mirror of https://github.com/arendst/Tasmota.git
v5.10.0c
5.10.0c * Consolidate device serial (MH-Z19, SenseAir and Pzem004T) into TasmotaSerial library * Consolidate PWM device recognition * Fix Wemo Emulation (#1357) * Add support for Arilux LC06 (#1414)
This commit is contained in:
parent
7723d52453
commit
67d8fa0d64
|
@ -1,7 +1,7 @@
|
|||
## Sonoff-Tasmota
|
||||
Provide ESP8266 based Sonoff by [iTead Studio](https://www.itead.cc/) and ElectroDragon IoT Relay with Serial, Web and MQTT control allowing 'Over the Air' or OTA firmware updates using Arduino IDE.
|
||||
|
||||
Current version is **5.10.0b** - See [sonoff/_releasenotes.ino](https://github.com/arendst/Sonoff-Tasmota/blob/development/sonoff/_releasenotes.ino) for change information.
|
||||
Current version is **5.10.0c** - See [sonoff/_releasenotes.ino](https://github.com/arendst/Sonoff-Tasmota/blob/development/sonoff/_releasenotes.ino) for change information.
|
||||
|
||||
### ATTENTION All versions
|
||||
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
# TasmotaSerial
|
||||
|
||||
Implementation of software serial library for the ESP8266 at 9600 baud
|
||||
|
||||
Allows for several instances to be active at the same time.
|
||||
|
||||
Please note that due to the fact that the ESP always have other activities ongoing, there will be some inexactness in interrupt
|
||||
timings. This may lead to bit errors when having heavy data traffic.
|
|
@ -0,0 +1,27 @@
|
|||
|
||||
#include <TasmotaSerial.h>
|
||||
|
||||
TasmotaSerial swSer(14, 12);
|
||||
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
swSer.begin();
|
||||
|
||||
Serial.println("\nTasmota serial test started");
|
||||
|
||||
for (char ch = ' '; ch <= 'z'; ch++) {
|
||||
swSer.write(ch);
|
||||
}
|
||||
swSer.println("");
|
||||
|
||||
}
|
||||
|
||||
void loop() {
|
||||
while (swSer.available() > 0) {
|
||||
Serial.write(swSer.read());
|
||||
}
|
||||
while (Serial.available() > 0) {
|
||||
swSer.write(Serial.read());
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,26 @@
|
|||
#######################################
|
||||
# Syntax Coloring Map for TasmotaSerial
|
||||
# (esp8266)
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
TasmotaSerial KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
begin KEYWORD2
|
||||
read KEYWORD2
|
||||
write KEYWORD2
|
||||
available KEYWORD2
|
||||
flush KEYWORD2
|
||||
peek KEYWORD2
|
||||
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
{
|
||||
"name": "TasmotaSerial",
|
||||
"version": "1.0.0",
|
||||
"keywords": [
|
||||
"serial", "io", "TasmotaSerial"
|
||||
],
|
||||
"description": "Implementation of software serial for ESP8266 at 9600 baud.",
|
||||
"repository":
|
||||
{
|
||||
"type": "git",
|
||||
"url": "https://github.com/arendst/Sonoff-Tasmota/lib/TasmotaSerial"
|
||||
},
|
||||
"frameworks": "arduino",
|
||||
"platforms": "espressif8266"
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
name=TasmotaSerial
|
||||
version=1.0
|
||||
author=Theo Arends
|
||||
maintainer=Theo Arends <theo@arends.com>
|
||||
sentence=Implementation of software serial for ESP8266 at 9600 baud.
