Add final support for MH-Z19(B)

* Add support for sensor MH-Z19(B) to be enabled with define USE_MHZ19
in user_config.h (#561, #1248)
This commit is contained in:
arendst 2017-12-19 12:14:41 +01:00
parent 0129fc9825
commit 41e315bdf4
5 changed files with 75 additions and 647 deletions

View File

@ -4,12 +4,10 @@
* Change Wemo SetBinaryState to distinguish from GetBinaryState (#1357) * Change Wemo SetBinaryState to distinguish from GetBinaryState (#1357)
* Change output of HTTP command to valid JSON only (#1363) * Change output of HTTP command to valid JSON only (#1363)
* Change output to valid JSON Array if needed (#1363) * Change output to valid JSON Array if needed (#1363)
* Add support for sensor MH-Z19(B) to be enabled with define USE_MHZ19 in user_config.h (#561, #1248)
* *
* 5.10.0a * 5.10.0a
* Add (experimental) support for sensor SHT3x * Add (experimental) support for sensor SHT3x
* Add support for sensor MH-Z19(B) using serial interface to be enabled with define USE_MHZ19_HARD_SERIAL in user_config.h (#561, #1248)
* Add (experimental) support for sensor MH-Z19(B) using SoftwareSerial to be enabled with define USE_MHZ19_SOFT_SERIAL_OBSOLETE in user_config.h (#561, #1248)
* Add (experimental) support for sensor MH-Z19(B) using stripped SoftwareSerial to be enabled with define USE_MHZ19_SOFT_SERIAL in user_config.h (#561, #1248)
* Add support for iTead SI7021 temperature and humidity sensor by consolidating DHT22 into AM2301 and using former DHT22 as SI7021 (#735) * Add support for iTead SI7021 temperature and humidity sensor by consolidating DHT22 into AM2301 and using former DHT22 as SI7021 (#735)
* Fix BME280 calculation (#1051) * Fix BME280 calculation (#1051)
* Add support for BME680 using adafruit libraries (#1212) * Add support for BME680 using adafruit libraries (#1212)

View File

@ -192,9 +192,7 @@
#define USE_WS2812_CTYPE 1 // WS2812 Color type (0 - RGB, 1 - GRB, 2 - RGBW, 3 - GRBW) #define USE_WS2812_CTYPE 1 // WS2812 Color type (0 - RGB, 1 - GRB, 2 - RGBW, 3 - GRBW)
// #define USE_WS2812_DMA // DMA supports only GPIO03 (= Serial RXD) (+1k mem). When USE_WS2812_DMA is enabled expect Exceptions on Pow // #define USE_WS2812_DMA // DMA supports only GPIO03 (= Serial RXD) (+1k mem). When USE_WS2812_DMA is enabled expect Exceptions on Pow
//#define USE_MHZ19_HARD_SERIAL // Add support for MH-Z19 CO2 sensor using hardware serial interface at 9600 bps on GPIO1/3 only (+1k1 code) //#define USE_MHZ19 // Add support for MH-Z19 CO2 sensor (+1k8 code)
//#define USE_MHZ19_SOFT_SERIAL // Add support for MH-Z19 CO2 sensor using software serial interface at 9600 bps (+2k3 code, 215 iram)
//#define USE_MHZ19_SOFT_SERIAL_OBSOLETE // Add support for MH-Z19 CO2 sensor using software serial interface at 9600 bps (+2k3 code, 420 iram)
#define USE_ARILUX_RF // Add support for Arilux RF remote controller (+0k8 code) #define USE_ARILUX_RF // Add support for Arilux RF remote controller (+0k8 code)

View File

@ -1,7 +1,7 @@
/* /*
xsns_15_mhz.ino - MH-Z19 CO2 sensor support for Sonoff-Tasmota xsns_15_mhz.ino - MH-Z19(B) CO2 sensor support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -17,11 +17,11 @@
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#ifdef USE_MHZ19_SOFT_SERIAL #ifdef USE_MHZ19
