SeeSoil State Machine Flavor

This commit is contained in:
Vic 2021-01-12 23:04:42 +01:00
parent 331c1089c6
commit 2d21ccb94d
1 changed files with 230 additions and 145 deletions

View File

@ -22,16 +22,24 @@
#ifdef USE_SEESAW_SOIL
/*********************************************************************************************\
* SEESAW_SOIL - Capacitance & Temperature Sensor
* SEESAW_SOIL - Capacitice Soil Moisture & Temperature Sensor
*
* I2C Address: 0x36, 0x37, 0x38, 0x39
*
* Memory footprint: 1296 bytes flash, 64 bytes RAM
* This version of the driver replaces all delay loops by a state machine. So the number
* of instruction cycles consumed has been reduced dramatically. The sensors are reset,
* detected, commanded and read all at once. So the reading times won't increase with the
* number of sensors attached. The detection of sensors does not happen in FUNC_INIT any
* more. All i2c handling happens in the 50ms state machine.
* The memory footprint has suffered a little bit from this redesign, naturally.
*
* Memory footprint: 1444 bytes flash / 68 bytes RAM
*
* NOTE: #define SEESAW_SOIL_PUBLISH enables immediate MQTT on soil moisture change
* otherwise the moisture value will only be emitted every TelePeriod
* #define SEESAW_SOIL_RAW enables displaying analog capacitance input in the
* web page for calibration purposes
* #define SEESAW_SOIL_PERSISTENT_NAMING to get sensor names indexed by i2c address
\*********************************************************************************************/
#define XSNS_81 81
@ -39,209 +47,281 @@
#include "Adafruit_seesaw.h" // we only use definitions, no code
//#define SEESAW_SOIL_RAW // enable raw readings
//#define SEESAW_SOIL_PUBLISH // enable immediate publish
//#define SEESAW_SOIL_PERSISTENT_NAMING // enable naming sensors by i2c address
//#define DEBUG_SEESAW_SOIL // enable debugging
#define SEESAW_SOIL_MAX_SENSORS 4
#define SEESAW_SOIL_START_ADDRESS 0x36
// I2C state machine
#define STATE_IDLE 0x00
#define STATE_RESET 0x01
#define STATE_INIT 0x02
#define STATE_DETECT 0x04
#define STATE_COMMAND_TEMP 0x08
#define STATE_READ_TEMP 0x10
#define STATE_COMMAND_MOIST 0x20
#define STATE_READ_MOIST 0x40
// I2C commands
#define COMMAND_RESET 0x01
#define COMMAND_ID 0x02
#define COMMAND_TEMP 0x04
#define COMMAND_MOIST 0x08
// I2C delays
#define DELAY_DETECT 1 // ms delay before reading ID
#define DELAY_TEMP 1 // ms delay between command and reading
#define DELAY_MOIST 5 // ms delay between command and reading
#define DELAY_RESET 500 // ms delay after slave reset
const char SeeSoilName[] = "SeeSoil"; // spaces not allowed for Homeassistant integration/mqtt topics
uint8_t SeeSoilCount = 0; // global sensor count
// Convert capacitance into a moisture.
// From observation, a free air reading is at 320, immersed in tap water, reading is 1014
// So let's make a scale that converts those (apparent) facts into a percentage
#define MAX_CAPACITANCE 1020.0f // subject to calibration
#define MIN_CAPACITANCE 320 // subject to calibration
#define CAP_TO_MOIST(c) ((max((int)(c),MIN_CAPACITANCE)-MIN_CAPACITANCE)/(MAX_CAPACITANCE-MIN_CAPACITANCE)*100)
struct SEESAW_SOIL {
const char name[8] = "SeeSoil"; // spaces not allowed for Homeassistant integration/mqtt topics
uint8_t count = 0; // global sensor count (0xFF = not initialized)
uint8_t state = STATE_IDLE; // current state
bool present = false; // driver active
} SeeSoil;
struct SEESAW_SOIL_SNS {
uint8_t address; // i2c address
float moisture;
float temperature;
#ifdef SEESAW_SOIL_RAW
uint16_t capacitance; // raw analog reading
#endif // SEESAW_SOIL_RAW
} SeeSoil[SEESAW_SOIL_MAX_SENSORS];
// Used to convert capacitance into a moisture.
