Add ESP8266 support for one-wire M1601 temperature sensor on DS18x20 GPIO (#21376)

This commit is contained in:
Theo Arends 2024-09-25 15:01:19 +02:00
parent 622b8b10c0
commit 61aeea9132
3 changed files with 64 additions and 20 deletions

View File

@ -6,6 +6,7 @@ All notable changes to this project will be documented in this file.
## [14.2.0.5] ## [14.2.0.5]
### Added ### Added
- ESP8266 support for I2C CLK on GPIO16 (#22199) - ESP8266 support for I2C CLK on GPIO16 (#22199)
- ESP8266 support for one-wire M1601 temperature sensor on DS18x20 GPIO (#21376)
### Breaking Changed ### Breaking Changed

View File

@ -123,6 +123,7 @@ The latter links can be used for OTA upgrades too like ``OtaUrl https://ota.tasm
### Added ### Added
- Command ``SetOption69 1`` to enable Serial Bridge inverted Receive [#22000](https://github.com/arendst/Tasmota/issues/22000) - Command ``SetOption69 1`` to enable Serial Bridge inverted Receive [#22000](https://github.com/arendst/Tasmota/issues/22000)
- HX711 optional calibration precision option on command ``Sensor34 2 <weight in gram> <precision>`` where `<precision>` is 1 to 20 [#13983](https://github.com/arendst/Tasmota/issues/13983) - HX711 optional calibration precision option on command ``Sensor34 2 <weight in gram> <precision>`` where `<precision>` is 1 to 20 [#13983](https://github.com/arendst/Tasmota/issues/13983)
- ESP8266 support for one-wire M1601 temperature sensor on DS18x20 GPIO [#21376](https://github.com/arendst/Tasmota/issues/21376)
- ESP8266 support for I2C CLK on GPIO16 [#22199](https://github.com/arendst/Tasmota/issues/22199) - ESP8266 support for I2C CLK on GPIO16 [#22199](https://github.com/arendst/Tasmota/issues/22199)
- Support for I2C M5Unit (Mini)Scales using HX711 driver - Support for I2C M5Unit (Mini)Scales using HX711 driver
- Support for RX8010 RTC as used in IOTTIMER [#21376](https://github.com/arendst/Tasmota/issues/21376) - Support for RX8010 RTC as used in IOTTIMER [#21376](https://github.com/arendst/Tasmota/issues/21376)