/*********************************************************************************************\ /*********************************************************************************************\
* MH-Z19 - CO2 sensor * MH-Z19 - CO2 sensor
* *
* Based on EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru) * Adapted from EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru)
********************************************************************************************** **********************************************************************************************
* Filter usage * Filter usage
* *
@ -53,7 +53,7 @@ enum Mhz19FilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FI
/*********************************************************************************************/ /*********************************************************************************************/
#define MHZ19_BAUDRATE 9600 #define MHZ19_BAUDRATE 9600
#define MHZ19_READ_TIMEOUT 600 // Must be way less than 1000 #define MHZ19_READ_TIMEOUT 500 // Must be way less than 1000
const char kMhz19Types[] PROGMEM = "MHZ19|MHZ19B"; const char kMhz19Types[] PROGMEM = "MHZ19|MHZ19B";
@ -61,14 +61,17 @@ const uint8_t mhz19_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0
const uint8_t mhz19_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6}; const uint8_t mhz19_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
const uint8_t mhz19_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86}; const uint8_t mhz19_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
uint8_t mhz19_type = 0; uint8_t mhz19_type = 1;
uint16_t mhz19_last_ppm = 0; uint16_t mhz19_last_ppm = 0;
uint8_t mhz19_filter = MHZ19_FILTER_OPTION; uint8_t mhz19_filter = MHZ19_FILTER_OPTION;
uint8_t mhz19_response[9];
bool mhz19_abc_enable = MHZ19_ABC_ENABLE; bool mhz19_abc_enable = MHZ19_ABC_ENABLE;
bool mhz19_abc_must_apply = false; bool mhz19_abc_must_apply = false;
char mhz19_types[7]; char mhz19_types[7];
float mhz19_temperature = 0;
uint8_t mhz19_timer = 0;
Ticker mhz19_ticker;
/*********************************************************************************************\ /*********************************************************************************************\
* Subset SoftwareSerial * Subset SoftwareSerial
\*********************************************************************************************/ \*********************************************************************************************/
@ -85,7 +88,7 @@ unsigned long mhz19_serial_bit_time;
unsigned long mhz19_serial_bit_time_start; unsigned long mhz19_serial_bit_time_start;
bool Mhz19SerialValidGpioPin(uint8_t pin) { bool Mhz19SerialValidGpioPin(uint8_t pin) {
return (pin >= 0 && pin <= 5) || (pin >= 12 && pin <= 15); return (pin >= 0 && pin <= 5) || (pin >= 9 && pin <= 10) || (pin >= 12 && pin <= 15);
} }
bool Mhz19Serial(uint8_t receive_pin, uint8_t transmit_pin) bool Mhz19Serial(uint8_t receive_pin, uint8_t transmit_pin)
@ -158,7 +161,7 @@ size_t Mhz19SerialWrite(const uint8_t *buffer, size_t size = 1) {
return n; return n;
} }
void Mhz19SerialRxRead() ICACHE_RAM_ATTR; // Add 215 bytes to iram usage //void Mhz19SerialRxRead() ICACHE_RAM_ATTR; // Add 215 bytes to iram usage
void Mhz19SerialRxRead() { void Mhz19SerialRxRead() {
// Advance the starting point for the samples but compensate for the // Advance the starting point for the samples but compensate for the
