Added cooling functionality

This commit is contained in:
Javier Arigita 2020-05-05 20:40:09 +02:00
parent 6f5c35ff33
commit 5bdf430512
2 changed files with 129 additions and 79 deletions

View File

@ -664,8 +664,8 @@
#define THERMOSTAT_CONTROLLER_OUTPUTS 1 // Number of outputs to be controlled independently #define THERMOSTAT_CONTROLLER_OUTPUTS 1 // Number of outputs to be controlled independently
#define THERMOSTAT_SENSOR_NAME "DS18B20" // Name of the local sensor to be used #define THERMOSTAT_SENSOR_NAME "DS18B20" // Name of the local sensor to be used
#define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number #define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number for the first controller (+i for following ones)
#define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number #define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number for the first controller (+i for following ones)
#define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes #define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes
#define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes #define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes
#define THERMOSTAT_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds #define THERMOSTAT_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds

View File

@ -35,6 +35,7 @@
// Commands // Commands
#define D_CMND_THERMOSTATMODESET "ThermostatModeSet" #define D_CMND_THERMOSTATMODESET "ThermostatModeSet"
#define D_CMND_CLIMATEMODESET "ClimateModeSet"
#define D_CMND_TEMPFROSTPROTECTSET "TempFrostProtectSet" #define D_CMND_TEMPFROSTPROTECTSET "TempFrostProtectSet"
#define D_CMND_CONTROLLERMODESET "ControllerModeSet" #define D_CMND_CONTROLLERMODESET "ControllerModeSet"
#define D_CMND_INPUTSWITCHSET "InputSwitchSet" #define D_CMND_INPUTSWITCHSET "InputSwitchSet"
@ -71,6 +72,7 @@
enum ThermostatModes { THERMOSTAT_OFF, THERMOSTAT_AUTOMATIC_OP, THERMOSTAT_MANUAL_OP, THERMOSTAT_MODES_MAX }; enum ThermostatModes { THERMOSTAT_OFF, THERMOSTAT_AUTOMATIC_OP, THERMOSTAT_MANUAL_OP, THERMOSTAT_MODES_MAX };
enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_MODES_MAX }; enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_MODES_MAX };
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI }; enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI };
enum ClimateModes { CLIMATE_HEATING, CLIMATE_COOLING, CLIMATE_MODES_MAX };
enum InterfaceStates { IFACE_OFF, IFACE_ON }; enum InterfaceStates { IFACE_OFF, IFACE_ON };
enum InputUsage { INPUT_NOT_USED, INPUT_USED }; enum InputUsage { INPUT_NOT_USED, INPUT_USED };
enum CtrCycleStates { CYCLE_OFF, CYCLE_ON }; enum CtrCycleStates { CYCLE_OFF, CYCLE_ON };
@ -103,6 +105,7 @@ typedef union {
struct { struct {
uint32_t thermostat_mode : 2; // Operation mode of the thermostat system uint32_t thermostat_mode : 2; // Operation mode of the thermostat system
uint32_t controller_mode : 2; // Operation mode of the thermostat controller uint32_t controller_mode : 2; // Operation mode of the thermostat controller
uint32_t climate_mode : 1; // Climate mode of the thermostat (heating / cooling)
uint32_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active) uint32_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active)
uint32_t sensor_type : 1; // Sensor type: MQTT/local uint32_t sensor_type : 1; // Sensor type: MQTT/local
uint32_t temp_format : 1; // Temperature format: Celsius/Fahrenheit uint32_t temp_format : 1; // Temperature format: Celsius/Fahrenheit
@ -118,7 +121,7 @@ typedef union {
uint32_t input_switch_number : 3; // Input switch number uint32_t input_switch_number : 3; // Input switch number
uint32_t output_inconsist_ctr : 2; // Counter of the minutes where there are inconsistent in the output state uint32_t output_inconsist_ctr : 2; // Counter of the minutes where there are inconsistent in the output state
uint32_t diagnostic_mode : 1; // Diagnostic mode selected uint32_t diagnostic_mode : 1; // Diagnostic mode selected
uint32_t free : 2; // Free bits in Bitfield uint32_t free : 1; // Free bits in Bitfield
}; };
} ThermostatBitfield; } ThermostatBitfield;
@ -127,22 +130,22 @@ const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"
uint16_t Domoticz_Virtual_Switches[DOMOTICZ_MAX_IDX] = { DOMOTICZ_IDX1, DOMOTICZ_IDX3, DOMOTICZ_IDX4, DOMOTICZ_IDX5 }; uint16_t Domoticz_Virtual_Switches[DOMOTICZ_MAX_IDX] = { DOMOTICZ_IDX1, DOMOTICZ_IDX3, DOMOTICZ_IDX4, DOMOTICZ_IDX5 };
#endif // DEBUG_THERMOSTAT #endif // DEBUG_THERMOSTAT
const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CMND_TEMPFROSTPROTECTSET "|" const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CMND_CLIMATEMODESET "|"
D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|"
D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|"
D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|"
D_CMND_TIMEONLIMITSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TIMEONLIMITSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|"
D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|"
D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|"
D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|"
D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET; D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET;
void (* const ThermostatCommand[])(void) PROGMEM = { void (* const ThermostatCommand[])(void) PROGMEM = {
&CmndThermostatModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndInputSwitchUse, &CmndThermostatModeSet, &CmndClimateModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet,
&CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndInputSwitchUse, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet,
&CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet, &CmndTimeOnLimitSet, &CmndTempTargetSet, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet,
&CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, &CmndTimeOnLimitSet, &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet,
&CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTempHystSet, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet,
&CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet,
&CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet }; &CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet };
@ -163,17 +166,17 @@ struct THERMOSTAT {
int32_t time_proportional_pi; // Time proportional part of the PI controller int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller uint16_t kP_pi = 0; // kP value for the PI controller multiplied by 100 (to avoid floating point operations)
uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100 uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100 (to avoid floating point operations)
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees celsius per hour calculated during ramp-up
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the thermostat system (step response time) uint32_t time_rampup_deadtime = 0; // Time constant of the thermostat system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees celsius
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees celsius
uint8_t time_output_delay = THERMOSTAT_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed) uint8_t time_output_delay = THERMOSTAT_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
uint8_t temp_rampup_pi_acc_error = THERMOSTAT_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI uint8_t temp_rampup_pi_acc_error = THERMOSTAT_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI in hundreths of degrees celsius
uint8_t temp_rampup_delta_out = THERMOSTAT_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius uint8_t temp_rampup_delta_out = THERMOSTAT_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = THERMOSTAT_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius uint8_t temp_rampup_delta_in = THERMOSTAT_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
uint8_t val_prop_band = THERMOSTAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius uint8_t val_prop_band = THERMOSTAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
@ -202,6 +205,7 @@ void ThermostatInit(uint8_t ctr_output)
// Init Thermostat[ctr_output].status bitfield: // Init Thermostat[ctr_output].status bitfield:
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF; Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF;
Thermostat[ctr_output].status.controller_mode = CTR_HYBRID; Thermostat[ctr_output].status.controller_mode = CTR_HYBRID;
Thermostat[ctr_output].status.climate_mode = CLIMATE_HEATING;
Thermostat[ctr_output].status.sensor_alive = IFACE_OFF; Thermostat[ctr_output].status.sensor_alive = IFACE_OFF;
Thermostat[ctr_output].status.sensor_type = SENSOR_MQTT; Thermostat[ctr_output].status.sensor_type = SENSOR_MQTT;
Thermostat[ctr_output].status.temp_format = TEMP_CELSIUS; Thermostat[ctr_output].status.temp_format = TEMP_CELSIUS;
@ -366,11 +370,14 @@ void ThermostatHybridCtrPhase(uint8_t ctr_output)
case CTR_HYBRID_PI: case CTR_HYBRID_PI:
// If no output action for a pre-defined time // If no output action for a pre-defined time
// AND temp target has changed // AND temp target has changed
// AND temp target - target actual bigger than threshold // AND value of temp target - actual temperature bigger than threshold for heating and lower for cooling
// then go to ramp-up // then go to ramp-up
if (((uptime - Thermostat[ctr_output].timestamp_output_off) > (60 * (uint32_t)Thermostat[ctr_output].time_allow_rampup)) if (((uptime - Thermostat[ctr_output].timestamp_output_off) > (60 * (uint32_t)Thermostat[ctr_output].time_allow_rampup))
&& (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr) && (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr)
&&((Thermostat[ctr_output].temp_target_level - Thermostat[ctr_output].temp_measured) > Thermostat[ctr_output].temp_rampup_delta_in)) { && ( ( (Thermostat[ctr_output].temp_target_level - Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_delta_in)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ( (Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_target_level > Thermostat[ctr_output].temp_rampup_delta_in)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))) {
Thermostat[ctr_output].timestamp_rampup_start = uptime; Thermostat[ctr_output].timestamp_rampup_start = uptime;
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].temp_rampup_meas_gradient = 0; Thermostat[ctr_output].temp_rampup_meas_gradient = 0;
@ -434,7 +441,7 @@ void ThermostatState(uint8_t ctr_output)
case THERMOSTAT_OFF: case THERMOSTAT_OFF:
// No change of state possible without external command // No change of state possible without external command
break; break;
// State automatic thermostat active following to command target temp. // State automatic, thermostat active following the command target temp.
