New major Version

This commit is contained in:
stefanbode 2020-09-05 20:39:24 +02:00 committed by GitHub
parent d7b8f2846c
commit 5c7e73f29b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 355 additions and 230 deletions

View File

@ -23,29 +23,37 @@
\*********************************************************************************************/ \*********************************************************************************************/
#define XDRV_27 27 #define XDRV_27 27
#ifndef SHUTTER_STEPPER
#define SHUTTER_STEPPER
#endif
#define D_SHUTTER "SHUTTER" #define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS const uint16_t MOTOR_STOP_TIME = 500; // in mS
const uint8_t steps_per_second = 20; // FUNC_EVERY_50_MSECOND const uint8_t steps_per_second = 20; // FUNC_EVERY_50_MSECOND
const uint16_t pwm_max = 500;
const uint16_t pwm_min = 90;
uint8_t calibrate_pos[6] = {0,30,50,70,90,100}; uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100}; uint16_t messwerte[5] = {30,50,70,90,100};
uint16_t last_execute_step; uint16_t last_execute_step;
int32_t stop_position_delta = 20;
enum ShutterModes { SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE, SHT_OFF_ON__OPEN_CLOSE_STEPPER,}; const uint8_t MAX_MODES = 7;
enum ShutterPositionMode {SHT_UNDEF, SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
enum ShutterSwitchMode {SHT_SWITCH, SHT_PULSE,};
enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,}; enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,};
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|" const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_TOGGLE "|" D_CMND_SHUTTER_TOGGLEDIR "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|" D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_TOGGLE "|" D_CMND_SHUTTER_TOGGLEDIR "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_MODE "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_SETOPEN "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|" D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_SETOPEN "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|"
D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME "|" D_CMND_SHUTTER_INVERTWEBBUTTONS "|" D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME "|" D_CMND_SHUTTER_INVERTWEBBUTTONS "|"
D_CMND_SHUTTER_STOPOPEN "|" D_CMND_SHUTTER_STOPCLOSE "|" D_CMND_SHUTTER_STOPTOGGLE "|" D_CMND_SHUTTER_STOPTOGGLEDIR "|" D_CMND_SHUTTER_STOPPOSITION; D_CMND_SHUTTER_STOPOPEN "|" D_CMND_SHUTTER_STOPCLOSE "|" D_CMND_SHUTTER_STOPTOGGLE "|" D_CMND_SHUTTER_STOPTOGGLEDIR "|" D_CMND_SHUTTER_STOPPOSITION;
void (* const ShutterCommand[])(void) PROGMEM = { void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterToggle, &CmndShutterToggleDir, &CmndShutterStop, &CmndShutterPosition, &CmndShutterOpen, &CmndShutterClose, &CmndShutterToggle, &CmndShutterToggleDir, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterMode,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterSetOpen, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay, &CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterSetOpen, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
&CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime, &CmndShutterInvertWebButtons, &CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime, &CmndShutterInvertWebButtons,
&CmndShutterStopOpen, &CmndShutterStopClose, &CmndShutterStopToggle, &CmndShutterStopToggleDir, &CmndShutterStopPosition}; &CmndShutterStopOpen, &CmndShutterStopClose, &CmndShutterStopToggle, &CmndShutterStopToggleDir, &CmndShutterStopPosition};
@ -71,40 +79,65 @@ struct SHUTTER {
uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
int8_t lastdirection[MAX_SHUTTERS]; // last direction (1 == UP , -1 == down) int8_t lastdirection[MAX_SHUTTERS]; // last direction (1 == UP , -1 == down)
uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE uint8_t PositionMode = 0; // how to calculate actual position: SHT_TIME, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME
uint8_t SwitchMode = 0; // how to switch relays: SHT_SWITCH, SHT_PULSE
int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec. int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec.