|
||||
paragraph=
|
||||
category=Signal Input/Output
|
||||
url=
|
||||
architectures=esp8266
|
|
@ -0,0 +1,193 @@
|
|||
/*
|
||||
TasmotaSerial.cpp - Minimal implementation of software serial for Tasmota
|
||||
|
||||
Copyright (C) 2018 Theo Arends
|
||||
|
||||
This library is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <Arduino.h>
|
||||
|
||||
// The Arduino standard GPIO routines are not enough,
|
||||
// must use some from the Espressif SDK as well
|
||||
extern "C" {
|
||||
#include "gpio.h"
|
||||
}
|
||||
|
||||
#include <TasmotaSerial.h>
|
||||
|
||||
// As the Arduino attachInterrupt has no parameter, lists of objects
|
||||
// and callbacks corresponding to each possible GPIO pins have to be defined
|
||||
TasmotaSerial *ObjList[16];
|
||||
|
||||
#ifdef TM_SERIAL_USE_IRAM
|
||||
void ICACHE_RAM_ATTR sws_isr_0() { ObjList[0]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_1() { ObjList[1]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_2() { ObjList[2]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_3() { ObjList[3]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_4() { ObjList[4]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_5() { ObjList[5]->rxRead(); };
|
||||
// Pin 6 to 11 can not be used
|
||||
void ICACHE_RAM_ATTR sws_isr_12() { ObjList[12]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_13() { ObjList[13]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_14() { ObjList[14]->rxRead(); };
|
||||
void ICACHE_RAM_ATTR sws_isr_15() { ObjList[15]->rxRead(); };
|
||||
#else
|
||||
void sws_isr_0() { ObjList[0]->rxRead(); };
|
||||
void sws_isr_1() { ObjList[1]->rxRead(); };
|
||||
void sws_isr_2() { ObjList[2]->rxRead(); };
|
||||
void sws_isr_3() { ObjList[3]->rxRead(); };
|
||||
void sws_isr_4() { ObjList[4]->rxRead(); };
|
||||
void sws_isr_5() { ObjList[5]->rxRead(); };
|
||||
// Pin 6 to 11 can not be used
|
||||
void sws_isr_12() { ObjList[12]->rxRead(); };
|
||||
void sws_isr_13() { ObjList[13]->rxRead(); };
|
||||
void sws_isr_14() { ObjList[14]->rxRead(); };
|
||||
void sws_isr_15() { ObjList[15]->rxRead(); };
|
||||
#endif // TM_SERIAL_USE_IRAM
|
||||
|
||||
static void (*ISRList[16])() = {
|
||||
sws_isr_0,
|
||||
sws_isr_1,
|
||||
sws_isr_2,
|
||||
sws_isr_3,
|
||||
sws_isr_4,
|
||||
sws_isr_5,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
sws_isr_12,
|
||||
sws_isr_13,
|
||||
sws_isr_14,
|
||||
sws_isr_15
|
||||
};
|
||||
|
||||
TasmotaSerial::TasmotaSerial(int receive_pin, int transmit_pin)
|
||||
{
|
||||
m_valid = false;
|
||||
if (!((isValidGPIOpin(receive_pin)) && (isValidGPIOpin(transmit_pin) || transmit_pin == 16))) {
|
||||
return;
|
||||
}
|
||||
m_buffer = (uint8_t*)malloc(TM_SERIAL_BUFFER_SIZE);
|
||||
if (m_buffer == NULL) {
|
||||
return;
|
||||
}
|
||||
m_valid = true;
|
||||
m_rx_pin = receive_pin;
|
||||
m_tx_pin = transmit_pin;
|
||||
m_in_pos = m_out_pos = 0;
|
||||
// Use getCycleCount() loop to get as exact timing as possible
|
||||
m_bit_time = ESP.getCpuFreqMHz() *1000000 /TM_SERIAL_BAUDRATE;
|
||||
pinMode(m_rx_pin, INPUT);
|
||||
ObjList[m_rx_pin] = this;
|
||||
attachInterrupt(m_rx_pin, ISRList[m_rx_pin], FALLING);
|
||||
pinMode(m_tx_pin, OUTPUT);
|
||||
digitalWrite(m_tx_pin, HIGH);
|
||||
}
|
||||
|
||||
bool TasmotaSerial::isValidGPIOpin(int pin)
|
||||
{
|
||||