// initial delay which occurs before the interrupt is delivered // initial delay which occurs before the interrupt is delivered
@ -222,31 +225,29 @@ bool Mhz19CheckAndApplyFilter(uint16_t ppm, uint8_t s)
return true; return true;
} }
bool Mhz19Read(uint16_t &p, float &t) void Mhz19222ms()
{ {
bool status = false; uint8_t mhz19_response[9];
p = 0; mhz19_timer++;
t = NAN; if (6 == mhz19_timer) { // MH-Z19 measuring cycle takes 1005 +5% ms
mhz19_timer = 0;
if (mhz19_type)
{
Mhz19SerialFlush(); Mhz19SerialFlush();
if (Mhz19SerialWrite(mhz19_cmnd_read_ppm, 9) != 9) { Mhz19SerialWrite(mhz19_cmnd_read_ppm, 9);
return false; // Unable to send 9 bytes }
}
memset(mhz19_response, 0, sizeof(mhz19_response)); if (1 == mhz19_timer) {
uint32_t start = millis(); unsigned long start = millis();
uint8_t counter = 0; uint8_t counter = 0;
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) { while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
if (Mhz19SerialAvailable() > 0) { if (Mhz19SerialAvailable() > 0) {
mhz19_response[counter++] = Mhz19SerialRead(); mhz19_response[counter++] = Mhz19SerialRead();
} else {
delay(10);
} }
} }
if (counter < 9){ if (counter < 9) {
return false; // Timeout while trying to read // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 comms timeout"));
return;
} }
byte crc = 0; byte crc = 0;
@ -255,61 +256,55 @@ bool Mhz19Read(uint16_t &p, float &t)
} }
crc = 255 - crc; crc = 255 - crc;
crc++; crc++;
if (mhz19_response[8] != crc) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 crc error"));
return;
}
if (0xFF != mhz19_response[0] || 0x86 != mhz19_response[1]) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 bad response"));
return;
}
/* uint16_t u = (mhz19_response[6] << 8) | mhz19_response[7];
// Test data if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
mhz19_response[0] = 0xFF; if (!mhz19_abc_enable) {
mhz19_response[1] = 0x86; // After bootup of the sensor the ABC will be enabled.
mhz19_response[2] = 0x12; // Thus only actively disable after bootup.
mhz19_response[3] = 0x86; mhz19_abc_must_apply = true;
mhz19_response[4] = 64; }
// mhz19_response[5] = 32; } else {
mhz19_response[8] = crc; uint16_t ppm = (mhz19_response[2] << 8) | mhz19_response[3];
*/ mhz19_temperature = ConvertTemp((float)mhz19_response[4] - 40);
uint8_t s = mhz19_response[5];
mhz19_type = (s) ? 1 : 2;
if (Mhz19CheckAndApplyFilter(ppm, s)) {
if (0xFF == mhz19_response[0] && 0x86 == mhz19_response[1] && mhz19_response[8] == crc) { if (0 == s || 64 == s) { // Reading is stable.
uint16_t u = (mhz19_response[6] << 8) | mhz19_response[7]; if (mhz19_abc_must_apply) {
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000 mhz19_abc_must_apply = false;
if (!mhz19_abc_enable) { if (mhz19_abc_enable) {
// After bootup of the sensor the ABC will be enabled. Mhz19SerialWrite(mhz19_cmnd_abc_enable, 9); // Sent sensor ABC Enable
// Thus only actively disable after bootup. } else {
mhz19_abc_must_apply = true; Mhz19SerialWrite(mhz19_cmnd_abc_disable, 9); // Sent sensor ABC Disable
}
} else {
uint16_t ppm = (mhz19_response[2] << 8) | mhz19_response[3];
t = ConvertTemp((float)mhz19_response[4] - 40);
uint8_t s = mhz19_response[5];
if (s) {
mhz19_type = 1;
} else {
mhz19_type = 2;
}
if (Mhz19CheckAndApplyFilter(ppm, s)) {
p = mhz19_last_ppm;
if (0 == s || 64 == s) { // Reading is stable.