case THERMOSTAT_AUTOMATIC_OP: case THERMOSTAT_AUTOMATIC_OP:
if (ThermostatStateAutoToManual(ctr_output)) { if (ThermostatStateAutoToManual(ctr_output)) {
// If sensor not alive change to THERMOSTAT_MANUAL_OP // If sensor not alive change to THERMOSTAT_MANUAL_OP
@ -454,7 +461,6 @@ void ThermostatState(uint8_t ctr_output)
void ThermostatOutputRelay(uint8_t ctr_output, uint32_t command) void ThermostatOutputRelay(uint8_t ctr_output, uint32_t command)
{ {
// TODO: See if the real output state can be read by f.i. bitRead(power, Thermostat[ctr_output].status.output_relay_number))
// If command received to enable output // If command received to enable output
// AND current output status is OFF // AND current output status is OFF
// then switch output to ON // then switch output to ON
@ -487,20 +493,25 @@ void ThermostatCalculatePI(uint8_t ctr_output)
{ {
// General comment: Some variables have been increased in resolution to avoid loosing accuracy in division operations // General comment: Some variables have been increased in resolution to avoid loosing accuracy in division operations
int32_t aux_time_error; int32_t aux_temp_error;
// Calculate error // Calculate error
aux_time_error = (int32_t)(Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_measured) * 10; aux_temp_error = (int32_t)(Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_measured) * 10;
// Invert error for cooling
if (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING) {
aux_temp_error *= -1;
}
// Protect overflow // Protect overflow
if (aux_time_error <= (int32_t)(INT16_MIN)) { if (aux_temp_error <= (int32_t)(INT16_MIN)) {
Thermostat[ctr_output].temp_pi_error = (int16_t)(INT16_MIN); Thermostat[ctr_output].temp_pi_error = (int16_t)(INT16_MIN);
} }
else if (aux_time_error >= (int32_t)INT16_MAX) { else if (aux_temp_error >= (int32_t)INT16_MAX) {
Thermostat[ctr_output].temp_pi_error = (int16_t)INT16_MAX; Thermostat[ctr_output].temp_pi_error = (int16_t)INT16_MAX;
} }
else { else {
Thermostat[ctr_output].temp_pi_error = (int16_t)aux_time_error; Thermostat[ctr_output].temp_pi_error = (int16_t)aux_temp_error;
} }
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller) // Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
@ -525,7 +536,6 @@ void ThermostatCalculatePI(uint8_t ctr_output)
} }
// Calculate integral (resolution increased to avoid use of floats in consequent operations) // Calculate integral (resolution increased to avoid use of floats in consequent operations)
//Thermostat[ctr_output].kI_pi = (uint16_t)(((float)Thermostat[ctr_output].kP_pi * ((float)((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60) / (float)Thermostat[ctr_output].time_reset)) * 100);
Thermostat[ctr_output].kI_pi = (uint16_t)((((uint32_t)Thermostat[ctr_output].kP_pi * (uint32_t)Thermostat[ctr_output].time_pi_cycle * 6000)) / (uint32_t)Thermostat[ctr_output].time_reset); Thermostat[ctr_output].kI_pi = (uint16_t)((((uint32_t)Thermostat[ctr_output].kP_pi * (uint32_t)Thermostat[ctr_output].time_pi_cycle * 6000)) / (uint32_t)Thermostat[ctr_output].time_reset);
// Reset of antiwindup // Reset of antiwindup
@ -547,32 +557,38 @@ void ThermostatCalculatePI(uint8_t ctr_output)
// integral actions // integral actions
// Update accumulated error // Update accumulated error
aux_time_error = (int32_t)Thermostat[ctr_output].temp_pi_accum_error + (int32_t)Thermostat[ctr_output].temp_pi_error; aux_temp_error = (int32_t)Thermostat[ctr_output].temp_pi_accum_error + (int32_t)Thermostat[ctr_output].temp_pi_error;
// Protect overflow // Protect overflow
if (aux_time_error <= (int32_t)INT16_MIN) { if (aux_temp_error <= (int32_t)INT16_MIN) {
Thermostat[ctr_output].temp_pi_accum_error = INT16_MIN; Thermostat[ctr_output].temp_pi_accum_error = INT16_MIN;
} }
else if (aux_time_error >= (int32_t)INT16_MAX) { else if (aux_temp_error >= (int32_t)INT16_MAX) {
Thermostat[ctr_output].temp_pi_accum_error = INT16_MAX; Thermostat[ctr_output].temp_pi_accum_error = INT16_MAX;
} }
else { else {
Thermostat[ctr_output].temp_pi_accum_error = (int16_t)aux_time_error; Thermostat[ctr_output].temp_pi_accum_error = (int16_t)aux_temp_error;
} }
// If we are under setpoint // If we are under setpoint
// AND we are within the hysteresis // AND we are within the hysteresis
// AND we are rising // AND the temperature is rising for heating or sinking for cooling
if ((Thermostat[ctr_output].temp_pi_error >= 0) if ( (Thermostat[ctr_output].temp_pi_error >= 0)
&& (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= (int16_t)Thermostat[ctr_output].temp_hysteresis) && (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= (int16_t)Thermostat[ctr_output].temp_hysteresis)