int16_t pwm_frequency[MAX_SHUTTERS]; // frequency of PWN for stepper motors int16_t pwm_velocity[MAX_SHUTTERS]; // frequency of PWN for stepper motors or PWM duty cycle change for PWM servo
uint16_t max_pwm_frequency = 1000; // maximum of PWM frequency for openig the shutter. depend on the motor and drivers uint16_t pwm_value[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266
uint16_t max_close_pwm_frequency[MAX_SHUTTERS];// maximum of PWM frequency for closeing the shutter. depend on the motor and drivers uint16_t pwm_min[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266
uint16_t pwm_max[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266
uint16_t max_pwm_velocity = 1000; // maximum of PWM frequency for openig the shutter. depend on the motor and drivers
uint16_t max_close_pwm_velocity[MAX_SHUTTERS];// maximum of PWM frequency for closeing the shutter. depend on the motor and drivers
uint8_t skip_relay_change; // avoid overrun at endstops uint8_t skip_relay_change; // avoid overrun at endstops
int32_t accelerator[MAX_SHUTTERS]; // speed of ramp-up, ramp down of shutter int32_t accelerator[MAX_SHUTTERS]; // speed of ramp-up, ramp down of shutter
uint8_t start_reported = 0; uint8_t start_reported = 0;
} Shutter; } Shutter;
#define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B))
void ShutterLogPos(uint32_t i) void ShutterLogPos(uint32_t i)
{ {
char stemp2[10]; char stemp2[10];
dtostrfd((float)Shutter.time[i] / steps_per_second, 2, stemp2); dtostrfd((float)Shutter.time[i] / steps_per_second, 2, stemp2);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d"), AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d, PWM %d"),
i+1, Shutter.real_position[i], Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2, Shutter.pwm_frequency[i]); i+1, Shutter.real_position[i], Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2, Shutter.pwm_velocity[i], Shutter.pwm_value[i]);
}
void ExecuteCommandPowerShutter(uint32_t device, uint32_t state, uint32_t source)
{
if (device <= devices_present) ExecuteCommandPower(device,state,source);
}
void ShutterUpdateVelocity(uint8_t i)
{
Shutter.pwm_velocity[i] += Shutter.accelerator[i];
Shutter.pwm_velocity[i] = tmax(1,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_velocity : Shutter.max_close_pwm_velocity[i],Shutter.pwm_velocity[i]));
} }
void ShutterRtc50mS(void) void ShutterRtc50mS(void)
{ {
for (uint8_t i = 0; i < shutters_present; i++) { for (uint8_t i = 0; i < shutters_present; i++) {
Shutter.time[i]++; Shutter.time[i]++;
if (Shutter.accelerator[i]) { switch (Shutter.PositionMode) {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: accelerator i=%d -> %d"),i, Shutter.accelerator[i]); case SHT_PWM_VALUE:
Shutter.pwm_frequency[i] += Shutter.accelerator[i]; if (Shutter.accelerator[i]) ShutterUpdateVelocity(i);
Shutter.pwm_frequency[i] = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i],Shutter.pwm_frequency[i])); Shutter.real_position[i] += Shutter.direction[i] > 0 ? Shutter.pwm_velocity[i] : -Shutter.pwm_velocity[i];
analogWriteFreq(Shutter.pwm_frequency[i]); Shutter.pwm_value[i] = SHT_DIV_ROUND((Shutter.pwm_max[i]-Shutter.pwm_min[i]) * Shutter.real_position[i] , Shutter.open_max[i])+Shutter.pwm_min[i];
analogWrite(Pin(GPIO_PWM1, i), 50); analogWrite(Pin(GPIO_PWM1, i), Shutter.pwm_value[i]);
break;
case SHT_COUNTER:
if (Shutter.accelerator[i]) {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: accelerator i=%d -> %d"),i, Shutter.accelerator[i]);
ShutterUpdateVelocity(i);
analogWriteFreq(Shutter.pwm_velocity[i]);
analogWrite(Pin(GPIO_PWM1, i), 50);
}
break;
} }
} }
} }
#define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B))
int32_t ShutterPercentToRealPosition(uint32_t percent, uint32_t index) int32_t ShutterPercentToRealPosition(uint32_t percent, uint32_t index)
{ {
if (Settings.shutter_set50percent[index] != 50) { if (Settings.shutter_set50percent[index] != 50) {
@ -176,7 +209,7 @@ void ShutterInit(void)
// if shutter 4 is unused // if shutter 4 is unused
if (Settings.shutter_startrelay[MAX_SHUTTERS -1] == 0) { if (Settings.shutter_startrelay[MAX_SHUTTERS -1] == 0) {
Shutter.max_pwm_frequency = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : Shutter.max_pwm_frequency; Shutter.max_pwm_velocity = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : Shutter.max_pwm_velocity;
} }
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) { for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase // set startrelay to 1 on first init, but only to shutter 1. 90% usecase