View File

@ -38,6 +38,7 @@
#define DS18S20_CHIPID 0x10 // +/-0.5C 9-bit #define DS18S20_CHIPID 0x10 // +/-0.5C 9-bit
#define DS1822_CHIPID 0x22 // +/-2C 12-bit #define DS1822_CHIPID 0x22 // +/-2C 12-bit
#define DS18B20_CHIPID 0x28 // +/-0.5C 12-bit #define DS18B20_CHIPID 0x28 // +/-0.5C 12-bit
#define M1601_CHIPID 0x28 +1 // +/-0.1C 16-bit (M1601B = +/-0.5C 16-bit)
#define MAX31850_CHIPID 0x3B // +/-0.25C 14-bit #define MAX31850_CHIPID 0x3B // +/-0.25C 14-bit
#define W1_SKIP_ROM 0xCC #define W1_SKIP_ROM 0xCC
@ -52,15 +53,18 @@
#define DS18X20_ALIAS_LEN 17 #define DS18X20_ALIAS_LEN 17
const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850"; //#define DS18X20_DEBUG
uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID }; const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850|M1601";
uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID, M1601_CHIPID };
struct { struct {
float temperature; float temperature;
float temp_sum; float temp_sum;
uint16_t numread; uint16_t numread;
uint8_t address[8]; uint8_t address[8];
uint8_t chip_id;
uint8_t index; uint8_t index;
uint8_t valid; uint8_t valid;
int8_t pins_id; int8_t pins_id;
@ -228,6 +232,9 @@ uint8_t OneWireSearch(uint8_t *newAddr) {
onewire_last_discrepancy = 0; onewire_last_discrepancy = 0;
onewire_last_device_flag = false; onewire_last_device_flag = false;
onewire_last_family_discrepancy = 0; onewire_last_family_discrepancy = 0;
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireReset fail"));
#endif // DS18X20_DEBUG
return false; return false;
} }
OneWireWrite(W1_SEARCH_ROM); OneWireWrite(W1_SEARCH_ROM);
@ -278,6 +285,9 @@ uint8_t OneWireSearch(uint8_t *newAddr) {
} }
search_result = true; search_result = true;
} }
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireSearch result %d, bits %d, %8_H"), search_result, id_bit_number, onewire_rom_id);
#endif // DS18X20_DEBUG
} }
if (!search_result || !onewire_rom_id[0]) { if (!search_result || !onewire_rom_id[0]) {
onewire_last_discrepancy = 0; onewire_last_discrepancy = 0;
@ -291,12 +301,11 @@ uint8_t OneWireSearch(uint8_t *newAddr) {
return search_result; return search_result;
} }
bool OneWireCrc8(uint8_t *addr) { bool OneWireCrc8(uint8_t *addr, uint8_t len) {
uint8_t crc = 0; uint8_t crc = 0;
uint8_t len = 8;
while (len--) { while (len--) {
uint8_t inbyte = *addr++; // from 0 to 7 uint8_t inbyte = *addr++;
for (uint32_t i = 8; i; i--) { for (uint32_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01; uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1; crc >>= 1;
@ -306,7 +315,7 @@ bool OneWireCrc8(uint8_t *addr) {
inbyte >>= 1; inbyte >>= 1;
} }
} }
return (crc == *addr); // addr 8 return (crc == *addr);
} }
/********************************************************************************************/ /********************************************************************************************/
@ -347,24 +356,47 @@ void Ds18x20Init(void) {
while (DS18X20Data.sensors < DS18X20_MAX_SENSORS) { while (DS18X20Data.sensors < DS18X20_MAX_SENSORS) {
if (!OneWireSearch(ds18x20_sensor[DS18X20Data.sensors].address)) { if (!OneWireSearch(ds18x20_sensor[DS18X20Data.sensors].address)) {
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireSearch fail"));
#endif // DS18X20_DEBUG
break; break;
} }
if (OneWireCrc8(ds18x20_sensor[DS18X20Data.sensors].address) &&
((ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18S20_CHIPID) || uint32_t chip_id = ds18x20_sensor[DS18X20Data.sensors].address[0];
(ds18x20_sensor[DS18X20Data.sensors].address[0] == DS1822_CHIPID) || bool crc = OneWireCrc8(ds18x20_sensor[DS18X20Data.sensors].address, 7);
(ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18B20_CHIPID) || if (!crc) {