if (mhz19_abc_must_apply) {
mhz19_abc_must_apply = false;
if (mhz19_abc_enable) {
Mhz19SerialWrite(mhz19_cmnd_abc_enable, 9); // Sent sensor ABC Enable
} else {
Mhz19SerialWrite(mhz19_cmnd_abc_disable, 9); // Sent sensor ABC Disable
}
} }
} }
status = true;
} }
} }
} }
} }
return status;
} }
/*********************************************************************************************/
void Mhz19Init() void Mhz19Init()
{ {
if (Mhz19Serial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD])) { mhz19_type = 0;
mhz19_type = 1; if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) {
if (Mhz19Serial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD])) {
mhz19_type = 1;
mhz19_ticker.attach_ms(222, Mhz19222ms);
}
} }
} }
@ -320,25 +315,20 @@ const char HTTP_SNS_CO2[] PROGMEM =
void Mhz19Show(boolean json) void Mhz19Show(boolean json)
{ {
uint16_t co2; char temperature[10];
float t; dtostrfd(mhz19_temperature, Settings.flag2.temperature_resolution, temperature);
GetTextIndexed(mhz19_types, sizeof(mhz19_types), mhz19_type -1, kMhz19Types);
if (Mhz19Read(co2, t)) { if (json) {
char temperature[10]; snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, mhz19_last_ppm, temperature);
dtostrfd(t, Settings.flag2.temperature_resolution, temperature);
GetTextIndexed(mhz19_types, sizeof(mhz19_types), mhz19_type -1, kMhz19Types);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, co2, temperature);
#ifdef USE_DOMOTICZ #ifdef USE_DOMOTICZ
DomoticzSensor(DZ_COUNT, co2); DomoticzSensor(DZ_COUNT, mhz19_last_ppm);
#endif // USE_DOMOTICZ #endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER #ifdef USE_WEBSERVER
} else { } else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz19_types, co2); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz19_types, mhz19_last_ppm);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz19_types, temperature, TempUnit()); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz19_types, temperature, TempUnit());
#endif // USE_WEBSERVER #endif // USE_WEBSERVER
}
} }
} }
@ -352,21 +342,17 @@ boolean Xsns15(byte function)
{ {
boolean result = false; boolean result = false;
if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) { if (mhz19_type) {
switch (function) { switch (function) {
case FUNC_XSNS_INIT: case FUNC_XSNS_INIT:
Mhz19Init(); Mhz19Init();
break; break;
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
// Mhz19Prep();
break;
case FUNC_XSNS_JSON_APPEND: case FUNC_XSNS_JSON_APPEND:
Mhz19Show(1); Mhz19Show(1);
break; break;
#ifdef USE_WEBSERVER #ifdef USE_WEBSERVER
case FUNC_XSNS_WEB_APPEND: case FUNC_XSNS_WEB_APPEND:
Mhz19Show(0); Mhz19Show(0);
// Mhz19Prep();
break; break;
#endif // USE_WEBSERVER #endif // USE_WEBSERVER
} }
@ -374,4 +360,4 @@ boolean Xsns15(byte function)
return result; return result;
} }
#endif // USE_MHZ19_SOFT_SERIAL #endif // USE_MHZ19

View File

@ -1,277 +0,0 @@
/*
xsns_15_mhz.ino - MH-Z19 CO2 sensor support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_MHZ19_HARD_SERIAL
/*********************************************************************************************\
* MH-Z19 - CO2 sensor
*
* Supported on hardware serial interface only due to lack of iram needed by SoftwareSerial
*
* Based on EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru)
*
**********************************************************************************************
* Filter usage
*
* Select filter usage on low stability readings
\*********************************************************************************************/
enum Mhz19FilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW};
#define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST
/*********************************************************************************************\
* Source: http://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
*
* Automatic Baseline Correction (ABC logic function)
*
* ABC logic function refers to that sensor itself do zero point judgment and automatic calibration procedure
* intelligently after a continuous operation period. The automatic calibration cycle is every 24 hours after powered on.
*
* The zero point of automatic calibration is 400ppm.
*
* This function is usually suitable for indoor air quality monitor such as offices, schools and homes,
* not suitable for greenhouse, farm and refrigeratory where this function should be off.
*
* Please do zero calibration timely, such as manual or commend calibration.
\*********************************************************************************************/
#define MHZ19_ABC_ENABLE 1 // Automatic Baseline Correction (0 = off, 1 = on (default))
/*********************************************************************************************/
#define MHZ19_BAUDRATE 9600
#define MHZ19_READ_TIMEOUT 600 // Must be way less than 1000
const char kMhz19Types[] PROGMEM = "MHZ19|MHZ19B";
const byte mhz19_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
const byte mhz19_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
const byte mhz19_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
uint8_t mhz19_type = 0;
uint16_t mhz19_last_ppm = 0;
uint8_t mhz19_filter = MHZ19_FILTER_OPTION;
byte mhz19_response[9];
bool mhz19_abc_enable = MHZ19_ABC_ENABLE;
bool mhz19_abc_must_apply = false;
char mhz19_types[7];
bool Mhz19CheckAndApplyFilter(uint16_t ppm, uint8_t s)
{
if (1 == s) {
return false; // S==1 => "A" version sensor bootup, do not use values.