@ -194,22 +227,35 @@ void ShutterInit(void)
relay_in_interlock = true; relay_in_interlock = true;
} }
} }
if (relay_in_interlock) { switch (Settings.pulse_timer[i]) {
if (Settings.pulse_timer[i] > 0) { case 0:
Shutter.mode = SHT_PULSE_OPEN__PULSE_CLOSE; Shutter.SwitchMode = SHT_SWITCH;
} else { break;
Shutter.mode = SHT_OFF_OPEN__OFF_CLOSE; default:
Shutter.SwitchMode = SHT_PULSE;
break;
}
if (Settings.shutter_mode == SHT_UNDEF) {
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: mode undef.. calculate..."));
switch (Settings.pulse_timer[i+1]) {
case 0:
Shutter.PositionMode = SHT_TIME_GARAGE;
break;
default:
if (relay_in_interlock) {
Shutter.PositionMode = SHT_TIME;
} else {
Shutter.PositionMode = SHT_TIME_UP_DOWN;
if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) {
Shutter.PositionMode = SHT_COUNTER;
}
}
break;
} }
} else { } else {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE; Shutter.PositionMode = Settings.shutter_mode;
if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE_STEPPER;
Shutter.pwm_frequency[i] = 0;
Shutter.accelerator[i] = 0;
analogWriteFreq(Shutter.pwm_frequency[i]);
analogWrite(Pin(GPIO_PWM1, i), 0);
// ExecuteCommandPower(Settings.shutter_startrelay[i]+2, 0, SRC_SHUTTER);
}
} }
TickerShutter.attach_ms(50, ShutterRtc50mS ); TickerShutter.attach_ms(50, ShutterRtc50mS );
@ -220,11 +266,13 @@ void ShutterInit(void)
Shutter.open_time[i] = (Settings.shutter_opentime[i] > 0) ? Settings.shutter_opentime[i] : 100; Shutter.open_time[i] = (Settings.shutter_opentime[i] > 0) ? Settings.shutter_opentime[i] : 100;
Shutter.close_time[i] = (Settings.shutter_closetime[i] > 0) ? Settings.shutter_closetime[i] : 100; Shutter.close_time[i] = (Settings.shutter_closetime[i] > 0) ? Settings.shutter_closetime[i] : 100;
Shutter.pwm_min[i] = pwm_min;
Shutter.pwm_max[i] = pwm_max;
// Update Calculation 20 because time interval is 0.05 sec // Update Calculation 20 because time interval is 0.05 sec
Shutter.open_max[i] = 200 * Shutter.open_time[i]; Shutter.open_max[i] = 200 * Shutter.open_time[i];
Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ; Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ;
Shutter.max_close_pwm_frequency[i] = Shutter.max_pwm_frequency*Shutter.open_time[i] / Shutter.close_time[i];
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d Closefreq: %d"),i, Shutter.max_close_pwm_frequency[i]);
// calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part // calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part
if (Settings.shutter_set50percent[i] != 50) { if (Settings.shutter_set50percent[i] != 50) {
@ -240,9 +288,17 @@ void ShutterInit(void)
Shutter.motordelay[i] = Settings.shutter_motordelay[i]; Shutter.motordelay[i] = Settings.shutter_motordelay[i];
Shutter.lastdirection[i] = (50 < Settings.shutter_position[i]) ? 1 : -1; Shutter.lastdirection[i] = (50 < Settings.shutter_position[i]) ? 1 : -1;
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT%d: Init. Pos: %d,inverted %d, locked %d, end stop time enabled %d, webButtons inverted %d, shuttermode %d"), switch (Shutter.PositionMode) {
case SHT_COUNTER:
case SHT_PWM_VALUE:
Shutter.max_close_pwm_velocity[i] = Shutter.max_pwm_velocity*Shutter.open_time[i] / Shutter.close_time[i];
break;
}
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d Closevel: %d"),i, Shutter.max_close_pwm_velocity[i]);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT%d: Init. Pos: %d,inverted %d, locked %d, end stop time enabled %d, webButtons inverted %d"),
i+1, Shutter.real_position[i], i+1, Shutter.real_position[i],
(Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, (Settings.shutter_options[i]&8) ? 1 : 0, Shutter.mode); (Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, (Settings.shutter_options[i]&8) ? 1 : 0);
} else { } else {
// terminate loop at first INVALID shutter. // terminate loop at first INVALID shutter.
@ -250,6 +306,7 @@ void ShutterInit(void)
} }
ShutterLimitRealAndTargetPositions(i); ShutterLimitRealAndTargetPositions(i);
Settings.shutter_accuracy = 1; Settings.shutter_accuracy = 1;
Settings.shutter_mode = Shutter.PositionMode;
} }
} }
@ -290,101 +347,130 @@ void ShutterLimitRealAndTargetPositions(uint32_t i) {
if (Shutter.target_position[i]>Shutter.open_max[i]) Shutter.target_position[i] = Shutter.open_max[i]; if (Shutter.target_position[i]>Shutter.open_max[i]) Shutter.target_position[i] = Shutter.open_max[i];
} }
void ShutterCalculateAccelerator(uint8_t i)
{
switch (Shutter.PositionMode) {
case SHT_COUNTER:
case SHT_PWM_VALUE:
