Add ADC support for Shelly Plus RGBW PM

This commit is contained in:
Theo Arends 2024-08-04 16:35:02 +02:00
parent 82add09bf9
commit 469f12abbc
1 changed files with 89 additions and 41 deletions

View File

@ -22,6 +22,35 @@
#ifdef USE_ADC #ifdef USE_ADC
/*********************************************************************************************\ /*********************************************************************************************\
* ADC support for ESP8266 GPIO17 (=PIN_A0) and ESP32 up to 8 channels on GPIO32 to GPIO39 * ADC support for ESP8266 GPIO17 (=PIN_A0) and ESP32 up to 8 channels on GPIO32 to GPIO39
*
*
*
*
* For shelly RGBW PM:
* Template {"NAME":"Shelly Plus RGBW PM Pot.meter","GPIO":[1,0,0,0,419,0,0,0,0,0,544,0,0,0,0,1,0,0,1,0,0,416,417,418,0,0,0,0,0,4736,11264,11296,4704,0,4705,0],"FLAG":0,"BASE":1}
* AdcParam1 1,32000,40000,3350 <- Temperature parameters
* AdcParam2 1,1161,3472,10,30 <- Voltage parameters
* AdcParam3 1,960,1017,0.01,0.706 <- Current parameters
* AdcParam4 1,1552,176,3,1 <- I1 Potentiometer RGBW or RGB if SO37 128
* AdcParam4 1,1552,176,3,3 <- I1 Potentiometer RGBW or RGB if SO37 128 without fading
* AdcParam5 1,1552,176,3,1 <- I3 Potentiometer W if SO37 128
* Fade 1
* Speed 6
* VoltRes 2
* WattRes 2
*
* Template {"NAME":"Shelly Plus RGBW PM Button","GPIO":[1,0,0,0,419,0,0,0,0,0,544,0,0,0,0,1,0,0,1,0,0,416,417,418,0,0,0,0,0,4736,11264,11296,4800,4801,4802,4803],"FLAG":0,"BASE":1}
* AdcParam1 1,8000,9200,3350 <- Temperature parameters
* AdcParam2 1,1161,3472,10,30 <- Voltage parameters
* AdcParam3 1,960,1017,0.01,0.706 <- Current parameters
* AdcParam4 1,511 <- I1 Button
* AdcParam5 1,511 <- I2 Button
* AdcParam6 1,511 <- I3 Button
* AdcParam7 1,511 <- I4 Button
* Fade 1
* Speed 6
* VoltRes 2
* WattRes 2
\*********************************************************************************************/ \*********************************************************************************************/
#define XSNS_02 2 #define XSNS_02 2
@ -156,23 +185,24 @@
#define ANALOG_MQ_SAMPLES 60 #define ANALOG_MQ_SAMPLES 60
struct { struct {
uint8_t present = 0; uint8_t present;
} Adcs; } Adcs;
struct { struct {
float *mq_samples; float *mq_samples;
float temperature = 0; float temperature;
float current = 0; float current;
float energy = 0; float energy;
uint32_t previous_millis = 0; uint32_t previous_millis;
uint32_t param1 = 0; uint32_t param1;
uint32_t param2 = 0; uint32_t param2;
int param3 = 0; int param3;
int param4 = 0; int param4;
int indexOfPointer = -1; int indexOfPointer;
uint16_t last_value = 0; uint16_t last_value;
uint16_t type; uint16_t type;
uint8_t pin = 0; uint8_t index;
uint8_t pin;
} Adc[MAX_ADCS]; } Adc[MAX_ADCS];
/*********************************************************************************************\ /*********************************************************************************************\
@ -202,18 +232,12 @@ uint16_t AdcRead1(uint32_t pin) {
/*********************************************************************************************/ /*********************************************************************************************/