return (pin >= 0 && pin <= 5) || (pin >= 12 && pin <= 15);
|
||||
}
|
||||
|
||||
bool TasmotaSerial::begin() {
|
||||
return m_valid;
|
||||
}
|
||||
|
||||
int TasmotaSerial::read()
|
||||
{
|
||||
if (m_in_pos == m_out_pos) {
|
||||
return -1;
|
||||
}
|
||||
uint8_t ch = m_buffer[m_out_pos];
|
||||
m_out_pos = (m_out_pos +1) % TM_SERIAL_BUFFER_SIZE;
|
||||
return ch;
|
||||
}
|
||||
|
||||
int TasmotaSerial::available()
|
||||
{
|
||||
int avail = m_in_pos - m_out_pos;
|
||||
if (avail < 0) {
|
||||
avail += TM_SERIAL_BUFFER_SIZE;
|
||||
}
|
||||
return avail;
|
||||
}
|
||||
|
||||
//#define TM_SERIAL_WAIT { while (ESP.getCycleCount()-start < wait) optimistic_yield(1); wait += m_bit_time; } // Watchdog timeouts
|
||||
#define TM_SERIAL_WAIT { while (ESP.getCycleCount()-start < wait); wait += m_bit_time; }
|
||||
|
||||
size_t TasmotaSerial::txWrite(uint8_t b)
|
||||
{
|
||||
unsigned long wait = m_bit_time;
|
||||
digitalWrite(m_tx_pin, HIGH);
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
// Start bit;
|
||||
digitalWrite(m_tx_pin, LOW);
|
||||
TM_SERIAL_WAIT;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
digitalWrite(m_tx_pin, (b & 1) ? HIGH : LOW);
|
||||
TM_SERIAL_WAIT;
|
||||
b >>= 1;
|
||||
}
|
||||
// Stop bit
|
||||
digitalWrite(m_tx_pin, HIGH);
|
||||
TM_SERIAL_WAIT;
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t TasmotaSerial::write(const uint8_t *buffer, size_t size)
|
||||
{
|
||||
size_t n = 0;
|
||||
// Flush input buffer on every write
|
||||
m_in_pos = m_out_pos = 0;
|
||||
while(size--) {
|
||||
n += txWrite(*buffer++);
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
#ifdef TM_SERIAL_USE_IRAM
|
||||
void ICACHE_RAM_ATTR TasmotaSerial::rxRead()
|
||||
{
|
||||
#else
|
||||
void TasmotaSerial::rxRead()
|
||||
{
|
||||
#endif
|
||||
// Advance the starting point for the samples but compensate for the
|
||||
// initial delay which occurs before the interrupt is delivered
|
||||
unsigned long wait = m_bit_time + m_bit_time/3 - 500;
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
uint8_t rec = 0;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
TM_SERIAL_WAIT;
|
||||
rec >>= 1;
|
||||
if (digitalRead(m_rx_pin)) {
|
||||
rec |= 0x80;
|
||||
}
|
||||
}
|
||||
// Stop bit
|
||||
TM_SERIAL_WAIT;
|
||||
// Store the received value in the buffer unless we have an overflow
|
||||
int next = (m_in_pos+1) % TM_SERIAL_BUFFER_SIZE;
|
||||
if (next != m_out_pos) {
|
||||
m_buffer[m_in_pos] = rec;
|
||||
m_in_pos = next;
|
||||
}
|
||||
// Must clear this bit in the interrupt register,
|
||||
// it gets set even when interrupts are disabled
|
||||
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << m_rx_pin);
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
/*
|
||||
TasmotaSerial.h - Minimal implementation of software serial for Tasmota
|
||||
|
||||
Copyright (C) 2018 Theo Arends
|
||||
|
||||
This library is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef TasmotaSerial_h
|
||||
#define TasmotaSerial_h
|
||||
/*********************************************************************************************\
|
||||
* TasmotaSerial supports 9600 baud with fixed buffer size of 20 bytes using optional no iram
|
||||
*
|
||||
* Based on EspSoftwareSerial v3.3.1 by Peter Lerup (https://github.com/plerup/espsoftwareserial)