// From observation, a free air reading is at 320
// Immersed in tap water, reading is 1014
// Appears to be a 10-bit device, readings close to 1020
// So let's make a scale that converts those (apparent) facts into a percentage
#define MAX_CAPACITANCE 1020.0f // subject to calibration
#define MIN_CAPACITANCE 320 // subject to calibration
#define CAP_TO_MOIST(c) ((max((int)(c),MIN_CAPACITANCE)-MIN_CAPACITANCE)/(MAX_CAPACITANCE-MIN_CAPACITANCE)*100)
} SeeSoilSNS[SEESAW_SOIL_MAX_SENSORS];
/*********************************************************************************************\
* i2c routines
\*********************************************************************************************/
void SEESAW_SOILDetect(void) {
uint8_t buf;
uint32_t i, addr;
void seeSoilInit(void) {
for (int i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) {
int addr = SEESAW_SOIL_START_ADDRESS + i;
if ( ! I2cSetDevice(addr) ) { continue; }
seeSoilCommand(COMMAND_RESET);
}
SeeSoil.state = STATE_RESET;
SeeSoil.present = true;
}
for (i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) {
addr = SEESAW_SOIL_START_ADDRESS + i;
if ( ! I2cSetDevice(addr)) { continue; }
delay(1);
SEESAW_Reset(addr); // reset all seesaw MCUs at once
void seeSoilEvery50ms(void){ // i2c state machine
static uint32_t state_time;
uint32_t time_diff = millis() - state_time;
switch (SeeSoil.state) {
case STATE_RESET: // reset was just issued
SeeSoil.state = STATE_INIT;
break;
case STATE_INIT: // wait for sensors to settle
if (time_diff < DELAY_RESET) { return; }
seeSoilCommand(COMMAND_ID); // send hardware id commands
SeeSoil.state = STATE_DETECT;
break;
case STATE_DETECT: // detect sensors
if (time_diff < DELAY_DETECT) { return; }
seeSoilDetect();
SeeSoil.state=STATE_COMMAND_TEMP;
break;
case STATE_COMMAND_TEMP: // send temperature commands
seeSoilCommand(COMMAND_TEMP);
SeeSoil.state = STATE_READ_TEMP;
break;
case STATE_READ_TEMP:
if (time_diff < DELAY_TEMP) { return; }
seeSoilRead(COMMAND_TEMP); // read temperature values
SeeSoil.state = STATE_COMMAND_MOIST;
break;
case STATE_COMMAND_MOIST: // send moisture commands
seeSoilCommand(COMMAND_MOIST);
SeeSoil.state = STATE_READ_MOIST;
break;
case STATE_READ_MOIST:
if (time_diff < DELAY_MOIST) { return; }
seeSoilRead(COMMAND_MOIST); // read moisture values
SeeSoil.state = STATE_COMMAND_TEMP;
break;
}
delay(500); // give MCUs time to boot
for (i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) {
addr = SEESAW_SOIL_START_ADDRESS + i;
state_time = millis();
}
void seeSoilDetect(void) { // detect sensors
uint8_t buf;
SeeSoil.count = 0;
SeeSoil.present = false;
for (int i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) {
uint32_t addr = SEESAW_SOIL_START_ADDRESS + i;
if ( ! I2cSetDevice(addr)) { continue; }
if ( ! SEESAW_ValidRead(addr, SEESAW_STATUS_BASE, SEESAW_STATUS_HW_ID, &buf, 1, 0)) {
continue;
}
if (buf != SEESAW_HW_ID_CODE) {
if (1 != Wire.requestFrom((uint8_t) addr, (uint8_t) 1)) { continue; }
buf = (uint8_t) Wire.read();
if (buf != SEESAW_HW_ID_CODE) { // check hardware id
#ifdef DEBUG_SEESAW_SOIL
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SEE: HWID mismatch ADDR=%X, ID=%X"), addr, buf);