int32_t max_frequency = Shutter.direction[i] == 1 ? Shutter.max_pwm_velocity : Shutter.max_close_pwm_velocity[i];
int32_t max_freq_change_per_sec = Shutter.max_pwm_velocity*steps_per_second / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
int32_t min_runtime_ms = Shutter.pwm_velocity[i]*1000 / max_freq_change_per_sec;
int32_t velocity = Shutter.direction[i] == 1 ? 100 : Shutter.close_velocity[i];
int32_t minstopway = min_runtime_ms * velocity / 100 * Shutter.pwm_velocity[i] / max_frequency * Shutter.direction[i] ;
int32_t next_possible_stop = Shutter.real_position[i] + minstopway ;
stop_position_delta =200 * Shutter.pwm_velocity[i]/max_frequency + Shutter.direction[i] * (next_possible_stop - Shutter.target_position[i]);
//Shutter.accelerator[i] = tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200);
//int32_t act_freq_change = max_freq_change_per_sec/20;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, velocity %d, minstopway %d,cur_freq %d, max_frequency %d, act_freq_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d"),Shutter.time[i],velocity,minstopway,
Shutter.pwm_velocity[i],max_frequency, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i]);
if (Shutter.accelerator[i] < 0 || next_possible_stop * Shutter.direction[i] > (Shutter.target_position[i]- (100 * Shutter.direction[i])) * Shutter.direction[i] ) {
Shutter.accelerator[i] = - tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp down: acc: %d"), Shutter.accelerator[i]);
} else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_velocity[i] == max_frequency) {
Shutter.accelerator[i] = 0;
}
break;
}
}
void ShutterDecellerateForStop(uint8_t i)
{
switch (Shutter.PositionMode) {
case SHT_PWM_VALUE:
case SHT_COUNTER:
int16_t missing_steps;
Shutter.accelerator[i] = -(Shutter.direction[i] == 1 ? Shutter.max_pwm_velocity : Shutter.max_close_pwm_velocity[i])/(Shutter.motordelay[i]+1);
while (Shutter.pwm_velocity[i] > -Shutter.accelerator[i]) {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: velocity: %ld, delta: %d"), Shutter.pwm_velocity[i], Shutter.accelerator[i] );
//Shutter.pwm_velocity[i] = tmax(Shutter.pwm_velocity[i]-Shutter.accelerator[i] , 0);
// Control will be done in RTC Ticker.
delay(50);
}
if (Shutter.PositionMode == SHT_COUNTER){
missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_velocity/2000) - RtcSettings.pulse_counter[i];
//prepare for stop PWM
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_velocity[i]);
Shutter.accelerator[i] = 0;
Shutter.pwm_velocity[i] = Shutter.pwm_velocity[i] > 250 ? 250 : Shutter.pwm_velocity[i];
analogWriteFreq(Shutter.pwm_velocity[i]);
analogWrite(Pin(GPIO_PWM1, i), 50);
Shutter.pwm_velocity[i] = 0;
analogWriteFreq(Shutter.pwm_velocity[i]);
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_velocity/2000) {
delay(1);
}
analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog
Shutter.real_position[i] = ShutterCalculatePosition(i);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Real %d, pulsecount %d, start %d"), Shutter.real_position[i],RtcSettings.pulse_counter[i], Shutter.start_position[i]);
}
Shutter.direction[i] = 0;
break;
}
}
void ShutterPowerOff(uint8_t i) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Shutter %d .."), i);
ShutterDecellerateForStop(i);
if (Shutter.direction[i] !=0) {
Shutter.direction[i] = 0;
delay(MOTOR_STOP_TIME);
}
switch (Shutter.SwitchMode) {
case SHT_SWITCH:
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
}
if ((1 << (Settings.shutter_startrelay[i])) & power) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_PULSE:
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : (uint8_t)(Shutter.PositionMode == SHT_TIME)) ;
// we have a momentary switch here. Needs additional pulse on same relay after the end
if ((SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source)) {
ExecuteCommandPowerShutter(cur_relay, 1, SRC_SHUTTER);
// switch off direction relay to make it power less
if ((1 << (Settings.shutter_startrelay[i])) & power) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
} else {
last_source = SRC_SHUTTER;
}
break;
}
}
void ShutterUpdatePosition(void) void ShutterUpdatePosition(void)
{ {
char scommand[CMDSZ]; char scommand[CMDSZ];
char stopic[TOPSZ]; char stopic[TOPSZ];
stop_position_delta = 20;
for (uint32_t i = 0; i < shutters_present; i++) { for (uint32_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i] != 0) { if (Shutter.direction[i] != 0) {
int32_t stop_position_delta = 20;