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define TM_SERIAL_BAUDRATE 9600
|
||||
#define TM_SERIAL_BUFFER_SIZE 20
|
||||
//#define TM_SERIAL_USE_IRAM // Enable to use iram (+368 bytes)
|
||||
|
||||
class TasmotaSerial {
|
||||
public:
|
||||
TasmotaSerial(int receive_pin, int transmit_pin);
|
||||
bool begin();
|
||||
size_t write(const uint8_t *buffer, size_t size = 1);
|
||||
int read();
|
||||
int available();
|
||||
|
||||
void rxRead();
|
||||
|
||||
private:
|
||||
bool isValidGPIOpin(int pin);
|
||||
size_t txWrite(uint8_t byte);
|
||||
|
||||
// Member variables
|
||||
bool m_valid;
|
||||
int m_rx_pin;
|
||||
int m_tx_pin;
|
||||
unsigned long m_bit_time;
|
||||
unsigned int m_in_pos;
|
||||
unsigned int m_out_pos;
|
||||
uint8_t *m_buffer;
|
||||
};
|
||||
|
||||
#endif // TasmotaSerial_h
|
|
@ -1,10 +1,16 @@
|
|||
/* 5.10.0b
|
||||
/* 5.10.0c
|
||||
* Consolidate device serial (MH-Z19, SenseAir and Pzem004T) into TasmotaSerial library
|
||||
* Consolidate PWM device recognition
|
||||
* Fix Wemo Emulation (#1357)
|
||||
* Add support for Arilux LC06 (#1414)
|
||||
*
|
||||
* 5.10.0b
|
||||
* Add support for PZEM004T energy sensor to be enabled with define USE_PZEM004T in user_config.h
|
||||
* Change Sonoff Pow Energy MQTT data message and consolidate Status 8 into Status 10
|
||||
* Change Wemo SetBinaryState to distinguish from GetBinaryState (#1357)
|
||||
* Change output of HTTP command to valid JSON and Array only (#1363)
|
||||
* Add support for MH-Z19(B) CO2 sensor to be enabled with define USE_MHZ19 in user_config.h (#561, #1248)
|
||||
* Add support for senseair S8 CO2 sensor to be enabled with define USE_SENSEAIR in user_config.h
|
||||
* Add support for SenseAir S8 CO2 sensor to be enabled with define USE_SENSEAIR in user_config.h
|
||||
* Add support for Domoticz Air Quality sensor to be used by MH-Z19(B) and SenseAir sensors
|
||||
*
|
||||
* 5.10.0a
|
||||
|
|
|
@ -182,7 +182,7 @@ void SettingsSaveAll()
|
|||
} else {
|
||||
Settings.power = 0;
|
||||
}
|
||||
XsnsCall(FUNC_XSNS_SAVE_BEFORE_RESTART);
|
||||
XsnsCall(FUNC_SAVE_BEFORE_RESTART);
|
||||
SettingsSave(0);
|
||||
}
|
||||
|
||||
|
|
|
@ -133,7 +133,7 @@ enum LightTypes {LT_BASIC, LT_PWM1, LT_PWM2, LT_PWM3, LT_PWM4, LT_PWM5, LT_PWM6,
|
|||
enum LichtSubtypes {LST_NONE, LST_SINGLE, LST_COLDWARM, LST_RGB, LST_RGBW, LST_RGBWC};
|
||||
enum LichtSchemes {LS_POWER, LS_WAKEUP, LS_CYCLEUP, LS_CYCLEDN, LS_RANDOM, LS_MAX};
|
||||
|
||||
enum XsnsFunctions {FUNC_XSNS_INIT, FUNC_XSNS_EVERY_SECOND, FUNC_XSNS_PREP_BEFORE_TELEPERIOD, FUNC_XSNS_JSON_APPEND, FUNC_XSNS_WEB_APPEND, FUNC_XSNS_SAVE_BEFORE_RESTART};
|
||||
enum XsnsFunctions {FUNC_INIT, FUNC_EVERY_50_MSECOND, FUNC_EVERY_SECOND, FUNC_PREP_BEFORE_TELEPERIOD, FUNC_JSON_APPEND, FUNC_WEB_APPEND, FUNC_SAVE_BEFORE_RESTART};
|
||||
|
||||
const uint8_t kDefaultRfCode[9] PROGMEM = { 0x21, 0x16, 0x01, 0x0E, 0x03, 0x48, 0x2E, 0x1A, 0x00 };
|
||||
|
||||
|
|
|
@ -25,8 +25,8 @@
|
|||
- Select IDE Tools - Flash Size: "1M (no SPIFFS)"
|
||||
====================================================*/
|
||||
|
||||
#define VERSION 0x050A0002
|
||||
#define VERSION_STRING "5.10.0b" // Would be great to have a macro that fills this from VERSION ...
|
||||
#define VERSION 0x050A0003
|
||||
#define VERSION_STRING "5.10.0c" // Would be great to have a macro that fills this from VERSION ...