#endif // DEBUG_SEESAW_SOIL
continue;
}
SeeSoil[SeeSoilCount].address = addr;
SeeSoil[SeeSoilCount].temperature = NAN;
SeeSoil[SeeSoilCount].moisture = NAN;
#ifdef SEESAW_SOIL_RAW
SeeSoil[SeeSoilCount].capacitance = 0; // raw analog reading
#endif // SEESAW_SOIL_RAW
I2cSetActiveFound(SeeSoil[SeeSoilCount].address, SeeSoilName);
SeeSoilCount++;
}
}
float SEESAW_Temp(uint8_t addr) { // get temperature from seesaw at addr
uint8_t buf[4];
if (SEESAW_ValidRead(addr, SEESAW_STATUS_BASE, SEESAW_STATUS_TEMP, buf, 4, 1000)) {
int32_t ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
return ConvertTemp((1.0 / (1UL << 16)) * ret);
}
return NAN;
}
float SEESAW_Moist(uint8_t addr) { // get moisture from seesaw at addr
uint8_t buf[2];
uint16_t ret;
int32_t tries = 2;
while (tries--) {
delay(1);
if (SEESAW_ValidRead(addr, SEESAW_TOUCH_BASE, SEESAW_TOUCH_CHANNEL_OFFSET, buf, 2, 3000)) {
ret = ((uint16_t)buf[0] << 8) | buf[1];
SeeSoilSNS[SeeSoil.count].address = addr;
SeeSoilSNS[SeeSoil.count].temperature = NAN;
SeeSoilSNS[SeeSoil.count].moisture = NAN;
#ifdef SEESAW_SOIL_RAW
for (int i=0; i < SeeSoilCount; i++) {
if (SeeSoil[i].address == addr) {
SeeSoil[i].capacitance = ret;
break;
}
}
SeeSoilSNS[SeeSoil.count].capacitance = 0; // raw analog reading
#endif // SEESAW_SOIL_RAW
if (ret != 0xFFFF) { return (float) CAP_TO_MOIST(ret); }
I2cSetActiveFound(SeeSoilSNS[SeeSoil.count].address, SeeSoil.name);
SeeSoil.count++;
SeeSoil.present = true;
#ifdef DEBUG_SEESAW_SOIL
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SEE: FOUND sensor %u at %02X"), i, addr);
#endif // DEBUG_SEESAW_SOIL
}
}
return NAN;
}
bool SEESAW_ValidRead(uint8_t addr, uint8_t regHigh, uint8_t regLow, // read from seesaw sensor
uint8_t *buf, uint8_t num, uint16_t delay) {
void seeSoilCommand(uint32_t command) { // issue commands to sensors
uint8_t regLow;
uint8_t regHigh = SEESAW_STATUS_BASE;
uint32_t count = SeeSoil.count;
switch (command) {
case COMMAND_RESET:
count = SEESAW_SOIL_MAX_SENSORS;
regLow = SEESAW_STATUS_SWRST;
break;
case COMMAND_ID:
count = SEESAW_SOIL_MAX_SENSORS;
regLow = SEESAW_STATUS_HW_ID;
break;
case COMMAND_TEMP:
regLow = SEESAW_STATUS_TEMP;
break;
case COMMAND_MOIST:
regHigh = SEESAW_TOUCH_BASE;
regLow = SEESAW_TOUCH_CHANNEL_OFFSET;
break;
default:
#ifdef DEBUG_SEESAW_SOIL
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SEE: ILL CMD:%02X"), command);
#endif // DEBUG_SEESAW_SOIL
return;
}
for (int i = 0; i < count; i++) {
uint32_t addr = (command & (COMMAND_RESET|COMMAND_ID)) ? SEESAW_SOIL_START_ADDRESS + i : SeeSoilSNS[i].address;
Wire.beginTransmission((uint8_t) addr);
Wire.write((uint8_t) regHigh);
Wire.write((uint8_t) regLow);
int err = Wire.endTransmission();
if (err) { return false; }
delayMicroseconds(delay);
if (num != Wire.requestFrom((uint8_t) addr, (uint8_t) num)) {
return false;
uint32_t err = Wire.endTransmission();
#ifdef DEBUG_SEESAW_SOIL
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SEE: SNS=%u ADDR=%02X CMD=%02X ERR=%u"), i, addr, command, err);
#endif // DEBUG_SEESAW_SOIL
}
for (int i = 0; i < num; i++) {