&& (Thermostat[ctr_output].temp_measured_gradient > 0)) { && ( ((Thermostat[ctr_output].temp_measured_gradient > 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))) {
// Reduce accumulator error 20% in each cycle // Reduce accumulator error 20% in each cycle
Thermostat[ctr_output].temp_pi_accum_error *= 0.8; Thermostat[ctr_output].temp_pi_accum_error *= 0.8;
} }
// If we are over setpoint // If we are over setpoint
// AND temperature is rising // AND temperature is rising for heating or sinking for cooling
else if ((Thermostat[ctr_output].temp_pi_error < 0) else if ((Thermostat[ctr_output].temp_pi_error < 0)
&& (Thermostat[ctr_output].temp_measured_gradient > 0)) { && ( ((Thermostat[ctr_output].temp_measured_gradient > 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))) {
// Reduce accumulator error 20% in each cycle // Reduce accumulator error 20% in each cycle
Thermostat[ctr_output].temp_pi_accum_error *= 0.8; Thermostat[ctr_output].temp_pi_accum_error *= 0.8;
} }
@ -608,21 +624,27 @@ void ThermostatCalculatePI(uint8_t ctr_output)
} }
// Target value limiter // Target value limiter
// If target value has been reached or we are over it]] // If target value has been reached or we are over it for heating or under it for cooling
if (Thermostat[ctr_output].temp_pi_error <= 0) { if (Thermostat[ctr_output].temp_pi_error <= 0) {
// If we are over the hysteresis or the gradient is positive // If we are over the hysteresis or the gradient is positive for heating or negative for cooling
if ((abs((Thermostat[ctr_output].temp_pi_error) / 10) > Thermostat[ctr_output].temp_hysteresis) if ((abs((Thermostat[ctr_output].temp_pi_error) / 10) > Thermostat[ctr_output].temp_hysteresis)
|| (Thermostat[ctr_output].temp_measured_gradient >= 0)) { || ( ((Thermostat[ctr_output].temp_measured_gradient >= 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ( (Thermostat[ctr_output].temp_measured_gradient <= 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))){
Thermostat[ctr_output].time_total_pi = 0; Thermostat[ctr_output].time_total_pi = 0;
} }
} }
// If target value has not been reached // If target value has not been reached
// AND we are withinvr the histeresis // AND we are within the histeresis
// AND gradient is positive // AND gradient is positive for heating or negative for cooling
// then set value to 0 // then set value to 0
else if ((Thermostat[ctr_output].temp_pi_error > 0) else if ((Thermostat[ctr_output].temp_pi_error > 0)
&& (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= Thermostat[ctr_output].temp_hysteresis) && (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= Thermostat[ctr_output].temp_hysteresis)
&& (Thermostat[ctr_output].temp_measured_gradient > 0)) { && (((Thermostat[ctr_output].temp_measured_gradient > 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))) {
Thermostat[ctr_output].time_total_pi = 0; Thermostat[ctr_output].time_total_pi = 0;
} }
@ -650,12 +672,14 @@ void ThermostatCalculatePI(uint8_t ctr_output)
void ThermostatWorkAutomaticPI(uint8_t ctr_output) void ThermostatWorkAutomaticPI(uint8_t ctr_output)
{ {
char result_chr[FLOATSZ]; // Remove! if ( (uptime >= Thermostat[ctr_output].time_ctr_checkpoint)
if ((uptime >= Thermostat[ctr_output].time_ctr_checkpoint)
|| (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr) || (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr)
|| ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level) || ( (( (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].temp_measured_gradient < 0) && (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].temp_measured_gradient > 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))
&& (Thermostat[ctr_output].status.status_cycle_active == CYCLE_OFF))) { && (Thermostat[ctr_output].status.status_cycle_active == CYCLE_OFF))) {
Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level; Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level;
ThermostatCalculatePI(ctr_output); ThermostatCalculatePI(ctr_output);
@ -673,12 +697,17 @@ void ThermostatWorkAutomaticPI(uint8_t ctr_output)
void ThermostatWorkAutomaticRampUp(uint8_t ctr_output) void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
{ {
int32_t aux_temp_delta; int16_t aux_temp_delta;
uint32_t time_in_rampup; uint32_t time_in_rampup;
int16_t temp_delta_rampup; int16_t temp_delta_rampup;
// Update timestamp for temperature at start of ramp-up if temperature still dropping // Update timestamp for temperature at start of ramp-up if temperature still