}
if (mhz19_last_ppm < 400 || mhz19_last_ppm > 5000) {
// Prevent unrealistic values during start-up with filtering enabled.
// Just assume the entered value is correct.
mhz19_last_ppm = ppm;
return true;
}
int32_t difference = ppm - mhz19_last_ppm;
if (s > 0 && s < 64 && mhz19_filter != MHZ19_FILTER_OFF) {
// Not the "B" version of the sensor, S value is used.
// S==0 => "B" version, else "A" version
// The S value is an indication of the stability of the reading.
// S == 64 represents a stable reading and any lower value indicates (unusual) fast change.
// Now we increase the delay filter for low values of S and increase response time when the
// value is more stable.
// This will make the reading useful in more turbulent environments,
// where the sensor would report more rapid change of measured values.
difference = difference * s;
difference /= 64;
}
switch (mhz19_filter) {
case MHZ19_FILTER_OFF: {
if (s != 0 && s != 64) {
return false;
}
break;
}
// #Samples to reach >= 75% of step response
case MHZ19_FILTER_OFF_ALLSAMPLES:
break; // No Delay
case MHZ19_FILTER_FAST:
difference /= 2;
break; // Delay: 2 samples
case MHZ19_FILTER_MEDIUM:
difference /= 4;
break; // Delay: 5 samples
case MHZ19_FILTER_SLOW:
difference /= 8;
break; // Delay: 11 samples
}
mhz19_last_ppm = static_cast<uint16_t>(mhz19_last_ppm + difference);
return true;
}
bool Mhz19Read(uint16_t &p, float &t)
{
bool status = false;
p = 0;
t = NAN;
if (mhz19_type)
{
Serial.flush();
if (Serial.write(mhz19_cmnd_read_ppm, 9) != 9) {
return false; // Unable to send 9 bytes
}
memset(mhz19_response, 0, sizeof(mhz19_response));
uint32_t start = millis();
uint8_t counter = 0;
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
if (Serial.available() > 0) {
mhz19_response[counter++] = Serial.read();
} else {
delay(10);
}
}
if (counter < 9){
return false; // Timeout while trying to read
}
byte crc = 0;
for (uint8_t i = 1; i < 8; i++) {
crc += mhz19_response[i];
}
crc = 255 - crc;
crc++;
/*
// Test data
mhz19_response[0] = 0xFF;
mhz19_response[1] = 0x86;
mhz19_response[2] = 0x12;
mhz19_response[3] = 0x86;
mhz19_response[4] = 64;
// mhz19_response[5] = 32;
mhz19_response[8] = crc;
*/
if (0xFF == mhz19_response[0] && 0x86 == mhz19_response[1] && mhz19_response[8] == crc) {
uint16_t u = (mhz19_response[6] << 8) | mhz19_response[7];
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
if (!mhz19_abc_enable) {
// After bootup of the sensor the ABC will be enabled.
// Thus only actively disable after bootup.
mhz19_abc_must_apply = true;
}
} else {
uint16_t ppm = (mhz19_response[2] << 8) | mhz19_response[3];
t = ConvertTemp((float)mhz19_response[4] - 40);
uint8_t s = mhz19_response[5];
if (s) {
mhz19_type = 1;
} else {
mhz19_type = 2;
}
if (Mhz19CheckAndApplyFilter(ppm, s)) {
p = mhz19_last_ppm;
if (0 == s || 64 == s) { // Reading is stable.