uint32_t AdcType(uint32_t channel) {
return TasmotaGlobal.gpio_pin[Adc[channel].pin] >> 5;
}
uint32_t AdcIndex(uint32_t channel) {
return TasmotaGlobal.gpio_pin[Adc[channel].pin] & 0x001F;
}
void AdcSaveSettings(uint32_t channel) { void AdcSaveSettings(uint32_t channel) {
char parameters[32]; char parameters[32] = { 0 };
if (channel < Adcs.present) {
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"), snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
Adc[channel].type, Adc[channel].param1, Adc[channel].param2, Adc[channel].param3, Adc[channel].param4); Adc[channel].type, Adc[channel].param1, Adc[channel].param2, Adc[channel].param3, Adc[channel].param4);
}
SettingsUpdateText(SET_ADC_PARAM1 + channel, parameters); SettingsUpdateText(SET_ADC_PARAM1 + channel, parameters);
} }
@ -228,10 +252,10 @@ bool AdcGetSettings(uint32_t channel) {
Adc[channel].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 5)); Adc[channel].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 5));
if ((adc_type > 0) && (adc_type < GPIO_ADC_INPUT)) { // Former ADC_END if ((adc_type > 0) && (adc_type < GPIO_ADC_INPUT)) { // Former ADC_END
AdcSaveSettings(channel); AdcSaveSettings(channel);
adc_type = AdcType(channel); // Migrate for backwards compatibility adc_type = Adc[channel].type; // Migrate for backwards compatibility
} }
} }
return (AdcType(channel) == adc_type); return (Adc[channel].type == adc_type);
} }
void AdcInitParams(uint32_t channel) { void AdcInitParams(uint32_t channel) {
@ -239,7 +263,7 @@ void AdcInitParams(uint32_t channel) {
Adc[channel].param2 = 0; Adc[channel].param2 = 0;
Adc[channel].param3 = 0; Adc[channel].param3 = 0;
Adc[channel].param4 = 0; Adc[channel].param4 = 0;
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
switch (adc_type) { switch (adc_type) {
case GPIO_ADC_INPUT: case GPIO_ADC_INPUT:
// Adc[channel].param1 = 0; // Adc[channel].param1 = 0;
@ -310,6 +334,8 @@ void AdcInitParams(uint32_t channel) {
void AdcInit(void) { void AdcInit(void) {
Adcs.present = 0; Adcs.present = 0;
memset(&Adc, 0, sizeof(Adc));
uint32_t pin = 0; // ESP32 full range of GPIOs possible for ADC channels uint32_t pin = 0; // ESP32 full range of GPIOs possible for ADC channels
#ifdef ESP8266 #ifdef ESP8266
pin = ADC0_PIN; // ESP8266 single ADC channel pin = ADC0_PIN; // ESP8266 single ADC channel
@ -331,8 +357,10 @@ void AdcInit(void) {
case GPIO_ADC_LIGHT: case GPIO_ADC_LIGHT:
case GPIO_ADC_TEMP: case GPIO_ADC_TEMP:
case GPIO_ADC_INPUT: case GPIO_ADC_INPUT:
Adc[Adcs.present].type = adc_type; Adc[Adcs.present].indexOfPointer = -1;
Adc[Adcs.present].pin = pin; Adc[Adcs.present].pin = pin;
Adc[Adcs.present].type = adc_type;
Adc[Adcs.present].index = TasmotaGlobal.gpio_pin[pin] & 0x001F;
Adcs.present++; Adcs.present++;
if (Adcs.present == MAX_ADCS) { break; } if (Adcs.present == MAX_ADCS) { break; }
} }
@ -350,6 +378,11 @@ void AdcInit(void) {
} }
} }
} }
for (uint32_t channel = Adcs.present; channel < MAX_ADCS; channel++) {
if (strlen(SettingsText(SET_ADC_PARAM1 + channel))) {
AdcSaveSettings(channel); // Free space by unused params
}
}
} }