// Calculate position with counter. Much more accurate and no need for motordelay workaround // Calculate position with counter. Much more accurate and no need for motordelay workaround
// adding some steps to stop early // adding some steps to stop early
Shutter.real_position[i] = ShutterCounterBasedPosition(i); Shutter.real_position[i] = ShutterCalculatePosition(i);
if (!Shutter.start_reported) { if (!Shutter.start_reported) {
ShutterReportPosition(true, i); ShutterReportPosition(true, i);
XdrvRulesProcess(); XdrvRulesProcess();
Shutter.start_reported = 1; Shutter.start_reported = 1;
} }
ShutterCalculateAccelerator(i);
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) { if ( Shutter.real_position[i] * Shutter.direction[i] + stop_position_delta >= Shutter.target_position[i] * Shutter.direction[i] ) {
int32_t max_frequency = Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i]; if (Shutter.direction[i] != 0) {
int32_t max_freq_change_per_sec = Shutter.max_pwm_frequency*steps_per_second / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1); Shutter.lastdirection[i] = Shutter.direction[i];
int32_t min_runtime_ms = Shutter.pwm_frequency[i]*1000 / max_freq_change_per_sec;
int32_t velocity = Shutter.direction[i] == 1 ? 100 : Shutter.close_velocity[i];
int32_t minstopway = min_runtime_ms * velocity / 100 * Shutter.pwm_frequency[i] / max_frequency * Shutter.direction[i] ;
int32_t next_possible_stop = Shutter.real_position[i] + minstopway ;
stop_position_delta =200 * Shutter.pwm_frequency[i]/max_frequency + Shutter.direction[i] * (next_possible_stop - Shutter.target_position[i]);
//Shutter.accelerator[i] = tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200);
//int32_t act_freq_change = max_freq_change_per_sec/20;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, velocity %d, minstopway %d,cur_freq %d, max_frequency %d, act_freq_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d"),Shutter.time[i],velocity,minstopway,
Shutter.pwm_frequency[i],max_frequency, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i]);
if (Shutter.accelerator[i] < 0 || next_possible_stop * Shutter.direction[i] > (Shutter.target_position[i]- (100 * Shutter.direction[i])) * Shutter.direction[i] ) {
Shutter.accelerator[i] = - tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp down: acc: %d"), Shutter.accelerator[i]);
} else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_frequency[i] == max_frequency) {
Shutter.accelerator[i] = 0;
}
} else {
Shutter.real_position[i] = Shutter.start_position[i] + ( (Shutter.time[i] - Shutter.motordelay[i]) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
}
if ( Shutter.real_position[i] * Shutter.direction[i] + stop_position_delta >= Shutter.target_position[i] * Shutter.direction[i] ) {
// calculate relay number responsible for current movement.
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Stop Condition detected: real: %d, Target: %d, direction: %d"),Shutter.real_position[i], Shutter.target_position[i],Shutter.direction[i]);
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : 1) ;
int16_t missing_steps;
switch (Shutter.mode) {
case SHT_PULSE_OPEN__PULSE_CLOSE:
// we have a momentary switch here. Needs additional pulse on same relay after the end
if (SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source) {
ExecuteCommandPower(cur_relay, 1, SRC_SHUTTER);
} else {
last_source = SRC_SHUTTER;
}
break;
case SHT_OFF_ON__OPEN_CLOSE_STEPPER:
missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) - RtcSettings.pulse_counter[i];
//prepare for stop PWM
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_frequency[i]);
Shutter.accelerator[i] = 0;
Shutter.pwm_frequency[i] = Shutter.pwm_frequency[i] > 250 ? 250 : Shutter.pwm_frequency[i];
analogWriteFreq(Shutter.pwm_frequency[i]);
analogWrite(Pin(GPIO_PWM1, i), 50);
Shutter.pwm_frequency[i] = 0;
analogWriteFreq(Shutter.pwm_frequency[i]);
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) {
delay(1);
}
analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog
// ExecuteCommandPower(Settings.shutter_startrelay[i]+2, 0, SRC_SHUTTER);
Shutter.real_position[i] = ShutterCounterBasedPosition(i);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Real %d, pulsecount %d, start %d"), Shutter.real_position[i],RtcSettings.pulse_counter[i], Shutter.start_position[i]);
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_OFF_ON__OPEN_CLOSE:
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_OFF_OPEN__OFF_CLOSE:
// avoid switching OFF a relay already OFF
if ((1 << (cur_relay-1)) & power) {
// Relay is on and need to be switched off.