buf[i] = (uint8_t) Wire.read();
}
return true;
}
bool SEESAW_Reset(uint8_t addr) { // init sensor MCU
Wire.beginTransmission((uint8_t) addr);
Wire.write((uint8_t) SEESAW_STATUS_BASE);
Wire.write((uint8_t) SEESAW_STATUS_SWRST);
return (Wire.endTransmission() == 0);
void seeSoilRead(uint32_t command) { // read values from sensors
uint8_t buf[4];
uint32_t num;
int32_t ret;
num = (command == COMMAND_TEMP) ? 4 : 2; // response size in bytes
for (int i = 0; i < SeeSoil.count; i++) { // for all sensors
if (num != Wire.requestFrom((uint8_t) SeeSoilSNS[i].address, (uint8_t) num)) { continue; }
bzero(buf, sizeof(buf));
for (int b = 0; b < num; b++) {
buf[b] = (uint8_t) Wire.read();
}
if (command == COMMAND_TEMP) {
ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) |
((uint32_t)buf[2] << 8) | (uint32_t)buf[3];
SeeSoilSNS[i].temperature = ConvertTemp((1.0 / (1UL << 16)) * ret);
} else { // COMMAND_MOIST
ret = (uint32_t)buf[0] << 8 | (uint32_t)buf[1];
SeeSoilSNS[i].moisture = CAP_TO_MOIST(ret);
#ifdef SEESAW_SOIL_RAW
SeeSoilSNS[i].capacitance = ret;
#endif // SEESAW_SOIL_RAW
}
#ifdef DEBUG_SEESAW_SOIL
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SEE: READ #%u ADDR=%02X NUM=%u RET=%X"), i, SeeSoilSNS[i].address, num, ret);
#endif // DEBUG_SEESAW_SOIL
}
}
/*********************************************************************************************\
* JSON routines
\*********************************************************************************************/
void SEESAW_SOILEverySecond(void) { // update sensor values and publish if changed
#ifdef SEESAW_SOIL_PUBLISH
uint32_t old_moist;
#endif // SEESAW_SOIL_PUBLISH
void seeSoilEverySecond(void) { // update sensor values and publish if changed
static uint16_t old_moist[SEESAW_SOIL_MAX_SENSORS];
static bool firstcall = true;
for (int i = 0; i < SeeSoilCount; i++) {
SeeSoil[i].temperature = SEESAW_Temp(SeeSoil[i].address);
#ifdef SEESAW_SOIL_PUBLISH
old_moist = (uint32_t) SeeSoil[i].moisture;
#endif // SEESAW_SOIL_PUBLISH
SeeSoil[i].moisture = SEESAW_Moist(SeeSoil[i].address);
#ifdef SEESAW_SOIL_PUBLISH
if ((uint32_t) SeeSoil[i].moisture != old_moist) {
for (int i = 0; i < SeeSoil.count; i++) {
if (firstcall) { firstcall = false; }
else {
if ((uint32_t) SeeSoilSNS[i].moisture != old_moist[i]) {
Response_P(PSTR("{")); // send values to MQTT & rules
SEESAW_SOILJson(i);
seeSoilJson(i);
ResponseJsonEnd();
MqttPublishTeleSensor();
}
#endif // SEESAW_SOIL_PUBLISH
}
old_moist[i] = (uint32_t) SeeSoilSNS[i].moisture;
}
}
#endif // SEESAW_SOIL_PUBLISH
void SEESAW_SOILShow(bool json) {
void seeSoilShow(bool json) {
char temperature[FLOATSZ];
char sensor_name[sizeof(SeeSoilName) + 3];
char sensor_name[sizeof(SeeSoil.name) + 3];
for (uint32_t i = 0; i < SeeSoilCount; i++) {
dtostrfd(SeeSoil[i].temperature, Settings.flag2.temperature_resolution, temperature);
SEESAW_SOILName(i, sensor_name, sizeof(sensor_name));
for (uint32_t i = 0; i < SeeSoil.count; i++) {
dtostrfd(SeeSoilSNS[i].temperature, Settings.flag2.temperature_resolution, temperature);
seeSoilName(i, sensor_name, sizeof(sensor_name));
if (json) {
ResponseAppend_P(PSTR(",")); // compose tele json