(ds18x20_sensor[DS18X20Data.sensors].address[0] == MAX31850_CHIPID))) { // Look for M1601 which has same chip_id as DS18B20 but has wrong CRC over 64-bit ROM code
// DS18B20 address 284CC48E04000079
// M1601 address 2894020000000000
if ((ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18B20_CHIPID) &&
(ds18x20_sensor[DS18X20Data.sensors].address[7] == 0)) {
chip_id = M1601_CHIPID; // Need different chip_id as different temperature calculation
crc = true;
}
}
if (crc &&
((chip_id == DS18S20_CHIPID) ||
(chip_id == DS1822_CHIPID) ||
(chip_id == DS18B20_CHIPID) ||
(chip_id == M1601_CHIPID) ||
(chip_id == MAX31850_CHIPID))) {
ds18x20_sensor[DS18X20Data.sensors].index = DS18X20Data.sensors; ds18x20_sensor[DS18X20Data.sensors].index = DS18X20Data.sensors;
ids[DS18X20Data.sensors] = ds18x20_sensor[DS18X20Data.sensors].address[0]; // Chip id ids[DS18X20Data.sensors] = chip_id; // Chip id
for (uint32_t j = 6; j > 0; j--) { for (uint32_t j = 6; j > 0; j--) {
ids[DS18X20Data.sensors] = ids[DS18X20Data.sensors] << 8 | ds18x20_sensor[DS18X20Data.sensors].address[j]; ids[DS18X20Data.sensors] = ids[DS18X20Data.sensors] << 8 | ds18x20_sensor[DS18X20Data.sensors].address[j];
} }
#ifdef DS18x20_USE_ID_ALIAS #ifdef DS18x20_USE_ID_ALIAS
ds18x20_sensor[DS18X20Data.sensors].alias[0] = '0'; ds18x20_sensor[DS18X20Data.sensors].alias[0] = '0';
#endif #endif
ds18x20_sensor[DS18X20Data.sensors].chip_id = chip_id;
ds18x20_sensor[DS18X20Data.sensors].pins_id = pins; ds18x20_sensor[DS18X20Data.sensors].pins_id = pins;
DS18X20Data.sensors++; DS18X20Data.sensors++;
} }
#ifdef DS18X20_DEBUG
else {
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: Ds18x20Init CRC fail"));
}
#endif // DS18X20_DEBUG
} }
} }
@ -415,8 +447,11 @@ bool Ds18x20Read(uint8_t sensor) {
for (uint32_t i = 0; i < 9; i++) { for (uint32_t i = 0; i < 9; i++) {
data[i] = OneWireRead(); data[i] = OneWireRead();
} }
if (OneWireCrc8(data)) { #ifdef DS18X20_DEBUG
switch(ds18x20_sensor[index].address[0]) { AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireRead ChipId 0x%02X, %9_H"), ds18x20_sensor[index].chip_id, data);
#endif // DS18X20_DEBUG
if (OneWireCrc8(data, 8)) {
switch(ds18x20_sensor[index].chip_id) {
case DS18S20_CHIPID: { case DS18S20_CHIPID: {
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F); int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
temperature = ConvertTemp(tempS * 0.0625f - 0.250f); temperature = ConvertTemp(tempS * 0.0625f - 0.250f);
@ -424,6 +459,7 @@ bool Ds18x20Read(uint8_t sensor) {
} }
case DS1822_CHIPID: case DS1822_CHIPID:
case DS18B20_CHIPID: { case DS18B20_CHIPID: {
// 71 01 4B 46 7F FF 0F 10 56
if (data[4] != 0x7F) { if (data[4] != 0x7F) {
data[4] = 0x7F; // Set resolution to 12-bit data[4] = 0x7F; // Set resolution to 12-bit
OneWireReset(); OneWireReset();
@ -446,6 +482,12 @@ bool Ds18x20Read(uint8_t sensor) {
temperature = ConvertTemp(sign * temp12 * 0.0625f); // Divide by 16 temperature = ConvertTemp(sign * temp12 * 0.0625f); // Divide by 16
break; break;
} }
case M1601_CHIPID: {
// 96 F1 00 80 55 05 02 09 86
float temp = (int16_t)(data[1] << 8) + data[0];
temperature = ConvertTemp(40 + (temp / 256));
break;
}
case MAX31850_CHIPID: { case MAX31850_CHIPID: {
int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC); int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC);
temperature = ConvertTemp(temp14 * 0.0625f); // Divide by 16 temperature = ConvertTemp(temp14 * 0.0625f); // Divide by 16
@ -472,7 +514,7 @@ void Ds18x20Name(uint8_t sensor) {
uint32_t index = sizeof(ds18x20_chipids); uint32_t index = sizeof(ds18x20_chipids);
while (--index) { while (--index) {
if (ds18x20_sensor[sensor_index].address[0] == ds18x20_chipids[index]) { if (ds18x20_sensor[sensor_index].chip_id == ds18x20_chipids[index]) {
break; break;
} }
} }