if (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_start) { // dropping for heating or rising for cooling
if ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_start)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_start)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))
{
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
} }
@ -691,16 +720,19 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level; Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level;
// If time in ramp-up < max time // If time in ramp-up < max time
// AND temperature measured < target // AND temperature measured < target for heating or > for cooling
if ((time_in_rampup <= (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max)) if ((time_in_rampup <= (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max))
&& (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level)) { && ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))){
// DEADTIME point reached // DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold // If temperature measured minus temperature at start of ramp-up >= threshold
// AND deadtime still 0 // AND deadtime still 0
if ((temp_delta_rampup >= Thermostat[ctr_output].temp_rampup_delta_out) if ( (abs(temp_delta_rampup) >= Thermostat[ctr_output].temp_rampup_delta_out)
&& (Thermostat[ctr_output].time_rampup_deadtime == 0)) { && (Thermostat[ctr_output].time_rampup_deadtime == 0)) {
// Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered // Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered
// minus open time of the valve (arround 3 minutes). If rise very fast limit it to delay of output valve // minus open time of the valve (arround 3 minutes). If rise/sink very fast limit it to delay of output valve
int32_t time_aux; int32_t time_aux;
time_aux = ((time_in_rampup / 2) - Thermostat[ctr_output].time_output_delay); time_aux = ((time_in_rampup / 2) - Thermostat[ctr_output].time_output_delay);
if (time_aux >= Thermostat[ctr_output].time_output_delay) { if (time_aux >= Thermostat[ctr_output].time_output_delay) {
@ -709,7 +741,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
else { else {
Thermostat[ctr_output].time_rampup_deadtime = Thermostat[ctr_output].time_output_delay; Thermostat[ctr_output].time_rampup_deadtime = Thermostat[ctr_output].time_output_delay;
} }
// Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour // Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup); Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle;
// Set auxiliary variables // Set auxiliary variables
@ -725,21 +757,16 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * Thermostat[ctr_output].counter_rampup_cycles; uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * Thermostat[ctr_output].counter_rampup_cycles;
// Translate into gradient per hour (thousandths of ° per hour) // Translate into gradient per hour (thousandths of ° per hour)
Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup); Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup);
if (Thermostat[ctr_output].temp_rampup_meas_gradient > 0) { if ( ((Thermostat[ctr_output].temp_rampup_meas_gradient > 0)
&& ((Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING)))
|| ((Thermostat[ctr_output].temp_rampup_meas_gradient < 0)
&& ((Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))) {
// Calculate time to switch Off and come out of ramp-up // Calculate time to switch Off and come out of ramp-up
// y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec // y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec
// Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed) // Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed)
// x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime // x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime
aux_temp_delta = (int32_t)(Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_rampup_cycle); aux_temp_delta =Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_rampup_cycle;
Thermostat[ctr_output].time_ctr_changepoint = (uint32_t)(uint32_t)(((uint32_t)(aux_temp_delta) * (uint32_t)(time_total_rampup)) / (uint32_t)temp_delta_rampup) + (uint32_t)Thermostat[ctr_output].time_rampup_nextcycle - (uint32_t)time_total_rampup - (uint32_t)Thermostat[ctr_output].time_rampup_deadtime;
// Protect overflow, if temperature goes down set max
if ((aux_temp_delta < 0)
||(temp_delta_rampup <= 0)) {
Thermostat[ctr_output].time_ctr_changepoint = uptime + (uint32_t)(60 * Thermostat[ctr_output].time_rampup_max);
}
else {