SEESAW_SOILJson(i);
seeSoilJson(i);
if (0 == TasmotaGlobal.tele_period) {
#ifdef USE_DOMOTICZ
DomoticzTempHumPressureSensor(SeeSoil[i].temperature, SeeSoil[i].moisture, -42.0f);
DomoticzTempHumPressureSensor(SeeSoilSNS[i].temperature, SeeSoilSNS[i].moisture, -42.0f);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, SeeSoil[i].temperature);
KnxSensor(KNX_HUMIDITY, SeeSoil[i].moisture);
KnxSensor(KNX_TEMPERATURE, SeeSoilSNS[i].temperature);
KnxSensor(KNX_HUMIDITY, SeeSoilSNS[i].moisture);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
#ifdef SEESAW_SOIL_RAW
WSContentSend_PD(HTTP_SNS_ANALOG, sensor_name, 0, SeeSoil[i].capacitance);
WSContentSend_PD(HTTP_SNS_ANALOG, sensor_name, 0, SeeSoilSNS[i].capacitance);
#endif // SEESAW_SOIL_RAW
WSContentSend_PD(HTTP_SNS_MOISTURE, sensor_name, (uint32_t) SeeSoil[i].moisture);
WSContentSend_PD(HTTP_SNS_MOISTURE, sensor_name, (uint32_t) SeeSoilSNS[i].moisture);
WSContentSend_PD(HTTP_SNS_TEMP, sensor_name, temperature, TempUnit());
#endif // USE_WEBSERVER
}
} // for each sensor connected
}
void SEESAW_SOILJson(int no) { // common json
void seeSoilJson(int no) { // common json
char temperature[FLOATSZ];
char sensor_name[sizeof(SeeSoilName) + 3];
char sensor_name[sizeof(SeeSoil.name) + 3];
SEESAW_SOILName(no, sensor_name, sizeof(sensor_name));
dtostrfd(SeeSoil[no].temperature, Settings.flag2.temperature_resolution, temperature);
seeSoilName(no, sensor_name, sizeof(sensor_name));
dtostrfd(SeeSoilSNS[no].temperature, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR ("\"%s\":{\"" D_JSON_ID "\":\"%02X\",\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_MOISTURE "\":%u}"),
sensor_name, SeeSoil[no].address, temperature, (uint32_t) SeeSoil[no].moisture);
sensor_name, SeeSoilSNS[no].address, temperature, (uint32_t) SeeSoilSNS[no].moisture);
}
void SEESAW_SOILName(int no, char *name, int len) // generates a sensor name
void seeSoilName(int no, char *name, int len) // generates a sensor name
{
#ifdef SEESAW_SOIL_PERSISTENT_NAMING
snprintf_P(name, len, PSTR("%s%c%02X"), SeeSoilName, IndexSeparator(), SeeSoil[no].address);
snprintf_P(name, len, PSTR("%s%c%02X"), SeeSoil.name, IndexSeparator(), SeeSoilSNS[no].address);
#else
if (SeeSoilCount > 1) {
snprintf_P(name, len, PSTR("%s%c%u"), SeeSoilName, IndexSeparator(), no + 1);
if (SeeSoil.count > 1) {
snprintf_P(name, len, PSTR("%s%c%u"), SeeSoil.name, IndexSeparator(), no + 1);
}
else {
strlcpy(name, SeeSoilName, len);
strlcpy(name, SeeSoil.name, len);
}
#endif // SEESAW_SOIL_PERSISTENT_NAMING
}
@ -256,19 +336,24 @@ bool Xsns81(uint8_t function)
bool result = false;
if (FUNC_INIT == function) {
SEESAW_SOILDetect();
seeSoilInit();
}
else if (SeeSoilCount){
else if (SeeSoil.present){
switch (function) {
case FUNC_EVERY_SECOND:
SEESAW_SOILEverySecond();
case FUNC_EVERY_50_MSECOND:
seeSoilEvery50ms();
break;
#ifdef SEESAW_SOIL_PUBLISH
case FUNC_EVERY_SECOND:
seeSoilEverySecond();
break;
#endif // SEESAW_SOIL_PUBLISH
case FUNC_JSON_APPEND:
SEESAW_SOILShow(1);
seeSoilShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
SEESAW_SOILShow(0);
seeSoilShow(0);
break;
#endif // USE_WEBSERVER
}