Add experimental MH-Z19(B) support

Add (experimental) support for sensor MH-Z19(B) to be enabled with
define USE_MHZ19 in user_config.h (#561, #1248)
This commit is contained in:
arendst 2017-12-04 17:25:06 +01:00
parent 7df979ed25
commit 6331ee7c8f
10 changed files with 319 additions and 14 deletions

View File

@ -1,6 +1,7 @@
/* 5.10.0a
* Add (experimental) support for sensor SHT3x
* Add (experimental) support for iTead SI7021 temperature and humidity sensor (#735)
* Add (experimental) support for sensor MH-Z19(B) to be enabled with define USE_MHZ19 in user_config.h (#561, #1248)
* Add support for iTead SI7021 temperature and humidity sensor by consolidating DHT22 into AM2301 and using former DHT22 as SI7021 (#735)
* Fix BME280 calculation (#1051)
* Change ADS1115 default voltage range from +/-2V to +/-6V (#1289)
* Add multipress support and more user configurable options to Sonoff Dual R2 (#1291)

View File

@ -66,6 +66,7 @@
#define D_BUTTON "Knopf"
#define D_BY "von" // Written by me
#define D_CELSIUS "Celsius"
#define D_CO2 "CO2"
#define D_CODE "code" // Button code
#define D_COLDLIGHT "kalt"
#define D_COMMAND "Befehl"
@ -473,6 +474,8 @@
#define D_SENSOR_PWM "PWM " // Suffix "1"
#define D_SENSOR_COUNTER "Counter" // Suffix "1"
#define D_SENSOR_IRRECV "IRRecv"
#define D_SENSOR_MHZ_RX "MHZ Rx"
#define D_SENSOR_MHZ_TX "MHZ Tx"
#define D_SENSOR_SPI_CS "SPI CS"
#define D_SENSOR_SPI_DC "SPI DC"
#define D_SENSOR_BACKLIGHT "BLight"
@ -486,6 +489,7 @@
#define D_UNIT_MILLIAMPERE "mA"
#define D_UNIT_MILLISECOND "ms"
#define D_UNIT_MINUTE "min"
#define D_UNIT_PPM "ppm"
#define D_UNIT_PRESSURE "hPa"
#define D_UNIT_SECOND "sek"
#define D_UNIT_SECTORS "Sektoren"

View File

@ -66,6 +66,7 @@
#define D_BUTTON "Button"
#define D_BY "by" // Written by me
#define D_CELSIUS "Celsius"
#define D_CO2 "CO2"
#define D_CODE "code" // Button code
#define D_COLDLIGHT "Cold"
#define D_COMMAND "Command"
@ -473,6 +474,8 @@
#define D_SENSOR_PWM "PWM" // Suffix "1"
#define D_SENSOR_COUNTER "Counter" // Suffix "1"
#define D_SENSOR_IRRECV "IRrecv"
#define D_SENSOR_MHZ_RX "MHZ Rx"
#define D_SENSOR_MHZ_TX "MHZ Tx"
#define D_SENSOR_SPI_CS "SPI CS"
#define D_SENSOR_SPI_DC "SPI DC"
#define D_SENSOR_BACKLIGHT "BLight"
@ -486,6 +489,7 @@
#define D_UNIT_MILLIAMPERE "mA"
#define D_UNIT_MILLISECOND "ms"
#define D_UNIT_MINUTE "Min"
#define D_UNIT_PPM "ppm"
#define D_UNIT_PRESSURE "hPa"
#define D_UNIT_SECOND "sec"
#define D_UNIT_SECTORS "sectors"