if (mhz19_abc_must_apply) {
mhz19_abc_must_apply = false;
if (mhz19_abc_enable) {
Serial.write(mhz19_cmnd_abc_enable, 9); // Sent sensor ABC Enable
} else {
Serial.write(mhz19_cmnd_abc_disable, 9); // Sent sensor ABC Disable
}
}
}
status = true;
}
}
}
}
return status;
}
void Mhz19Init()
{
SetSerialBaudrate(MHZ19_BAUDRATE);
Serial.flush();
seriallog_level = 0;
mhz19_type = 1;
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_CO2[] PROGMEM =
"%s{s}%s " D_CO2 "{m}%d " D_UNIT_PPM "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#endif // USE_WEBSERVER
void Mhz19Show(boolean json)
{
uint16_t co2;
float t;
if (Mhz19Read(co2, t)) {
char temperature[10];
dtostrfd(t, Settings.flag2.temperature_resolution, temperature);
GetTextIndexed(mhz19_types, sizeof(mhz19_types), mhz19_type -1, kMhz19Types);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, co2, temperature);
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_COUNT, co2);
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz19_types, co2);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz19_types, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_15
boolean Xsns15(byte function)
{
boolean result = false;
if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) {
switch (function) {
case FUNC_XSNS_INIT:
Mhz19Init();
break;
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
// Mhz19Prep();
break;
case FUNC_XSNS_JSON_APPEND:
Mhz19Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_XSNS_WEB_APPEND:
Mhz19Show(0);
// Mhz19Prep();
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MHZ19_HARD_SERIAL

View File

@ -1,277 +0,0 @@
/*
xsns_15_mhz.ino - MH-Z19 CO2 sensor support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_MHZ19_SOFT_SERIAL_OBSOLETE
/*********************************************************************************************\
* MH-Z19 - CO2 sensor
*
* Based on EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru)
**********************************************************************************************
* Filter usage
*
* Select filter usage on low stability readings
\*********************************************************************************************/
#include <SoftwareSerial.h>
SoftwareSerial *SoftSerial;
enum Mhz19FilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW};
#define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST
/*********************************************************************************************\
* Source: http://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
*
* Automatic Baseline Correction (ABC logic function)
*
* ABC logic function refers to that sensor itself do zero point judgment and automatic calibration procedure
* intelligently after a continuous operation period. The automatic calibration cycle is every 24 hours after powered on.
*
* The zero point of automatic calibration is 400ppm.
*
* This function is usually suitable for indoor air quality monitor such as offices, schools and homes,
* not suitable for greenhouse, farm and refrigeratory where this function should be off.
*
* Please do zero calibration timely, such as manual or commend calibration.
\*********************************************************************************************/
#define MHZ19_ABC_ENABLE 1 // Automatic Baseline Correction (0 = off, 1 = on (default))
/*********************************************************************************************/
#define MHZ19_BAUDRATE 9600
#define MHZ19_READ_TIMEOUT 600 // Must be way less than 1000
const char kMhz19Types[] PROGMEM = "MHZ19|MHZ19B";
const byte mhz19_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
const byte mhz19_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
const byte mhz19_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
uint8_t mhz19_type = 0;
uint16_t mhz19_last_ppm = 0;
uint8_t mhz19_filter = MHZ19_FILTER_OPTION;
byte mhz19_response[9];
bool mhz19_abc_enable = MHZ19_ABC_ENABLE;
bool mhz19_abc_must_apply = false;
char mhz19_types[7];
bool Mhz19CheckAndApplyFilter(uint16_t ppm, uint8_t s)
{
if (1 == s) {
return false; // S==1 => "A" version sensor bootup, do not use values.
}
if (mhz19_last_ppm < 400 || mhz19_last_ppm > 5000) {
// Prevent unrealistic values during start-up with filtering enabled.
// Just assume the entered value is correct.
mhz19_last_ppm = ppm;
return true;
}
int32_t difference = ppm - mhz19_last_ppm;
if (s > 0 && s < 64 && mhz19_filter != MHZ19_FILTER_OFF) {
// Not the "B" version of the sensor, S value is used.
// S==0 => "B" version, else "A" version
// The S value is an indication of the stability of the reading.
// S == 64 represents a stable reading and any lower value indicates (unusual) fast change.
// Now we increase the delay filter for low values of S and increase response time when the
// value is more stable.