|
||||
|
||||
// Location specific includes
|
||||
#include "sonoff.h" // Enumaration used in user_config.h
|
||||
|
@ -1812,7 +1812,7 @@ boolean MqttShowSensor()
|
|||
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_SWITCH "%d\":\"%s\""), mqtt_data, i +1, GetStateText(swm ^ lastwallswitch[i]));
|
||||
}
|
||||
}
|
||||
XsnsCall(FUNC_XSNS_JSON_APPEND);
|
||||
XsnsCall(FUNC_JSON_APPEND);
|
||||
boolean json_data_available = (strlen(mqtt_data) - json_data_start);
|
||||
if (strstr_P(mqtt_data, PSTR(D_TEMPERATURE))) {
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_TEMPERATURE_UNIT "\":\"%c\""), mqtt_data, TempUnit());
|
||||
|
@ -1871,7 +1871,7 @@ void PerformEverySecond()
|
|||
if (Settings.tele_period) {
|
||||
tele_period++;
|
||||
if (tele_period == Settings.tele_period -1) {
|
||||
XsnsCall(FUNC_XSNS_PREP_BEFORE_TELEPERIOD);
|
||||
XsnsCall(FUNC_PREP_BEFORE_TELEPERIOD);
|
||||
}
|
||||
if (tele_period >= Settings.tele_period) {
|
||||
tele_period = 0;
|
||||
|
@ -1887,7 +1887,7 @@ void PerformEverySecond()
|
|||
}
|
||||
}
|
||||
|
||||
XsnsCall(FUNC_XSNS_EVERY_SECOND);
|
||||
XsnsCall(FUNC_EVERY_SECOND);
|
||||
|
||||
if ((2 == RtcTime.minute) && latest_uptime_flag) {
|
||||
latest_uptime_flag = false;
|
||||
|
@ -2220,6 +2220,8 @@ void StateLoop()
|
|||
LightAnimate();
|
||||
}
|
||||
|
||||
XsnsCall(FUNC_EVERY_50_MSECOND);
|
||||
|
||||
/*-------------------------------------------------------------------------------------------*\
|
||||
* Every 0.2 second
|
||||
\*-------------------------------------------------------------------------------------------*/
|
||||
|
@ -2521,17 +2523,20 @@ void GpioInit()
|
|||
#endif // USE_I2C
|
||||
|
||||
devices_present = 1;
|
||||
|
||||
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
|
||||
if (Settings.flag.pwm_control) {
|
||||
light_type = LT_BASIC;
|
||||
for (byte i = 0; i < MAX_PWMS; i++) {
|
||||
if (pin[GPIO_PWM1 +i] < 99) {
|
||||
light_type++; // Use Dimmer/Color control for all PWM as SetOption15 = 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (SONOFF_BRIDGE == Settings.module) {
|
||||
baudrate = 19200;
|
||||
}
|
||||
|
||||
if (SONOFF_DUAL == Settings.module) {
|
||||
devices_present = 2;
|
||||
baudrate = 19200;
|
||||
|
@ -2544,11 +2549,6 @@ void GpioInit()
|
|||
devices_present = 0;
|
||||
baudrate = 19200;
|
||||
}
|
||||
else if ((H801 == Settings.module) || (MAGICHOME == Settings.module) || (ARILUX_LC01 == Settings.module) || (ARILUX_LC11 == Settings.module)) { // PWM RGBCW led
|
||||
if (!Settings.flag.pwm_control) {
|
||||
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
|
||||
}
|
||||
}
|
||||
else if (SONOFF_BN == Settings.module) { // PWM Single color led (White)
|
||||
light_type = LT_PWM1;
|
||||
}
|
||||
|
@ -2572,6 +2572,7 @@ void GpioInit()
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (byte i = 0; i < MAX_KEYS; i++) {
|
||||
if (pin[GPIO_KEY1 +i] < 99) {
|
||||
pinMode(pin[GPIO_KEY1 +i], (16 == pin[GPIO_KEY1 +i]) ? INPUT_PULLDOWN_16 : INPUT_PULLUP);
|
||||
|