View File

@ -66,6 +66,7 @@
#define D_BUTTON "DrukKnop"
#define D_BY "door" // Written by me
#define D_CELSIUS "Celsius"
#define D_CO2 "CO2"
#define D_CODE "code" // Button code
#define D_COLDLIGHT "Koud"
#define D_COMMAND "Opdracht"
@ -472,6 +473,8 @@
#define D_SENSOR_LED "Led" // Suffix "1i"
#define D_SENSOR_PWM "PWM" // Suffix "1"
#define D_SENSOR_COUNTER "Teller" // Suffix "1"
#define D_SENSOR_MHZ_RX "MHZ Rx"
#define D_SENSOR_MHZ_TX "MHZ Tx"
#define D_SENSOR_IRRECV "IRrecv"
#define D_SENSOR_SPI_CS "SPI CS"
#define D_SENSOR_SPI_DC "SPI DC"
@ -486,6 +489,7 @@
#define D_UNIT_MILLIAMPERE "mA"
#define D_UNIT_MILLISECOND "ms"
#define D_UNIT_MINUTE "Min"
#define D_UNIT_PPM "ppm"
#define D_UNIT_PRESSURE "hPa"
#define D_UNIT_SECOND "sec"
#define D_UNIT_SECTORS "sectoren"

View File

@ -66,6 +66,7 @@
#define D_BUTTON "Przycisk"
#define D_BY "by" // Written by me
#define D_CELSIUS "Celsiusza"
#define D_CO2 "CO2"
#define D_CODE "kod" // Button code
#define D_COLDLIGHT "Zimny"
#define D_COMMAND "Komenda"
@ -473,6 +474,8 @@
#define D_SENSOR_PWM "PWM" // Suffix "1"
#define D_SENSOR_COUNTER "Liczni" // Suffix "1"
#define D_SENSOR_IRRECV "IRrecv"
#define D_SENSOR_MHZ_RX "MHZ Rx"
#define D_SENSOR_MHZ_TX "MHZ Tx"
#define D_SENSOR_SPI_CS "SPI CS"
#define D_SENSOR_SPI_DC "SPI DC"
#define D_SENSOR_BACKLIGHT "BLight"
@ -486,6 +489,7 @@
#define D_UNIT_MILLIAMPERE "mA"
#define D_UNIT_MILLISECOND "ms"
#define D_UNIT_MINUTE "Min"
#define D_UNIT_PPM "ppm"
#define D_UNIT_PRESSURE "hPa"
#define D_UNIT_SECOND "sec"
#define D_UNIT_SECTORS "sektory"

View File

@ -2665,17 +2665,7 @@ void setup()
GpioInit();
if (Serial.baudRate() != baudrate) {
if (seriallog_level) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate);
AddLog(LOG_LEVEL_INFO);
}
delay(100);
Serial.flush();
Serial.begin(baudrate);
delay(10);
Serial.println();
}
SetSerialBaudrate(baudrate);
if (strstr(Settings.hostname, "%")) {
strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname));

View File

@ -78,6 +78,8 @@ enum UserSelectablePins {
GPIO_LED2_INV,
GPIO_LED3_INV,
GPIO_LED4_INV,
GPIO_MHZ_TXD,
GPIO_MHZ_RXD,
GPIO_SENSOR_END };
// Text in webpage Module Parameters and commands GPIOS and GPIO
@ -137,7 +139,9 @@ const char kSensors[GPIO_SENSOR_END][9] PROGMEM = {
D_SENSOR_LED "1i",
D_SENSOR_LED "2i",
D_SENSOR_LED "3i",
D_SENSOR_LED "4i"
D_SENSOR_LED "4i",
D_SENSOR_MHZ_TX,
D_SENSOR_MHZ_RX
};
// Programmer selectable GPIO functionality offset by user selectable GPIOs

View File

@ -1287,6 +1287,21 @@ int GetCommandCode(char* destination, size_t destination_size, const char* needl
return result;
}
void SetSerialBaudrate(int baudrate)
{
if (Serial.baudRate() != baudrate) {
if (seriallog_level) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate);
AddLog(LOG_LEVEL_INFO);
}
delay(100);
Serial.flush();
Serial.begin(baudrate);
delay(10);
Serial.println();
}
}
#ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support