ExecuteCommandPower(cur_relay, 0, SRC_SHUTTER);
}
break;
} }
ShutterPowerOff(i);
ShutterLimitRealAndTargetPositions(i); ShutterLimitRealAndTargetPositions(i);
Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i); Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i);
@ -397,11 +483,6 @@ void ShutterUpdatePosition(void)
GetTopic_P(stopic, STAT, mqtt_topic, scommand); GetTopic_P(stopic, STAT, mqtt_topic, scommand);
Response_P("%d", (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]); Response_P("%d", (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]);
MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN
if (Shutter.direction[i] != 0) {
Shutter.lastdirection[i] = Shutter.direction[i];
}
Shutter.direction[i] = 0;
ShutterReportPosition(true, i); ShutterReportPosition(true, i);
rules_flag.shutter_moved = 1; rules_flag.shutter_moved = 1;
XdrvRulesProcess(); XdrvRulesProcess();
@ -425,14 +506,20 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
|| ( (-1 == direction) && (Shutter.real_position[i] / Shutter.close_velocity[i] <= 2)) ) { || ( (-1 == direction) && (Shutter.real_position[i] / Shutter.close_velocity[i] <= 2)) ) {
Shutter.skip_relay_change = 1; Shutter.skip_relay_change = 1;
} else { } else {
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) { Shutter.pwm_velocity[i] = 0;
Shutter.pwm_frequency[i] = 0; switch (Shutter.PositionMode) {
analogWriteFreq(Shutter.pwm_frequency[i]); #ifdef SHUTTER_STEPPER
analogWrite(Pin(GPIO_PWM1, i), 0); case SHT_COUNTER:
RtcSettings.pulse_counter[i] = 0; analogWriteFreq(Shutter.pwm_velocity[i]);
Shutter.accelerator[i] = Shutter.max_pwm_frequency / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1); analogWrite(Pin(GPIO_PWM1, i), 0);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp up: %d"), Shutter.accelerator[i]); RtcSettings.pulse_counter[i] = 0;
break;
#endif
case SHT_PWM_VALUE:
Shutter.max_pwm_velocity = 100;
break;
} }
Shutter.accelerator[i] = Shutter.max_pwm_velocity / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
Shutter.target_position[i] = target_pos; Shutter.target_position[i] = target_pos;
Shutter.start_position[i] = Shutter.real_position[i]; Shutter.start_position[i] = Shutter.real_position[i];
Shutter.time[i] = 0; Shutter.time[i] = 0;
@ -441,40 +528,31 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
rules_flag.shutter_moving = 1; rules_flag.shutter_moving = 1;
rules_flag.shutter_moved = 0; rules_flag.shutter_moved = 0;
Shutter.start_reported = 0; Shutter.start_reported = 0;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d, max_freq %d, dir %d, freq %d"),Shutter.real_position[i], Shutter.start_position[i] ,RtcSettings.pulse_counter[i],Shutter.max_pwm_frequency , Shutter.direction[i] ,Shutter.max_pwm_frequency ); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d, max_freq %d, dir %d, freq %d"),Shutter.real_position[i], Shutter.start_position[i] ,RtcSettings.pulse_counter[i],Shutter.max_pwm_velocity , Shutter.direction[i] ,Shutter.max_pwm_velocity );
} }
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), i, Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i]); //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Start shutter: %d from %d to %d in direction %d"), i, Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i]);
} }
void ShutterWaitForMotorStop(uint32_t i)
int32_t ShutterCalculatePosition(uint32_t i)
{ {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Wait for Motorstop..")); switch (Shutter.PositionMode) {
if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) { case SHT_COUNTER:
if (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode) { return ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_velocity)+Shutter.start_position[i];
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Frequency change %d"), Shutter.pwm_frequency); break;
while (Shutter.pwm_frequency[i] > 0) { case SHT_TIME:
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Frequency: %ld, delta: %d"), Shutter.pwm_frequency[i], (int32_t)((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) ); case SHT_TIME_UP_DOWN:
Shutter.pwm_frequency[i] = tmax(Shutter.pwm_frequency[i]-((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) , 0); case SHT_TIME_GARAGE:
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Frequency: %ld"), Shutter.pwm_frequency[i]); return Shutter.start_position[i] + ( (Shutter.time[i] - Shutter.motordelay[i]) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
analogWriteFreq(Shutter.pwm_frequency[i]); break;
analogWrite(Pin(GPIO_PWM1, i), 50); case SHT_PWM_TIME:
delay(50); break;
} case SHT_PWM_VALUE:
analogWrite(Pin(GPIO_PWM1, i), 0); return Shutter.real_position[i];
// ExecuteCommandPower(Settings.shutter_startrelay[i]+2, 0, SRC_SHUTTER); break;
Shutter.real_position[i] = ShutterCounterBasedPosition(i); default:
} else { break;
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
delay(MOTOR_STOP_TIME);
} }
} else {
delay(MOTOR_STOP_TIME);
}
}
int32_t ShutterCounterBasedPosition(uint32_t i)
{
return ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency)+Shutter.start_position[i];
} }
void ShutterRelayChanged(void) void ShutterRelayChanged(void)
@ -487,45 +565,72 @@ void ShutterRelayChanged(void)
for (uint32_t i = 0; i < shutters_present; i++) { for (uint32_t i = 0; i < shutters_present; i++) {
power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3; power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3;
// SRC_IGNORE added because INTERLOCK function bite causes this as last source for changing the relay.
//uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; //uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed);
if (manual_relays_changed) { if (manual_relays_changed) {
//Shutter.skip_relay_change = true; //Shutter.skip_relay_change = true;
ShutterLimitRealAndTargetPositions(i); ShutterLimitRealAndTargetPositions(i);
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE || Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) { switch (Shutter.SwitchMode ) {
ShutterWaitForMotorStop(i); case SHT_PULSE:
switch (powerstate_local) { if (Shutter.direction[i] != 0 && powerstate_local) {
case 1: Shutter.target_position[i] = Shutter.real_position[i];
ShutterStartInit(i, 1, Shutter.open_max[i]); powerstate_local = 0;
break; AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed);
case 3: }
ShutterStartInit(i, -1, 0); break;
break; default:
default: last_source = SRC_SHUTTER; // avoid switch off in the next loop
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor."),i); if (Shutter.direction[i] != 0 )ShutterPowerOff(i);
Shutter.target_position[i] = Shutter.real_position[i]; }
} switch (Shutter.PositionMode) {
} else { // enum ShutterPositionMode {SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
if (Shutter.direction[i] != 0 && (!powerstate_local || (powerstate_local && Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE))) { case SHT_TIME_UP_DOWN:
Shutter.target_position[i] = Shutter.real_position[i]; case SHT_COUNTER:
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); case SHT_PWM_VALUE:
} else { case SHT_PWM_TIME:
last_source = SRC_SHUTTER; // avoid switch off in the next loop ShutterPowerOff(i);
if (powerstate_local == 2) { // testing on CLOSE relay, if ON switch (powerstate_local) {
// close with relay two case 1:
ShutterWaitForMotorStop(i); ShutterStartInit(i, 1, Shutter.open_max[i]);
ShutterStartInit(i, -1, 0); break;
} else { case 3:
// opens with relay one ShutterStartInit(i, -1, 0);
ShutterWaitForMotorStop(i); break;
ShutterStartInit(i, 1, Shutter.open_max[i]); default:
} //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor."),i);
} Shutter.target_position[i] = Shutter.real_position[i];
}
break;
case SHT_TIME:
switch (powerstate_local) {
case 1:
ShutterStartInit(i, 1, Shutter.open_max[i]);
break;
case 2:
ShutterStartInit(i, -1, 0);
break;
default:
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor."),i);
Shutter.target_position[i] = Shutter.real_position[i];
}
break;
case SHT_TIME_GARAGE:
switch (powerstate_local) {
case 1:
ShutterStartInit(i, Shutter.lastdirection[i]*-1 , Shutter.lastdirection[i] == 1 ? 0 : Shutter.open_max[i]);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d Garage. NewTarget %d"), i, Shutter.target_position[i]);
break;
default:
Shutter.target_position[i] = Shutter.real_position[i];
}
} // switch (Shutter.PositionMode)
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i+1, Shutter.target_position[i], powerstate_local); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i+1, Shutter.target_position[i], powerstate_local);
} } // if (manual_relays_changed)
} } // for (uint32_t i = 0; i < shutters_present; i++)
}
} }
bool ShutterButtonIsSimultaneousHold(uint32_t button_index, uint32_t shutter_index) { bool ShutterButtonIsSimultaneousHold(uint32_t button_index, uint32_t shutter_index) {
@ -723,12 +828,12 @@ void ShutterSetPosition(uint32_t device, uint32_t position)
{ {
char svalue[32]; // Command and number parameter char svalue[32]; // Command and number parameter
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position); snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position);
ExecuteCommand(svalue, SRC_IGNORE); ExecuteCommand(svalue, SRC_SHUTTER);
} }
void ShutterToggle(bool dir) void ShutterToggle(bool dir)
{ {
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Payload toggle: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Payload toggle: %d, i %d, dir %d"), XdrvMailbox.payload, XdrvMailbox.index, dir);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) { if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload; XdrvMailbox.index = XdrvMailbox.payload;
} }
@ -843,6 +948,8 @@ void CmndShutterStop(void)
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop moving %d: dir: %d"), XdrvMailbox.index, Shutter.direction[i]); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop moving %d: dir: %d"), XdrvMailbox.index, Shutter.direction[i]);
// set stop position 10 steps ahead (0.5sec to allow normal stop) // set stop position 10 steps ahead (0.5sec to allow normal stop)
//ToDo: Replace with function
int32_t temp_realpos = Shutter.start_position[i] + ( (Shutter.time[i]+10) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i])); int32_t temp_realpos = Shutter.start_position[i] + ( (Shutter.time[i]+10) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, i); XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, i);
//XdrvMailbox.payload = Settings.shuttercoeff[2][i] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][i] : (temp_realpos-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i]; //XdrvMailbox.payload = Settings.shuttercoeff[2][i] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][i] : (temp_realpos-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i];
@ -900,7 +1007,7 @@ void CmndShutterPosition(void)
if (XdrvMailbox.payload != -99) { if (XdrvMailbox.payload != -99) {
//target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent; //target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent;
Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index); Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index);