@ -2599,7 +2600,7 @@ void GpioInit()
|
|||
if (light_type) { // Any Led light under Dimmer/Color control
|
||||
LightInit();
|
||||
} else {
|
||||
for (byte i = 0; i < MAX_PWMS; i++) {
|
||||
for (byte i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
|
||||
if (pin[GPIO_PWM1 +i] < 99) {
|
||||
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
|
||||
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]);
|
||||
|
@ -2623,8 +2624,6 @@ void GpioInit()
|
|||
}
|
||||
#endif // USE_IR_RECEIVE
|
||||
#endif // USE_IR_REMOTE
|
||||
|
||||
// energy_flg = (((pin[GPIO_HLW_SEL] < 99) && (pin[GPIO_HLW_CF1] < 99) && (pin[GPIO_HLW_CF] < 99)) || ((pin[GPIO_PZEM_RX] < 99) && (pin[GPIO_PZEM_TX])));
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
|
|
|
@ -209,6 +209,7 @@ enum SupportedModules {
|
|||
ARILUX_LC01,
|
||||
ARILUX_LC11,
|
||||
SONOFF_DUAL_R2,
|
||||
ARILUX_LC06,
|
||||
MAXMODULE };
|
||||
|
||||
/********************************************************************************************/
|
||||
|
@ -260,6 +261,7 @@ const uint8_t kNiceList[MAXMODULE] PROGMEM = {
|
|||
H801,
|
||||
MAGICHOME,
|
||||
ARILUX_LC01,
|
||||
ARILUX_LC06,
|
||||
ARILUX_LC11,
|
||||
HUAFAN_SS,
|
||||
KMC_70011,
|
||||
|
@ -747,7 +749,7 @@ const mytmplt kModules[MAXMODULE] PROGMEM = {
|
|||
GPIO_REL1, // GPIO14 Relay
|
||||
0, 0, 0
|
||||
},
|
||||
{ "Arilux", // Arilux AL-LC01 (ESP8285) - https://www.banggood.com/nl/ARILUX-AL-LC01-Super-Mini-LED-WIFI-Smart-RGB-Controller-For-RGB-LED-Strip-Light-DC-9-12V-p-1058603.html
|
||||
{ "Arilux LC01", // Arilux AL-LC01 (ESP8285) - https://www.banggood.com/nl/ARILUX-AL-LC01-Super-Mini-LED-WIFI-Smart-RGB-Controller-For-RGB-LED-Strip-Light-DC-9-12V-p-1058603.html
|
||||
// (PwmFrequency 1111Hz)
|
||||
GPIO_KEY1, // GPIO00 Optional Button
|
||||
0,
|
||||
|
@ -790,7 +792,38 @@ const mytmplt kModules[MAXMODULE] PROGMEM = {
|
|||
GPIO_REL1, // GPIO12 Relay 1 (0 = Off, 1 = On)
|
||||
GPIO_LED1_INV, // GPIO13 Blue Led (0 = On, 1 = Off)
|
||||
0, 0, 0, 0
|
||||
},
|
||||
{ "Arilux LC06", // Arilux AL-LC06 (ESP8285) - https://www.banggood.com/ARILUX-AL-LC06-LED-WIFI-Smartphone-Controller-Romote-5-Channels-DC12-24V-For-RGBWW-Strip-light-p-1061476.html
|
||||
GPIO_KEY1, // GPIO00 Optional Button
|
||||
0,
|
||||
GPIO_USER, // GPIO02 Empty pad
|
||||
0,
|
||||
GPIO_USER, // GPIO04 W2 - PWM5
|
||||
0,
|
||||
0, 0, 0, 0, 0, 0, // Flash connection
|
||||
GPIO_PWM2, // GPIO12 RGB LED Green
|
||||
GPIO_PWM3, // GPIO13 RGB LED Blue
|
||||
GPIO_PWM1, // GPIO14 RGB LED Red
|
||||
GPIO_USER, // GPIO15 RGBW LED White
|
||||
0, 0
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Optionals
|
||||
|
||||
{ "Xenon 3CH", // Xenon 3CH (ESP8266) - (#1128)
|
||||
0, 0, 0,
|
||||
GPIO_KEY2, // GPIO03 Serial TXD and Optional sensor
|
||||
GPIO_REL2, // GPIO04 Relay 2
|
||||
GPIO_KEY3, // GPIO05 Input 2
|
||||
0, 0, 0, 0, 0, 0, // Flash connection
|
||||
GPIO_KEY1, // GPIO12 Key input
|
||||
GPIO_REL1, // GPIO13 Relay 1
|
||||
0,
|
||||
GPIO_REL3, // GPIO15 Relay 3
|
||||