View File

@ -186,7 +186,9 @@
#define USE_WS2812_CTYPE 1 // WS2812 Color type (0 - RGB, 1 - GRB, 2 - RGBW, 3 - GRBW)
// #define USE_WS2812_DMA // DMA supports only GPIO03 (= Serial RXD) (+1k mem). When USE_WS2812_DMA is enabled expect Exceptions on Pow
#define USE_ARILUX_RF // Add code for Arilux RF remote controller (+0.8k code)
//#define USE_MHZ19 // Add support for MH-Z19 CO2 sensor using hardware serial interface at 9600 bps
#define USE_ARILUX_RF // Add support for Arilux RF remote controller (+0.8k code)
/*********************************************************************************************\
* Compile a minimal version if upgrade memory gets tight ONLY TO BE USED FOR UPGRADE STEP 1!

277
sonoff/xsns_15_mhz.ino Normal file
View File

@ -0,0 +1,277 @@
/*
xsns_15_mhz.ino - MH-Z19 CO2 sensor support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_MHZ19
/*********************************************************************************************\
* MH-Z19 - CO2 sensor
*
* Supported on hardware serial interface only due to lack of iram needed by SoftwareSerial
*
* Based on EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru)
*
**********************************************************************************************
* Filter usage
*
* Select filter usage on low stability readings
\*********************************************************************************************/
enum Mhz19FilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW};
#define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST
/*********************************************************************************************\
* Source: http://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
*
* Automatic Baseline Correction (ABC logic function)
*
* ABC logic function refers to that sensor itself do zero point judgment and automatic calibration procedure
* intelligently after a continuous operation period. The automatic calibration cycle is every 24 hours after powered on.
*
* The zero point of automatic calibration is 400ppm.
*
* This function is usually suitable for indoor air quality monitor such as offices, schools and homes,
* not suitable for greenhouse, farm and refrigeratory where this function should be off.
*
* Please do zero calibration timely, such as manual or commend calibration.
\*********************************************************************************************/
#define MHZ19_ABC_ENABLE 1 // Automatic Baseline Correction (0 = off, 1 = on (default))
/*********************************************************************************************/
#define MHZ19_BAUDRATE 9600
#define MHZ19_READ_TIMEOUT 600 // Must be way less than 1000
const char kMhz19Types[] PROGMEM = "MHZ19|MHZ19B";
const byte mhz19_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
const byte mhz19_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
const byte mhz19_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
uint8_t mhz19_type = 0;
uint16_t mhz19_last_ppm = 0;
uint8_t mhz19_filter = MHZ19_FILTER_OPTION;
byte mhz19_response[9];
bool mhz19_abc_enable = MHZ19_ABC_ENABLE;
bool mhz19_abc_must_apply = false;
char mhz19_types[7];
bool Mhz19CheckAndApplyFilter(uint16_t ppm, uint8_t s)
{
if (1 == s) {
return false; // S==1 => "A" version sensor bootup, do not use values.
}
if (mhz19_last_ppm < 400 || mhz19_last_ppm > 5000) {
// Prevent unrealistic values during start-up with filtering enabled.
// Just assume the entered value is correct.
mhz19_last_ppm = ppm;
return true;
}
int32_t difference = ppm - mhz19_last_ppm;
if (s > 0 && s < 64 && mhz19_filter != MHZ19_FILTER_OFF) {
// Not the "B" version of the sensor, S value is used.
// S==0 => "B" version, else "A" version
// The S value is an indication of the stability of the reading.
// S == 64 represents a stable reading and any lower value indicates (unusual) fast change.