Thermostat[ctr_output].time_ctr_changepoint = (uint32_t)(uint32_t)(((uint32_t)(aux_temp_delta) * (uint32_t)(time_total_rampup)) / (uint32_t)temp_delta_rampup) + (uint32_t)Thermostat[ctr_output].time_rampup_nextcycle - (uint32_t)time_total_rampup - (uint32_t)Thermostat[ctr_output].time_rampup_deadtime;
}
// Calculate temperature for switching off the output // Calculate temperature for switching off the output
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1 // y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
@ -767,12 +794,18 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// If deadtime has not been calculated // If deadtime has not been calculated
// or checkpoint has not been calculated // or checkpoint has not been calculated
// or it is not yet time and temperature to switch it off acc. to calculations // or it is not yet time and temperature to switch it off acc. to calculations
// or gradient is <= 0 // or gradient is <= 0 for heating of >= 0 for cooling
if ((Thermostat[ctr_output].time_rampup_deadtime == 0) if ((Thermostat[ctr_output].time_rampup_deadtime == 0)
|| (Thermostat[ctr_output].time_ctr_checkpoint == 0) || (Thermostat[ctr_output].time_ctr_checkpoint == 0)
|| (uptime < Thermostat[ctr_output].time_ctr_changepoint) || (uptime < Thermostat[ctr_output].time_ctr_changepoint)
|| (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_output_off) || ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_output_off)
|| (Thermostat[ctr_output].temp_rampup_meas_gradient <= 0)) { && (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_output_off)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))
|| ( ((Thermostat[ctr_output].temp_rampup_meas_gradient <= 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ((Thermostat[ctr_output].temp_rampup_meas_gradient >= 0)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING)))) {
Thermostat[ctr_output].status.command_output = IFACE_ON; Thermostat[ctr_output].status.command_output = IFACE_ON;
} }
else { else {
@ -781,7 +814,10 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
} }
else { else {
// If we have not reached the temperature, start with an initial value for accumulated error for the PI controller // If we have not reached the temperature, start with an initial value for accumulated error for the PI controller
if (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level_ctr) { if ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level_ctr)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level_ctr)
&& (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING))) {
Thermostat[ctr_output].temp_pi_accum_error = Thermostat[ctr_output].temp_rampup_pi_acc_error; Thermostat[ctr_output].temp_pi_accum_error = Thermostat[ctr_output].temp_rampup_pi_acc_error;
} }
// Set to now time to get out of ramp-up // Set to now time to get out of ramp-up
@ -972,7 +1008,7 @@ void ThermostatGetLocalSensor(uint8_t ctr_output) {
if (value != Thermostat[ctr_output].temp_measured) { if (value != Thermostat[ctr_output].temp_measured) {
int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees
uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds
Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // hundreths of degrees per hour Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // thousandths of degrees per hour
Thermostat[ctr_output].temp_measured = value; Thermostat[ctr_output].temp_measured = value;
Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp; Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp;
} }
@ -1002,6 +1038,20 @@ void CmndThermostatModeSet(void)
} }
} }
void CmndClimateModeSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= CLIMATE_HEATING) && (value < CLIMATE_MODES_MAX)) {
Thermostat[ctr_output].status.climate_mode = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.climate_mode);
}
}
void CmndTempFrostProtectSet(void) void CmndTempFrostProtectSet(void)
{ {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
@ -1145,7 +1195,7 @@ void CmndTempMeasuredSet(void)
if (value != Thermostat[ctr_output].temp_measured) { if (value != Thermostat[ctr_output].temp_measured) {
int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees
uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds
Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // hundreths of degrees per hour Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // thousandths of degrees per hour
Thermostat[ctr_output].temp_measured = value; Thermostat[ctr_output].temp_measured = value;
Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp; Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp;
} }