// This will make the reading useful in more turbulent environments,
// where the sensor would report more rapid change of measured values.
difference = difference * s;
difference /= 64;
}
switch (mhz19_filter) {
case MHZ19_FILTER_OFF: {
if (s != 0 && s != 64) {
return false;
}
break;
}
// #Samples to reach >= 75% of step response
case MHZ19_FILTER_OFF_ALLSAMPLES:
break; // No Delay
case MHZ19_FILTER_FAST:
difference /= 2;
break; // Delay: 2 samples
case MHZ19_FILTER_MEDIUM:
difference /= 4;
break; // Delay: 5 samples
case MHZ19_FILTER_SLOW:
difference /= 8;
break; // Delay: 11 samples
}
mhz19_last_ppm = static_cast<uint16_t>(mhz19_last_ppm + difference);
return true;
}
bool Mhz19Read(uint16_t &p, float &t)
{
bool status = false;
p = 0;
t = NAN;
if (mhz19_type)
{
SoftSerial->flush();
if (SoftSerial->write(mhz19_cmnd_read_ppm, 9) != 9) {
return false; // Unable to send 9 bytes
}
memset(mhz19_response, 0, sizeof(mhz19_response));
uint32_t start = millis();
uint8_t counter = 0;
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
if (SoftSerial->available() > 0) {
mhz19_response[counter++] = SoftSerial->read();
} else {
delay(10);
}
}
if (counter < 9){
return false; // Timeout while trying to read
}
byte crc = 0;
for (uint8_t i = 1; i < 8; i++) {
crc += mhz19_response[i];
}
crc = 255 - crc;
crc++;
/*
// Test data
mhz19_response[0] = 0xFF;
mhz19_response[1] = 0x86;
mhz19_response[2] = 0x12;
mhz19_response[3] = 0x86;
mhz19_response[4] = 64;
// mhz19_response[5] = 32;
mhz19_response[8] = crc;
*/
if (0xFF == mhz19_response[0] && 0x86 == mhz19_response[1] && mhz19_response[8] == crc) {
uint16_t u = (mhz19_response[6] << 8) | mhz19_response[7];
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
if (!mhz19_abc_enable) {
// After bootup of the sensor the ABC will be enabled.
// Thus only actively disable after bootup.
mhz19_abc_must_apply = true;
}
} else {
uint16_t ppm = (mhz19_response[2] << 8) | mhz19_response[3];
t = ConvertTemp((float)mhz19_response[4] - 40);
uint8_t s = mhz19_response[5];
if (s) {
mhz19_type = 1;
} else {
mhz19_type = 2;
}
if (Mhz19CheckAndApplyFilter(ppm, s)) {
p = mhz19_last_ppm;
if (0 == s || 64 == s) { // Reading is stable.
if (mhz19_abc_must_apply) {
mhz19_abc_must_apply = false;
if (mhz19_abc_enable) {
SoftSerial->write(mhz19_cmnd_abc_enable, 9); // Sent sensor ABC Enable
} else {
SoftSerial->write(mhz19_cmnd_abc_disable, 9); // Sent sensor ABC Disable
}
}
}
status = true;
}
}
}
}
return status;
}
void Mhz19Init()
{
SoftSerial = new SoftwareSerial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD]);
SoftSerial->begin(9600);
mhz19_type = 1;
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_CO2[] PROGMEM =
"%s{s}%s " D_CO2 "{m}%d " D_UNIT_PPM "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#endif // USE_WEBSERVER
void Mhz19Show(boolean json)
{
uint16_t co2;
float t;
if (Mhz19Read(co2, t)) {
char temperature[10];
dtostrfd(t, Settings.flag2.temperature_resolution, temperature);
GetTextIndexed(mhz19_types, sizeof(mhz19_types), mhz19_type -1, kMhz19Types);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, co2, temperature);
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_COUNT, co2);
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz19_types, co2);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz19_types, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_15
boolean Xsns15(byte function)
{
boolean result = false;
if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) {
switch (function) {
case FUNC_XSNS_INIT:
Mhz19Init();
break;
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
// Mhz19Prep();
break;
case FUNC_XSNS_JSON_APPEND:
Mhz19Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_XSNS_WEB_APPEND:
Mhz19Show(0);
// Mhz19Prep();
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MHZ19_SOFT_SERIAL_OBSOLETE