//Shutter.accelerator[index] = Shutter.max_pwm_frequency / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1); //Shutter.accelerator[index] = Shutter.max_pwm_velocity / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1);
//Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index]; //Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent);
} }
@ -911,44 +1018,50 @@ void CmndShutterPosition(void)
} }
int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1; int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1;
if (Shutter.direction[index] == -new_shutterdirection) { if (Shutter.direction[index] == -new_shutterdirection) {
// direction need to be changed. on momentary switches first stop the Shutter ShutterPowerOff(index);
if (SHT_PULSE_OPEN__PULSE_CLOSE == Shutter.mode) {
// code for momentary shutters only small switch on to stop Shutter
ExecuteCommandPower(Settings.shutter_startrelay[index] + ((new_shutterdirection == 1) ? 0 : 1), 1, SRC_SHUTTER);
delay(100);
} else {
if (SHT_OFF_OPEN__OFF_CLOSE == Shutter.mode) {
ExecuteCommandPower(Settings.shutter_startrelay[index] + ((new_shutterdirection == 1) ? 1 : 0), 0, SRC_SHUTTER);
ShutterWaitForMotorStop(index);
}
}
} }
if (Shutter.direction[index] != new_shutterdirection) { if (Shutter.direction[index] != new_shutterdirection) {
if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) { ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay5 5s, xdrv %d"), XdrvMailbox.payload); switch (Shutter.PositionMode) {
ShutterWaitForMotorStop(index); case SHT_COUNTER:
ExecuteCommandPower(Settings.shutter_startrelay[index], 0, SRC_SHUTTER); case SHT_PWM_TIME:
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]); case SHT_PWM_VALUE:
if (Shutter.skip_relay_change == 0) { case SHT_TIME_UP_DOWN:
// Code for shutters with circuit safe configuration, switch the direction Relay if (!Shutter.skip_relay_change) {
ExecuteCommandPower(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER); // Code for shutters with circuit safe configuration, switch the direction Relay
// power on ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); // power on
if (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[index]+2, 1, SRC_SHUTTER);
} }
} if (Shutter.PositionMode != SHT_TIME_UP_DOWN) ExecuteCommandPowerShutter(Settings.shutter_startrelay[index]+2, 1, SRC_SHUTTER);
} else { break;
// now start the motor for the right direction, work for momentary and normal shutters. case SHT_TIME:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Start in dir %d"), Shutter.direction[index]); if (!Shutter.skip_relay_change) {
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]); if ( (power >> (Settings.shutter_startrelay[index] -1)) & 3 > 0 ) {
if (Shutter.skip_relay_change == 0) { ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), Shutter.SwitchMode == SHT_SWITCH ? 0 : 1, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER); }
} ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay6 5s, xdrv %d"), XdrvMailbox.payload); }
} break;
case SHT_TIME_GARAGE:
if (!Shutter.skip_relay_change) {
if (new_shutterdirection == Shutter.lastdirection[index]) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Garage not move in this direction: %d"), Shutter.SwitchMode == SHT_PULSE);
for (uint8_t k=0 ; k <= (uint8_t)(Shutter.SwitchMode == SHT_PULSE) ; k++) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
delay(500);
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 0, SRC_SHUTTER);
delay(500);
}
// reset shutter time to avoid 2 seconds above count as runtime
Shutter.time[index] = 0;
} // if (new_shutterdirection == Shutter.lastdirection[index])
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
} // if (!Shutter.skip_relay_change)
break;
} // switch (Shutter.PositionMode)
Shutter.switched_relay = 0; Shutter.switched_relay = 0;
} } // if (Shutter.direction[index] != new_shutterdirection)
} else { } else {
target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index); target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index);
ShutterReportPosition(true, index); ShutterReportPosition(true, index);
@ -1015,6 +1128,18 @@ void CmndShutterMotorDelay(void)
} }
} }
void CmndShutterMode(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= MAX_MODES)) {
Shutter.PositionMode = XdrvMailbox.payload;
Settings.shutter_mode = XdrvMailbox.payload;
ShutterInit();
ResponseCmndNumber(XdrvMailbox.payload); // ????
} else {
ResponseCmndNumber(Shutter.PositionMode);
}
}
void CmndShutterRelay(void) void CmndShutterRelay(void)
{ {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
@ -1184,14 +1309,14 @@ void CmndShutterSetHalfway(void)
void CmndShutterFrequency(void) void CmndShutterFrequency(void)
{ {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) {
Shutter.max_pwm_frequency = XdrvMailbox.payload; Shutter.max_pwm_velocity = XdrvMailbox.payload;
if (shutters_present < 4) { if (shutters_present < 4) {
Settings.shuttercoeff[4][3] = Shutter.max_pwm_frequency; Settings.shuttercoeff[4][3] = Shutter.max_pwm_velocity;
} }
ShutterInit(); ShutterInit();
ResponseCmndNumber(XdrvMailbox.payload); // ???? ResponseCmndNumber(XdrvMailbox.payload); // ????
} else { } else {
ResponseCmndNumber(Shutter.max_pwm_frequency); ResponseCmndNumber(Shutter.max_pwm_velocity);
} }
} }
@ -1353,7 +1478,7 @@ bool Xdrv27(uint8_t function)
result = true; result = true;
Shutter.skip_relay_change = 0; Shutter.skip_relay_change = 0;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"),i); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"),i);
ExecuteCommandPower(i+1, 0, SRC_SHUTTER); ExecuteCommandPowerShutter(i+1, 0, SRC_SHUTTER);
} }
break; break;
case FUNC_BUTTON_PRESSED: case FUNC_BUTTON_PRESSED: