Editorial changes

- harmonized variable naming
- add more code comments to help others to understand
- SWITCH/PULSE now defined for each shutter.
This commit is contained in:
stefanbode 2020-09-09 08:58:00 +02:00 committed by GitHub
parent 72afb15601
commit 60aeeb445f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 128 additions and 122 deletions

View File

@ -30,26 +30,25 @@
#define D_SHUTTER "SHUTTER" #define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS const uint16_t MOTOR_STOP_TIME = 500; // in mS
const uint16_t RESOLUTION = 1000; const uint16_t RESOLUTION = 1000; // incresed to 1000 in 8.5 to ramp servos
const uint8_t STEPS_PER_SECOND = 20; // FUNC_EVERY_50_MSECOND const uint8_t STEPS_PER_SECOND = 20; // FUNC_EVERY_50_MSECOND
const uint16_t pwm_max = 500; const uint16_t pwm_max = 500;
const uint16_t pwm_min = 90; const uint16_t pwm_min = 90;
uint8_t calibrate_pos[6] = {0,30,50,70,90,100}; uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100}; uint16_t messwerte[5] = {30,50,70,90,100};
uint16_t last_execute_step;
int32_t max_velocity = 0; int32_t velocity_max = 0;
int32_t max_velocity_change_per_step = 0; int32_t velocity_change_per_step_max = 0;
int32_t min_runtime_ms = 0; int32_t min_runtime_ms = 0;
int32_t minstopway = 0; int32_t current_stop_way = 0;
int32_t next_possible_stop = 0; int32_t next_possible_stop_position = 0;
int32_t toBeAcc = 0; int32_t toBeAcc = 0;
const uint8_t MAX_MODES = 7; const uint8_t MAX_MODES = 7;
enum ShutterPositionMode {SHT_UNDEF, SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,}; enum Shutterposition_mode {SHT_UNDEF, SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
enum ShutterSwitchMode {SHT_SWITCH, SHT_PULSE,}; enum Shutterswitch_mode {SHT_SWITCH, SHT_PULSE,};
enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,}; enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,};
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|" const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
@ -74,9 +73,9 @@ void (* const ShutterCommand[])(void) PROGMEM = {
Ticker TickerShutter; Ticker TickerShutter;
struct SHUTTER { struct SHUTTER {
power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter power_t RelayShutterMask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes. power_t RelayOldMask = 0; // bitmatrix that contain the last known state of all relays. Required to detemine the manual changed relay.
power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed. power_t RelayCurrentMask = 0; // bitmatrix that contain the current state of all relays
uint32_t time[MAX_SHUTTERS]; // operating time of the shutter in 0.05sec uint32_t time[MAX_SHUTTERS]; // operating time of the shutter in 0.05sec
int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated
int32_t target_position[MAX_SHUTTERS]; // position to go to int32_t target_position[MAX_SHUTTERS]; // position to go to
@ -87,18 +86,18 @@ struct SHUTTER {
uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
int8_t lastdirection[MAX_SHUTTERS]; // last direction (1 == UP , -1 == down) int8_t lastdirection[MAX_SHUTTERS]; // last direction (1 == UP , -1 == down)
uint8_t PositionMode = 0; // how to calculate actual position: SHT_TIME, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME uint8_t position_mode=0; // how to calculate actual position: SHT_TIME, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME
uint8_t SwitchMode = 0; // how to switch relays: SHT_SWITCH, SHT_PULSE uint8_t switch_mode[MAX_SHUTTERS]; // how to switch relays: SHT_SWITCH, SHT_PULSE
int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec. int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec. Also uses for ramp at steppers and servos
int16_t pwm_velocity[MAX_SHUTTERS]; // frequency of PWN for stepper motors or PWM duty cycle change for PWM servo int16_t pwm_velocity[MAX_SHUTTERS]; // frequency of PWN for stepper motors or PWM duty cycle change for PWM servo
uint16_t pwm_value[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266 uint16_t pwm_value[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266
uint16_t pwm_min[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266 uint16_t pwm_min[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266
uint16_t pwm_max[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266 uint16_t pwm_max[MAX_SHUTTERS]; // dutyload of PWM 0..1023 on ESP8266
uint16_t max_pwm_velocity = 1000; // maximum of PWM frequency for openig the shutter. depend on the motor and drivers uint16_t open_velocity_max = 1000; // maximum of PWM change during opening. Defines velocity on opening. Steppers and Servos only
uint16_t max_close_pwm_velocity[MAX_SHUTTERS];// maximum of PWM frequency for closeing the shutter. depend on the motor and drivers uint16_t close_velocity_max[MAX_SHUTTERS]; // maximum of PWM change during closeing. Defines velocity on opening. Steppers and Servos only
uint8_t skip_relay_change; // avoid overrun at endstops uint8_t skip_relay_change; // avoid overrun at endstops
int32_t accelerator[MAX_SHUTTERS]; // speed of ramp-up, ramp down of shutter int32_t accelerator[MAX_SHUTTERS]; // speed of ramp-up, ramp down of shutters with velocity control. Steppers and Servos only
uint8_t start_reported = 0; uint8_t start_reported = 0; // indicates of the shutter start was reported through MQTT JSON
} Shutter; } Shutter;
#define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B)) #define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B))
@ -113,24 +112,28 @@ void ShutterLogPos(uint32_t i)
void ExecuteCommandPowerShutter(uint32_t device, uint32_t state, uint32_t source) void ExecuteCommandPowerShutter(uint32_t device, uint32_t state, uint32_t source)
{ {
// first implementation for virtual relays. Avoid switching relay numbers that do not exist.
if (device <= devices_present) ExecuteCommandPower(device,state,source); if (device <= devices_present) ExecuteCommandPower(device,state,source);
} }
void ShutterUpdateVelocity(uint8_t i) void ShutterUpdateVelocity(uint8_t i)
{ {
// No Logging allowed. Part of RTC Timer
// will be calles through RTC every 50ms.
Shutter.pwm_velocity[i] += Shutter.accelerator[i]; Shutter.pwm_velocity[i] += Shutter.accelerator[i];
Shutter.pwm_velocity[i] = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_velocity : Shutter.max_close_pwm_velocity[i],Shutter.pwm_velocity[i])); Shutter.pwm_velocity[i] = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.open_velocity_max : Shutter.close_velocity_max[i],Shutter.pwm_velocity[i]));
} }
void ShutterRtc50mS(void) void ShutterRtc50mS(void)
{ {
// No Logging allowed. RTC Timer
for (uint8_t i = 0; i < shutters_present; i++) { for (uint8_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i]) { if (Shutter.direction[i]) {
// update position data before increasing counter // update position data before increasing counter
Shutter.real_position[i] = ShutterCalculatePosition(i); Shutter.real_position[i] = ShutterCalculatePosition(i);
Shutter.time[i]++; Shutter.time[i]++;
ShutterCalculateAccelerator(i); ShutterCalculateAccelerator(i);
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
ShutterUpdateVelocity(i); ShutterUpdateVelocity(i);
Shutter.real_position[i] += Shutter.direction[i] > 0 ? Shutter.pwm_velocity[i] : (Shutter.direction[i] < 0 ? -Shutter.pwm_velocity[i] : 0); Shutter.real_position[i] += Shutter.direction[i] > 0 ? Shutter.pwm_velocity[i] : (Shutter.direction[i] < 0 ? -Shutter.pwm_velocity[i] : 0);
@ -215,14 +218,14 @@ uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index)
void ShutterInit(void) void ShutterInit(void)
{ {
shutters_present = 0; shutters_present = 0;
Shutter.mask = 0; Shutter.RelayShutterMask = 0;
//Initialize to get relay that changed //Initialize to get relay that changed
Shutter.old_power = power; Shutter.RelayOldMask = power;
bool relay_in_interlock = false;
// if shutter 4 is unused // if shutter 4 is unused
if (Settings.shutter_startrelay[MAX_SHUTTERS -1] == 0) { if (Settings.shutter_startrelay[MAX_SHUTTERS -1] == 0) {
Shutter.max_pwm_velocity = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : Shutter.max_pwm_velocity; Shutter.open_velocity_max = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : Shutter.open_velocity_max;
} }
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) { for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase // set startrelay to 1 on first init, but only to shutter 1. 90% usecase
@ -230,48 +233,54 @@ void ShutterInit(void)
if (Settings.shutter_startrelay[i] && (Settings.shutter_startrelay[i] < 9)) { if (Settings.shutter_startrelay[i] && (Settings.shutter_startrelay[i] < 9)) {
shutters_present++; shutters_present++;
// Determine shutter types // Add the two relays to the mask to knaw they belong to shutters
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ; Shutter.RelayShutterMask |= 3 << (Settings.shutter_startrelay[i] -1) ;
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock // All shutters must have same mode. Switch OR Pulse. N
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.mask, Settings.interlock[i]&Shutter.mask);
if (Settings.interlock[j] && (Settings.interlock[j] & Shutter.mask)) {
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
switch (Settings.pulse_timer[i]) { switch (Settings.pulse_timer[i]) {
case 0: case 0:
Shutter.SwitchMode = SHT_SWITCH; Shutter.switch_mode[i] = SHT_SWITCH;
break; break;
default: default:
Shutter.SwitchMode = SHT_PULSE; Shutter.switch_mode[i] = SHT_PULSE;
break; break;
} }
if (Settings.shutter_mode == SHT_UNDEF) { if (Settings.shutter_mode == SHT_UNDEF) {
bool relay_in_interlock = false;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: mode undef.. calculate...")); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: mode undef.. calculate..."));
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.RelayShutterMask, Settings.interlock[i]&Shutter.RelayShutterMask);
if (Settings.interlock[j] && (Settings.interlock[j] & Shutter.RelayShutterMask)) {
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
switch (Settings.pulse_timer[i+1]) { switch (Settings.pulse_timer[i+1]) {
case 0: case 0:
Shutter.PositionMode = SHT_TIME_GARAGE; Shutter.position_mode = SHT_TIME_GARAGE;
break; break;
default: default:
if (relay_in_interlock) { if (relay_in_interlock) {
Shutter.PositionMode = SHT_TIME; Shutter.position_mode = SHT_TIME;
} else { } else {
Shutter.PositionMode = SHT_TIME_UP_DOWN; Shutter.position_mode = SHT_TIME_UP_DOWN;
if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) { if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) {
Shutter.PositionMode = SHT_COUNTER; Shutter.position_mode = SHT_COUNTER;
} }
} }
break; break;
} }
} else { } else {
Shutter.PositionMode = Settings.shutter_mode; Shutter.position_mode = Settings.shutter_mode;
} }
// main function for stepper and servos to control velocity and acceleration.
TickerShutter.attach_ms(50, ShutterRtc50mS ); TickerShutter.attach_ms(50, ShutterRtc50mS );
// default the 50 percent should not have any impact without changing it. set to 60 // default the 50 percent should not have any impact without changing it. set to 60
Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] > 0) ? Settings.shutter_set50percent[i] : 50; Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] > 0) ? Settings.shutter_set50percent[i] : 50;
@ -293,7 +302,7 @@ void ShutterInit(void)
Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100); Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100);
Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5; Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5;
} }
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1); Shutter.RelayShutterMask |= 3 << (Settings.shutter_startrelay[i] -1);
Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i); Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i);
@ -301,14 +310,14 @@ void ShutterInit(void)
Shutter.motordelay[i] = Settings.shutter_motordelay[i]; Shutter.motordelay[i] = Settings.shutter_motordelay[i];
Shutter.lastdirection[i] = (50 < Settings.shutter_position[i]) ? 1 : -1; Shutter.lastdirection[i] = (50 < Settings.shutter_position[i]) ? 1 : -1;
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
Shutter.max_pwm_velocity = RESOLUTION; Shutter.open_velocity_max = RESOLUTION;
break; break;
} }
Shutter.max_close_pwm_velocity[i] = Shutter.max_pwm_velocity*Shutter.open_time[i] / Shutter.close_time[i]; Shutter.close_velocity_max[i] = Shutter.open_velocity_max*Shutter.open_time[i] / Shutter.close_time[i];
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d Openvel %d, Closevel: %d"),i, Shutter.max_pwm_velocity, Shutter.max_close_pwm_velocity[i]); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d Openvel %d, Closevel: %d"),i, Shutter.open_velocity_max, Shutter.close_velocity_max[i]);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT%d: Init. Pos: %d,inverted %d, locked %d, end stop time enabled %d, webButtons inverted %d"), AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT%d: Init. Pos: %d,inverted %d, locked %d, end stop time enabled %d, webButtons inverted %d"),
i+1, Shutter.real_position[i], i+1, Shutter.real_position[i],
(Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, (Settings.shutter_options[i]&8) ? 1 : 0); (Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, (Settings.shutter_options[i]&8) ? 1 : 0);
@ -319,7 +328,7 @@ void ShutterInit(void)
} }
ShutterLimitRealAndTargetPositions(i); ShutterLimitRealAndTargetPositions(i);
Settings.shutter_accuracy = 1; Settings.shutter_accuracy = 1;
Settings.shutter_mode = Shutter.PositionMode; Settings.shutter_mode = Shutter.position_mode;
} }
} }
@ -362,31 +371,27 @@ void ShutterLimitRealAndTargetPositions(uint32_t i) {
void ShutterCalculateAccelerator(uint8_t i) void ShutterCalculateAccelerator(uint8_t i)
{ {
// No Logging allowed. Part of RTC Timer
if (Shutter.direction[i] != 0) { if (Shutter.direction[i] != 0) {
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_COUNTER: case SHT_COUNTER:
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
// calculate max velocity allowed in this direction // calculate max velocity allowed in this direction
max_velocity = Shutter.direction[i] == 1 ? Shutter.max_pwm_velocity : Shutter.max_close_pwm_velocity[i]; velocity_max = Shutter.direction[i] == 1 ? Shutter.open_velocity_max : Shutter.close_velocity_max[i];
// calculate max change of velocyty based on the defined motordelay in steps // calculate max change of velocyty based on the defined motordelay in steps
max_velocity_change_per_step = max_velocity / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1); velocity_change_per_step_max = velocity_max / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
// minimumtime required from current velocity to stop // minimumtime required from current velocity to stop
min_runtime_ms = Shutter.pwm_velocity[i] * 1000 / STEPS_PER_SECOND / max_velocity_change_per_step; min_runtime_ms = Shutter.pwm_velocity[i] * 1000 / STEPS_PER_SECOND / velocity_change_per_step_max;
// decellartion way from current velocity // decellartion way from current velocity
minstopway = (min_runtime_ms * (Shutter.pwm_velocity[i]+max_velocity_change_per_step)/100 - Shutter.pwm_velocity[i])*RESOLUTION/Shutter.max_pwm_velocity * Shutter.direction[i] ; current_stop_way = (min_runtime_ms * (Shutter.pwm_velocity[i]+velocity_change_per_step_max)/100 - Shutter.pwm_velocity[i])*RESOLUTION/Shutter.open_velocity_max * Shutter.direction[i] ;
next_possible_stop = Shutter.real_position[i] + minstopway ; next_possible_stop_position = Shutter.real_position[i] + current_stop_way ;
toBeAcc = 0; toBeAcc = 0;
// ensure that accelerator kicks in IN TIME and that STOP procedure kicks in at least ONE step before reach end position.
//Shutter.accelerator[i] = tmin(tmax(max_velocity_change_per_step*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_velocity_change_per_step*9/200), max_velocity_change_per_step*11/200);
//int32_t act_freq_change = max_velocity_change_per_step/20;
// ensure that the accelerotor kicks in at least one step BEFORE it is to late and a hard stop required. // ensure that the accelerotor kicks in at least one step BEFORE it is to late and a hard stop required.
if (Shutter.accelerator[i] < 0 || (next_possible_stop * Shutter.direction[i]) +RESOLUTION*Shutter.pwm_velocity[i]/Shutter.max_pwm_velocity>= Shutter.target_position[i] * Shutter.direction[i] ) { if (Shutter.accelerator[i] < 0 || (next_possible_stop_position * Shutter.direction[i]) +RESOLUTION*Shutter.pwm_velocity[i]/Shutter.open_velocity_max>= Shutter.target_position[i] * Shutter.direction[i] ) {
// 10 times the deviation is the value of this simple p-regulator // 10 times the deviation is the p-value of this simple p-regulator
toBeAcc = 100+(Shutter.direction[i]*(next_possible_stop-Shutter.target_position[i])*max_velocity/Shutter.pwm_velocity[i]*10/RESOLUTION); toBeAcc = 100+(Shutter.direction[i]*(next_possible_stop_position-Shutter.target_position[i])*velocity_max/Shutter.pwm_velocity[i]*10/RESOLUTION);
Shutter.accelerator[i] = - tmin(tmax( max_velocity_change_per_step*toBeAcc/100 , (max_velocity_change_per_step*9/10)), (max_velocity_change_per_step*11/10)); Shutter.accelerator[i] = - tmin(tmax( velocity_change_per_step_max*toBeAcc/100 , (velocity_change_per_step_max*9/10)), (velocity_change_per_step_max*11/10));
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp down: acc: %d"), Shutter.accelerator[i]); } else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_velocity[i] == velocity_max) {
} else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_velocity[i] == max_velocity) {
Shutter.accelerator[i] = 0; Shutter.accelerator[i] = 0;
} }
break; break;
@ -396,19 +401,19 @@ void ShutterCalculateAccelerator(uint8_t i)
void ShutterDecellerateForStop(uint8_t i) void ShutterDecellerateForStop(uint8_t i)
{ {
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
case SHT_COUNTER: case SHT_COUNTER:
int16_t missing_steps; int16_t missing_steps;
Shutter.accelerator[i] = -(Shutter.max_pwm_velocity / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1) *11/10); Shutter.accelerator[i] = -(Shutter.open_velocity_max / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1) *11/10);
while (Shutter.pwm_velocity[i] > -2*Shutter.accelerator[i] ) { while (Shutter.pwm_velocity[i] > -2*Shutter.accelerator[i] ) {
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: velocity: %ld, delta: %d"), Shutter.pwm_velocity[i], Shutter.accelerator[i] ); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: velocity: %ld, delta: %d"), Shutter.pwm_velocity[i], Shutter.accelerator[i] );
//Shutter.pwm_velocity[i] = tmax(Shutter.pwm_velocity[i]-Shutter.accelerator[i] , 0); //Shutter.pwm_velocity[i] = tmax(Shutter.pwm_velocity[i]-Shutter.accelerator[i] , 0);
// Control will be done in RTC Ticker. // Control will be done in RTC Ticker.
delay(50); delay(50);
} }
if (Shutter.PositionMode == SHT_COUNTER){ if (Shutter.position_mode == SHT_COUNTER){
missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_velocity/RESOLUTION/STEPS_PER_SECOND) - RtcSettings.pulse_counter[i]; missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) - RtcSettings.pulse_counter[i];
//prepare for stop PWM //prepare for stop PWM
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_velocity[i]); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_velocity[i]);
Shutter.accelerator[i] = 0; Shutter.accelerator[i] = 0;
@ -417,7 +422,7 @@ void ShutterDecellerateForStop(uint8_t i)
analogWrite(Pin(GPIO_PWM1, i), 50); analogWrite(Pin(GPIO_PWM1, i), 50);
Shutter.pwm_velocity[i] = 0; Shutter.pwm_velocity[i] = 0;
analogWriteFreq(Shutter.pwm_velocity[i]); analogWriteFreq(Shutter.pwm_velocity[i]);
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_velocity/RESOLUTION/STEPS_PER_SECOND) { while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) {
delay(1); delay(1);
} }
analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog
@ -438,7 +443,7 @@ void ShutterPowerOff(uint8_t i) {
Shutter.direction[i] = 0; Shutter.direction[i] = 0;
delay(MOTOR_STOP_TIME); delay(MOTOR_STOP_TIME);
} }
switch (Shutter.SwitchMode) { switch (Shutter.switch_mode[i]) {
case SHT_SWITCH: case SHT_SWITCH:
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) { if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i], 0, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
@ -448,7 +453,7 @@ void ShutterPowerOff(uint8_t i) {
} }
break; break;
case SHT_PULSE: case SHT_PULSE:
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : (uint8_t)(Shutter.PositionMode == SHT_TIME)) ; uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : (uint8_t)(Shutter.position_mode == SHT_TIME)) ;
// we have a momentary switch here. Needs additional pulse on same relay after the end // we have a momentary switch here. Needs additional pulse on same relay after the end
if ((SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source)) { if ((SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source)) {
ExecuteCommandPowerShutter(cur_relay, 1, SRC_SHUTTER); ExecuteCommandPowerShutter(cur_relay, 1, SRC_SHUTTER);
@ -462,7 +467,7 @@ void ShutterPowerOff(uint8_t i) {
break; break;
} }
// Store current PWM value to ensure proper position after reboot. // Store current PWM value to ensure proper position after reboot.
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
char scmnd[20]; char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_PWM " %d" ),Shutter.pwm_value[i]); snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_PWM " %d" ),Shutter.pwm_value[i]);
@ -489,11 +494,11 @@ void ShutterUpdatePosition(void)
Shutter.start_reported = 1; Shutter.start_reported = 1;
} }
//ShutterCalculateAccelerator(i); //ShutterCalculateAccelerator(i);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, toBeAcc %d, minstopway %d,cur_vel %d, max_vel %d, act_vel_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d, max_vel_change_per_step %d"),Shutter.time[i],toBeAcc,minstopway, AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, toBeAcc %d, current_stop_way %d,vel_vur %d, vel_max %d, act_vel_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d, velocity_change_per_step_max %d"),Shutter.time[i],toBeAcc,current_stop_way,
Shutter.pwm_velocity[i],max_velocity, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i],max_velocity_change_per_step); Shutter.pwm_velocity[i],velocity_max, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop_position,Shutter.target_position[i],velocity_change_per_step_max);
if ( Shutter.real_position[i] * Shutter.direction[i] >= Shutter.target_position[i] * Shutter.direction[i] || Shutter.pwm_velocity[i]<max_velocity_change_per_step) { if ( Shutter.real_position[i] * Shutter.direction[i] >= Shutter.target_position[i] * Shutter.direction[i] || Shutter.pwm_velocity[i]<velocity_change_per_step_max) {
if (Shutter.direction[i] != 0) { if (Shutter.direction[i] != 0) {
Shutter.lastdirection[i] = Shutter.direction[i]; Shutter.lastdirection[i] = Shutter.direction[i];
} }
@ -522,7 +527,7 @@ bool ShutterState(uint32_t device)
device--; device--;
device &= 3; device &= 3;
return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support
(Shutter.mask & (1 << (Settings.shutter_startrelay[device]-1))) ); (Shutter.RelayShutterMask & (1 << (Settings.shutter_startrelay[device]-1))) );
} }
void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos) void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
@ -533,7 +538,7 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
Shutter.skip_relay_change = 1; Shutter.skip_relay_change = 1;
} else { } else {
Shutter.pwm_velocity[i] = 0; Shutter.pwm_velocity[i] = 0;
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
#ifdef SHUTTER_STEPPER #ifdef SHUTTER_STEPPER
case SHT_COUNTER: case SHT_COUNTER:
analogWriteFreq(Shutter.pwm_velocity[i]); analogWriteFreq(Shutter.pwm_velocity[i]);
@ -542,7 +547,7 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
break; break;
#endif #endif
} }
Shutter.accelerator[i] = Shutter.max_pwm_velocity / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1); Shutter.accelerator[i] = Shutter.open_velocity_max / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
Shutter.target_position[i] = target_pos; Shutter.target_position[i] = target_pos;
Shutter.start_position[i] = Shutter.real_position[i]; Shutter.start_position[i] = Shutter.real_position[i];
Shutter.time[i] = 0; Shutter.time[i] = 0;
@ -551,7 +556,7 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
rules_flag.shutter_moving = 1; rules_flag.shutter_moving = 1;
rules_flag.shutter_moved = 0; rules_flag.shutter_moved = 0;
Shutter.start_reported = 0; Shutter.start_reported = 0;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d, max_freq %d, dir %d, freq %d"),Shutter.real_position[i], Shutter.start_position[i] ,RtcSettings.pulse_counter[i],Shutter.max_pwm_velocity , Shutter.direction[i] ,Shutter.max_pwm_velocity ); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d,freq_max %d, dir %d, freq %d"),Shutter.real_position[i], Shutter.start_position[i] ,RtcSettings.pulse_counter[i],Shutter.open_velocity_max , Shutter.direction[i] ,Shutter.open_velocity_max );
} }
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Start shutter: %d from %d to %d in direction %d"), i, Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i]); //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Start shutter: %d from %d to %d in direction %d"), i, Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i]);
} }
@ -559,10 +564,11 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
int32_t ShutterCalculatePosition(uint32_t i) int32_t ShutterCalculatePosition(uint32_t i)
{ {
// No Logging allowed. Part of RTC Timer
if (Shutter.direction[i] != 0) { if (Shutter.direction[i] != 0) {
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_COUNTER: case SHT_COUNTER:
return ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*STEPS_PER_SECOND*RESOLUTION / Shutter.max_pwm_velocity)+Shutter.start_position[i]; return ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*STEPS_PER_SECOND*RESOLUTION / Shutter.open_velocity_max)+Shutter.start_position[i];
break; break;
case SHT_TIME: case SHT_TIME:
case SHT_TIME_UP_DOWN: case SHT_TIME_UP_DOWN:
@ -585,7 +591,7 @@ int32_t ShutterCalculatePosition(uint32_t i)
void ShutterRelayChanged(void) void ShutterRelayChanged(void)
{ {
// Shutter.switched_relay = binary relay that was recently changed and cause an Action // Shutter.RelayCurrentMask = binary relay that was recently changed and cause an Action
// powerstate_local = binary powermatrix and relays from shutter: 0..3 // powerstate_local = binary powermatrix and relays from shutter: 0..3
// relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer // relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer
char stemp1[10]; char stemp1[10];
@ -593,26 +599,26 @@ void ShutterRelayChanged(void)
for (uint32_t i = 0; i < shutters_present; i++) { for (uint32_t i = 0; i < shutters_present; i++) {
power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3; power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3;
// SRC_IGNORE added because INTERLOCK function bite causes this as last source for changing the relay. // SRC_IGNORE added because INTERLOCK function bite causes this as last source for changing the relay.
//uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; //uint8 manual_relays_changed = ((Shutter.RelayCurrentMask >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; uint8 manual_relays_changed = ((Shutter.RelayCurrentMask >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: source: %s, powerstate_local %ld, Shutter.RelayCurrentMask %d, manual change %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.RelayCurrentMask,manual_relays_changed);
if (manual_relays_changed) { if (manual_relays_changed) {
//Shutter.skip_relay_change = true; //Shutter.skip_relay_change = true;
ShutterLimitRealAndTargetPositions(i); ShutterLimitRealAndTargetPositions(i);
switch (Shutter.SwitchMode ) { switch (Shutter.switch_mode[i] ) {
case SHT_PULSE: case SHT_PULSE:
if (Shutter.direction[i] != 0 && powerstate_local) { if (Shutter.direction[i] != 0 && powerstate_local) {
Shutter.target_position[i] = Shutter.real_position[i]; Shutter.target_position[i] = Shutter.real_position[i];
powerstate_local = 0; powerstate_local = 0;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.RelayCurrentMask %d, manual change %d"), i+1, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.RelayCurrentMask,manual_relays_changed);
} }
break; break;
default: default:
last_source = SRC_SHUTTER; // avoid switch off in the next loop last_source = SRC_SHUTTER; // avoid switch off in the next loop
if (Shutter.direction[i] != 0 ) ShutterPowerOff(i); if (Shutter.direction[i] != 0 ) ShutterPowerOff(i);
} }
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
// enum ShutterPositionMode {SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,}; // enum Shutterposition_mode {SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
case SHT_TIME_UP_DOWN: case SHT_TIME_UP_DOWN:
case SHT_COUNTER: case SHT_COUNTER:
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
@ -654,7 +660,7 @@ void ShutterRelayChanged(void)
} }
} // switch (Shutter.PositionMode) } // switch (Shutter.position_mode)
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i+1, Shutter.target_position[i], powerstate_local); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i+1, Shutter.target_position[i], powerstate_local);
} // if (manual_relays_changed) } // if (manual_relays_changed)
} // for (uint32_t i = 0; i < shutters_present; i++) } // for (uint32_t i = 0; i < shutters_present; i++)
@ -1034,7 +1040,7 @@ void CmndShutterPosition(void)
if (XdrvMailbox.payload != -99) { if (XdrvMailbox.payload != -99) {
//target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent; //target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent;
Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index); Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index);
//Shutter.accelerator[index] = Shutter.max_pwm_velocity / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1); //Shutter.accelerator[index] = Shutter.open_velocity_max / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1);
//Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index]; //Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent);
} }
@ -1049,7 +1055,7 @@ void CmndShutterPosition(void)
} }
if (Shutter.direction[index] != new_shutterdirection) { if (Shutter.direction[index] != new_shutterdirection) {
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]); ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]);
switch (Shutter.PositionMode) { switch (Shutter.position_mode) {
case SHT_COUNTER: case SHT_COUNTER:
case SHT_PWM_TIME: case SHT_PWM_TIME:
case SHT_PWM_VALUE: case SHT_PWM_VALUE:
@ -1060,12 +1066,12 @@ void CmndShutterPosition(void)
// power on // power on
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
} }
if (Shutter.PositionMode != SHT_TIME_UP_DOWN) ExecuteCommandPowerShutter(Settings.shutter_startrelay[index]+2, 1, SRC_SHUTTER); if (Shutter.position_mode != SHT_TIME_UP_DOWN) ExecuteCommandPowerShutter(Settings.shutter_startrelay[index]+2, 1, SRC_SHUTTER);
break; break;
case SHT_TIME: case SHT_TIME:
if (!Shutter.skip_relay_change) { if (!Shutter.skip_relay_change) {
if ( (power >> (Settings.shutter_startrelay[index] -1)) & 3 > 0 ) { if ( (power >> (Settings.shutter_startrelay[index] -1)) & 3 > 0 ) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), Shutter.SwitchMode == SHT_SWITCH ? 0 : 1, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), Shutter.switch_mode[index] == SHT_SWITCH ? 0 : 1, SRC_SHUTTER);
} }
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
} }
@ -1073,8 +1079,8 @@ void CmndShutterPosition(void)
case SHT_TIME_GARAGE: case SHT_TIME_GARAGE:
if (!Shutter.skip_relay_change) { if (!Shutter.skip_relay_change) {
if (new_shutterdirection == Shutter.lastdirection[index]) { if (new_shutterdirection == Shutter.lastdirection[index]) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Garage not move in this direction: %d"), Shutter.SwitchMode == SHT_PULSE); AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Garage not move in this direction: %d"), Shutter.switch_mode[index] == SHT_PULSE);
for (uint8_t k=0 ; k <= (uint8_t)(Shutter.SwitchMode == SHT_PULSE) ; k++) { for (uint8_t k=0 ; k <= (uint8_t)(Shutter.switch_mode[index] == SHT_PULSE) ; k++) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
delay(500); delay(500);
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 0, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 0, SRC_SHUTTER);
@ -1086,8 +1092,8 @@ void CmndShutterPosition(void)
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
} // if (!Shutter.skip_relay_change) } // if (!Shutter.skip_relay_change)
break; break;
} // switch (Shutter.PositionMode) } // switch (Shutter.position_mode)
Shutter.switched_relay = 0; Shutter.RelayCurrentMask = 0;
} // if (Shutter.direction[index] != new_shutterdirection) } // if (Shutter.direction[index] != new_shutterdirection)
} else { } else {
target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index); target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index);
@ -1158,12 +1164,12 @@ void CmndShutterMotorDelay(void)
void CmndShutterMode(void) void CmndShutterMode(void)
{ {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= MAX_MODES)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= MAX_MODES)) {
Shutter.PositionMode = XdrvMailbox.payload; Shutter.position_mode = XdrvMailbox.payload;
Settings.shutter_mode = XdrvMailbox.payload; Settings.shutter_mode = XdrvMailbox.payload;
ShutterInit(); ShutterInit();
ResponseCmndNumber(XdrvMailbox.payload); // ???? ResponseCmndNumber(XdrvMailbox.payload); // ????
} else { } else {
ResponseCmndNumber(Shutter.PositionMode); ResponseCmndNumber(Shutter.position_mode);
} }
} }
@ -1173,9 +1179,9 @@ void CmndShutterRelay(void)
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) {
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
if (XdrvMailbox.payload > 0) { if (XdrvMailbox.payload > 0) {
Shutter.mask |= 3 << (XdrvMailbox.payload - 1); Shutter.RelayShutterMask |= 3 << (XdrvMailbox.payload - 1);
} else { } else {
Shutter.mask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1); Shutter.RelayShutterMask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1);
} }
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
ShutterInit(); ShutterInit();
@ -1336,14 +1342,14 @@ void CmndShutterSetHalfway(void)
void CmndShutterFrequency(void) void CmndShutterFrequency(void)
{ {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) {
Shutter.max_pwm_velocity = XdrvMailbox.payload; Shutter.open_velocity_max = XdrvMailbox.payload;
if (shutters_present < 4) { if (shutters_present < 4) {
Settings.shuttercoeff[4][3] = Shutter.max_pwm_velocity; Settings.shuttercoeff[4][3] = Shutter.open_velocity_max;
} }
ShutterInit(); ShutterInit();
ResponseCmndNumber(XdrvMailbox.payload); // ???? ResponseCmndNumber(XdrvMailbox.payload); // ????
} else { } else {
ResponseCmndNumber(Shutter.max_pwm_velocity); ResponseCmndNumber(Shutter.open_velocity_max);
} }
} }
@ -1487,19 +1493,19 @@ bool Xdrv27(uint8_t function)
case FUNC_SET_POWER: case FUNC_SET_POWER:
char stemp1[10]; char stemp1[10];
// extract the number of the relay that was switched and save for later in Update Position. // extract the number of the relay that was switched and save for later in Update Position.
Shutter.switched_relay = XdrvMailbox.index ^ Shutter.old_power; Shutter.RelayCurrentMask = XdrvMailbox.index ^ Shutter.RelayOldMask;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.switched_relay,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource)); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.RelayCurrentMask,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource));
ShutterRelayChanged(); ShutterRelayChanged();
Shutter.old_power = XdrvMailbox.index; Shutter.RelayOldMask = XdrvMailbox.index;
break; break;
case FUNC_SET_DEVICE_POWER: case FUNC_SET_DEVICE_POWER:
if (Shutter.skip_relay_change ) { if (Shutter.skip_relay_change ) {
uint8_t i; uint8_t i;
for (i = 0; i < devices_present; i++) { for (i = 0; i < devices_present; i++) {
if (Shutter.switched_relay &1) { if (Shutter.RelayCurrentMask &1) {
break; break;
} }
Shutter.switched_relay >>= 1; Shutter.RelayCurrentMask >>= 1;
} }
//AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: skip relay change: %d"),i+1); //AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: skip relay change: %d"),i+1);
result = true; result = true;