uint16_t AdcRead(uint32_t pin, uint32_t factor) { uint16_t AdcRead(uint32_t pin, uint32_t factor) {
@ -380,13 +413,24 @@ uint16_t AdcRead(uint32_t pin, uint32_t factor) {
void AdcEvery250ms(void) { void AdcEvery250ms(void) {
char adc_channel[3] = { 0 }; char adc_channel[3] = { 0 };
uint32_t offset = 0; uint32_t offset = 0;
uint32_t dimmer_count = 0;
#ifdef USE_LIGHT
if (!light_controller.isCTRGBLinked()) { // SetOption37 >= 128 (Light) RGB and White channel separation (default 0)
for (uint32_t channel = 0; channel < Adcs.present; channel++) { for (uint32_t channel = 0; channel < Adcs.present; channel++) {
uint32_t type_index = AdcIndex(channel); if ((GPIO_ADC_INPUT == Adc[channel].type) && (Adc[channel].param4 > 0)) {
dimmer_count++;
}
}
}
#endif // USE_LIGHT
for (uint32_t channel = 0; channel < Adcs.present; channel++) {
uint32_t type_index = Adc[channel].index;
#ifdef ESP32 #ifdef ESP32
snprintf_P(adc_channel, sizeof(adc_channel), PSTR("%d"), type_index +1); snprintf_P(adc_channel, sizeof(adc_channel), PSTR("%d"), type_index +1);
offset = 1; offset = 1;
#endif #endif
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
if (GPIO_ADC_INPUT == adc_type) { if (GPIO_ADC_INPUT == adc_type) {
int adc = AdcRead(Adc[channel].pin, 4); // 4 = 16 mS int adc = AdcRead(Adc[channel].pin, 4); // 4 = 16 mS
bool swap = (Adc[channel].param2 < Adc[channel].param1); bool swap = (Adc[channel].param2 < Adc[channel].param1);
@ -414,11 +458,15 @@ void AdcEvery250ms(void) {
} else { } else {
char command[33]; char command[33];
if (Settings->flag3.pwm_multi_channels) { // SetOption68 - Enable multi-channels PWM instead of Color PWM if (Settings->flag3.pwm_multi_channels) { // SetOption68 - Enable multi-channels PWM instead of Color PWM
// snprintf_P(command, sizeof(command), PSTR("_" D_CMND_CHANNEL "%d %d"), type_index +1, new_value);
snprintf_P(command, sizeof(command), PSTR(D_CMND_CHANNEL "%d %d"), type_index +1, new_value); snprintf_P(command, sizeof(command), PSTR(D_CMND_CHANNEL "%d %d"), type_index +1, new_value);
} else { } else {
// snprintf_P(command, sizeof(command), PSTR("_" D_CMND_DIMMER "3 %d"), new_value); uint32_t dimmer_option;
snprintf_P(command, sizeof(command), PSTR(D_CMND_DIMMER "3 %d"), new_value); // Change both RGB and W(W) Dimmers with no fading if (dimmer_count > 1) {
dimmer_option = (0 == type_index) ? 1 : 2; // Change RGB (1) or W(W) (2) dimmer
} else {
dimmer_option = (3 == Adc[channel].param4) ? 3 : 0; // Change both RGB and W(W) Dimmers (0) with no fading (3)
}
snprintf_P(command, sizeof(command), PSTR(D_CMND_DIMMER "%d %d"), dimmer_option, new_value);
} }
ExecuteCommand(command, SRC_SWITCH); ExecuteCommand(command, SRC_SWITCH);
} }
@ -441,7 +489,7 @@ void AdcEvery250ms(void) {
uint8_t AdcGetButton(uint32_t pin) { uint8_t AdcGetButton(uint32_t pin) {
for (uint32_t channel = 0; channel < Adcs.present; channel++) { for (uint32_t channel = 0; channel < Adcs.present; channel++) {
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
if (Adc[channel].pin == pin) { if (Adc[channel].pin == pin) {
if (GPIO_ADC_BUTTON_INV == adc_type) { if (GPIO_ADC_BUTTON_INV == adc_type) {
return (AdcRead(Adc[channel].pin, 1) < Adc[channel].param1); return (AdcRead(Adc[channel].pin, 1) < Adc[channel].param1);
@ -584,8 +632,8 @@ void AdcEverySecond(void) {
uint32_t voltage_count = 0; uint32_t voltage_count = 0;
uint32_t current_count = 0; uint32_t current_count = 0;
for (uint32_t channel = 0; channel < Adcs.present; channel++) { for (uint32_t channel = 0; channel < Adcs.present; channel++) {
uint32_t type_index = AdcIndex(channel); uint32_t type_index = Adc[channel].index;
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
if (GPIO_ADC_TEMP == adc_type) { if (GPIO_ADC_TEMP == adc_type) {
int adc = AdcRead(Adc[channel].pin, 2); int adc = AdcRead(Adc[channel].pin, 2);
// Steinhart-Hart equation for thermistor as temperature sensor: // Steinhart-Hart equation for thermistor as temperature sensor:
@ -664,13 +712,13 @@ void AdcShow(bool json) {
bool jsonflg = false; bool jsonflg = false;
for (uint32_t channel = 0; channel < Adcs.present; channel++) { for (uint32_t channel = 0; channel < Adcs.present; channel++) {
uint32_t type_index = AdcIndex(channel); uint32_t type_index = Adc[channel].index;
#ifdef ESP32 #ifdef ESP32
snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), type_index +1); snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), type_index +1);
snprintf_P(adc_channel, sizeof(adc_channel), PSTR("%d"), type_index +1); snprintf_P(adc_channel, sizeof(adc_channel), PSTR("%d"), type_index +1);
offset = 1; offset = 1;
#endif #endif
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
switch (adc_type) { switch (adc_type) {
case GPIO_ADC_INPUT: { case GPIO_ADC_INPUT: {
#ifdef USE_LIGHT #ifdef USE_LIGHT
@ -881,10 +929,10 @@ void CmndAdcParam(void) {
// AdcParam 1, 0, ANALOG_RANGE, 0, 3.3 ADC_CURRENT // AdcParam 1, 0, ANALOG_RANGE, 0, 3.3 ADC_CURRENT
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) {
uint8_t channel = XdrvMailbox.index -1; uint8_t channel = XdrvMailbox.index -1;
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
if (XdrvMailbox.data_len) { if (XdrvMailbox.data_len) {
AdcGetSettings(channel); AdcGetSettings(channel);
if (ArgC() > 3) { // Process parameter entry if (ArgC() > 2) { // Process parameter entry
char argument[XdrvMailbox.data_len]; char argument[XdrvMailbox.data_len];
Adc[channel].param1 = strtol(ArgV(argument, 2), nullptr, 10); // param1 = int Adc[channel].param1 = strtol(ArgV(argument, 2), nullptr, 10); // param1 = int
Adc[channel].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int Adc[channel].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int
@ -1001,7 +1049,7 @@ bool Xnrg33(uint32_t function) {
uint32_t voltage_count = 0; uint32_t voltage_count = 0;
uint32_t current_count = 0; uint32_t current_count = 0;
for (uint32_t channel = 0; channel < Adcs.present; channel++) { for (uint32_t channel = 0; channel < Adcs.present; channel++) {
uint32_t adc_type = AdcType(channel); uint32_t adc_type = Adc[channel].type;
if (GPIO_ADC_VOLTAGE == adc_type) { voltage_count++; } if (GPIO_ADC_VOLTAGE == adc_type) { voltage_count++; }
if (GPIO_ADC_CURRENT == adc_type) { current_count++; } if (GPIO_ADC_CURRENT == adc_type) { current_count++; }
} }