// Now we increase the delay filter for low values of S and increase response time when the
// value is more stable.
// This will make the reading useful in more turbulent environments,
// where the sensor would report more rapid change of measured values.
difference = difference * s;
difference /= 64;
}
switch (mhz19_filter) {
case MHZ19_FILTER_OFF: {
if (s != 0 && s != 64) {
return false;
}
break;
}
// #Samples to reach >= 75% of step response
case MHZ19_FILTER_OFF_ALLSAMPLES:
break; // No Delay
case MHZ19_FILTER_FAST:
difference /= 2;
break; // Delay: 2 samples
case MHZ19_FILTER_MEDIUM:
difference /= 4;
break; // Delay: 5 samples
case MHZ19_FILTER_SLOW:
difference /= 8;
break; // Delay: 11 samples
}
mhz19_last_ppm = static_cast<uint16_t>(mhz19_last_ppm + difference);
return true;
}
bool Mhz19Read(uint16_t &p, float &t)
{
bool status = false;
p = 0;
t = NAN;
if (mhz19_type)
{
Serial.flush();
if (Serial.write(mhz19_cmnd_read_ppm, 9) != 9) {
return false; // Unable to send 9 bytes
}
memset(mhz19_response, 0, sizeof(mhz19_response));
uint32_t start = millis();
uint8_t counter = 0;
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
if (Serial.available() > 0) {
mhz19_response[counter++] = Serial.read();
} else {
delay(10);
}
}
if (counter < 9){
return false; // Timeout while trying to read
}
byte crc = 0;
for (uint8_t i = 1; i < 8; i++) {
crc += mhz19_response[i];
}
crc = 255 - crc;
crc++;
/*
// Test data
mhz19_response[0] = 0xFF;
mhz19_response[1] = 0x86;
mhz19_response[2] = 0x12;
mhz19_response[3] = 0x86;
mhz19_response[4] = 64;
// mhz19_response[5] = 32;
mhz19_response[8] = crc;
*/
if (0xFF == mhz19_response[0] && 0x86 == mhz19_response[1] && mhz19_response[8] == crc) {
uint16_t u = (mhz19_response[6] << 8) | mhz19_response[7];
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
if (!mhz19_abc_enable) {
// After bootup of the sensor the ABC will be enabled.
// Thus only actively disable after bootup.
mhz19_abc_must_apply = true;
}
} else {
uint16_t ppm = (mhz19_response[2] << 8) | mhz19_response[3];
t = ConvertTemp((float)mhz19_response[4] - 40);
uint8_t s = mhz19_response[5];
if (s) {
mhz19_type = 1;
} else {
mhz19_type = 2;
}
if (Mhz19CheckAndApplyFilter(ppm, s)) {
p = mhz19_last_ppm;
if (0 == s || 64 == s) { // Reading is stable.
if (mhz19_abc_must_apply) {
mhz19_abc_must_apply = false;
if (mhz19_abc_enable) {
Serial.write(mhz19_cmnd_abc_enable, 9); // Sent sensor ABC Enable
} else {
Serial.write(mhz19_cmnd_abc_disable, 9); // Sent sensor ABC Disable
}
}
}
status = true;
}
}
}
}
return status;
}
void Mhz19Init()
{
SetSerialBaudrate(MHZ19_BAUDRATE);
Serial.flush();
seriallog_level = 0;
mhz19_type = 1;
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_CO2[] PROGMEM =
"%s{s}%s " D_CO2 "{m}%d " D_UNIT_PPM "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#endif // USE_WEBSERVER
void Mhz19Show(boolean json)
{
uint16_t co2;
float t;
if (Mhz19Read(co2, t)) {
char temperature[10];
dtostrfd(t, Settings.flag2.temperature_resolution, temperature);
GetTextIndexed(mhz19_types, sizeof(mhz19_types), mhz19_type -1, kMhz19Types);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, co2, temperature);
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_COUNT, co2);
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz19_types, co2);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz19_types, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_15
boolean Xsns15(byte function)
{
boolean result = false;
if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) {
switch (function) {
case FUNC_XSNS_INIT:
Mhz19Init();
break;
case FUNC_XSNS_PREP:
// Mhz19Prep();
break;
case FUNC_XSNS_JSON_APPEND:
Mhz19Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_XSNS_WEB:
Mhz19Show(0);
// Mhz19Prep();
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MHZ19