x20_RECONFIGURE
|
#ifdef USE_DS18x20_RECONFIGURE
|
||||||
if (!ds18x20_sensor[ds18x20_sensor[i].index].valid) {
|
if (!ds18x20_sensor[ds18x20_sensor[i].index].valid) {
|
||||||
memset(&ds18x20_sensor, 0, sizeof(ds18x20_sensor));
|
memset(&ds18x20_sensor, 0, sizeof(ds18x20_sensor));
|
||||||
|
@ -493,9 +467,8 @@ void Ds18x20EverySecond(void)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void Ds18x20Show(bool json)
|
void Ds18x20Show(bool json) {
|
||||||
{
|
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
|
||||||
for (uint32_t i = 0; i < ds18x20_sensors; i++) {
|
|
||||||
uint8_t index = ds18x20_sensor[i].index;
|
uint8_t index = ds18x20_sensor[i].index;
|
||||||
|
|
||||||
if (ds18x20_sensor[index].valid) { // Check for valid temperature
|
if (ds18x20_sensor[index].valid) { // Check for valid temperature
|
||||||
|
@ -507,7 +480,7 @@ void Ds18x20Show(bool json)
|
||||||
sprintf(address+2*j, "%02X", ds18x20_sensor[index].address[6-j]); // Skip sensor type and crc
|
sprintf(address+2*j, "%02X", ds18x20_sensor[index].address[6-j]); // Skip sensor type and crc
|
||||||
}
|
}
|
||||||
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"),
|
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"),
|
||||||
ds18x20_types, address, Settings.flag2.temperature_resolution, &ds18x20_sensor[index].temperature);
|
DS18X20Data.name, address, Settings.flag2.temperature_resolution, &ds18x20_sensor[index].temperature);
|
||||||
#ifdef USE_DOMOTICZ
|
#ifdef USE_DOMOTICZ
|
||||||
if ((0 == TasmotaGlobal.tele_period) && (0 == i)) {
|
if ((0 == TasmotaGlobal.tele_period) && (0 == i)) {
|
||||||
DomoticzFloatSensor(DZ_TEMP, ds18x20_sensor[index].temperature);
|
DomoticzFloatSensor(DZ_TEMP, ds18x20_sensor[index].temperature);
|
||||||
|
@ -520,7 +493,7 @@ void Ds18x20Show(bool json)
|
||||||
#endif // USE_KNX
|
#endif // USE_KNX
|
||||||
#ifdef USE_WEBSERVER
|
#ifdef USE_WEBSERVER
|
||||||
} else {
|
} else {
|
||||||
WSContentSend_Temp(ds18x20_types, ds18x20_sensor[index].temperature);
|
WSContentSend_Temp(DS18X20Data.name, ds18x20_sensor[index].temperature);
|
||||||
#endif // USE_WEBSERVER
|
#endif // USE_WEBSERVER
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -531,8 +504,7 @@ void Ds18x20Show(bool json)
|
||||||
* Interface
|
* Interface
|
||||||
\*********************************************************************************************/
|
\*********************************************************************************************/
|
||||||
|
|
||||||
bool Xsns05(uint8_t function)
|
bool Xsns05(uint8_t function) {
|
||||||
{
|
|
||||||
bool result = false;
|
bool result = false;
|
||||||
|
|
||||||
if (PinUsed(GPIO_DSB)) {
|
if (PinUsed(GPIO_DSB)) {
|
||||||
|
|
|
@ -1077,6 +1077,11 @@ double dval;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
case 3:
|
case 3:
|
||||||
|
// signed 24 bit
|
||||||
|
value=(int32_t)(uvalue<<8);
|
||||||
|
value/=256;
|
||||||
|
break;
|
||||||
|
|
||||||
case 4:
|
case 4:
|
||||||
// signed 32 bit
|
// signed 32 bit
|
||||||
value=(int32_t)uvalue;
|
value=(int32_t)uvalue;
|
||||||
|
|
Loading…
Reference in New Issue