0, 0
|
||||
}
|
||||
*/
|
||||
|
||||
#endif // _SONOFF_TEMPLATE_H_
|
|
@ -1337,15 +1337,15 @@ boolean Xsns02(byte function)
|
|||
|
||||
if (pin[GPIO_ADC0] < 99) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// case FUNC_INIT:
|
||||
// break;
|
||||
// case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
// case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
// break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
AdcShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
AdcShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -163,7 +163,7 @@
|
|||
// -- Sensor code selection -----------------------
|
||||
#define USE_ADC_VCC // Display Vcc in Power status. Disable for use as Analog input on selected devices
|
||||
|
||||
//#define USE_PZEM004T // Add support for PZEM004T Energy monitor (+2k3 code)
|
||||
//#define USE_PZEM004T // Add support for PZEM004T Energy monitor (+2k code)
|
||||
|
||||
// WARNING: Select none for default one DS18B20 sensor or enable one of the following two options for multiple sensors
|
||||
//#define USE_DS18x20 // Optional for more than one DS18x20 sensors with id sort, single scan and read retry (+1k3 code)
|
||||
|
@ -192,8 +192,8 @@
|
|||
#define USE_WS2812_CTYPE 1 // WS2812 Color type (0 - RGB, 1 - GRB, 2 - RGBW, 3 - GRBW)
|
||||
// #define USE_WS2812_DMA // DMA supports only GPIO03 (= Serial RXD) (+1k mem). When USE_WS2812_DMA is enabled expect Exceptions on Pow
|
||||
|
||||
//#define USE_MHZ19 // Add support for MH-Z19 CO2 sensor (+1k8 code)
|
||||
//#define USE_SENSEAIR // Add support for SenseAir K30, K70 and S8 CO2 sensor (+1k8 code)
|
||||
//#define USE_MHZ19 // Add support for MH-Z19 CO2 sensor (+2k code)
|
||||
//#define USE_SENSEAIR // Add support for SenseAir K30, K70 and S8 CO2 sensor (+2k3 code)
|
||||
|
||||
#define USE_ARILUX_RF // Add support for Arilux RF remote controller (+0k8 code)
|
||||
|
||||
|
|
|
@ -511,7 +511,7 @@ void HandleAjaxStatusRefresh()
|
|||
|
||||
String page = "";
|
||||
mqtt_data[0] = '\0';
|
||||
XsnsCall(FUNC_XSNS_WEB_APPEND);
|
||||
XsnsCall(FUNC_WEB_APPEND);
|
||||
if (strlen(mqtt_data)) {
|
||||
page += FPSTR(HTTP_TABLE100);
|
||||
page += mqtt_data;
|
||||
|
|
|
@ -268,6 +268,17 @@ const char WEMO_EVENTSERVICE_XML[] PROGMEM =
|
|||
"</action>"
|
||||
"</scpd>\r\n"
|
||||
"\r\n";
|
||||
|
||||
const char WEMO_RESPONSE_STATE_SOAP[] PROGMEM =
|
||||
"<s:Envelope xmlns:s=\"http://schemas.xmlsoap.org/soap/envelope/\">"
|
||||
"<s:Body>"
|
||||
"<u:SetBinaryStateResponse xmlns:u=\"urn:Belkin:service:basicevent:1\">"
|
||||
"<BinaryState>{x1</BinaryState>"
|
||||
"</u:SetBinaryStateResponse>"
|
||||
"</s:Body>"
|
||||
"</s:Envelope>\r\n"
|
||||
"\r\n";
|
||||
|
||||
const char WEMO_SETUP_XML[] PROGMEM =
|
||||
"<?xml version=\"1.0\"?>"
|
||||
"<root>"
|
||||
|
@ -299,17 +310,21 @@ void HandleUpnpEvent()
|
|||
{
|
||||
AddLog_P(LOG_LEVEL_DEBUG, S_LOG_HTTP, PSTR(D_WEMO_BASIC_EVENT));
|
||||
String request = WebServer->arg(0);
|
||||
String state_xml = FPSTR(WEMO_RESPONSE_STATE_SOAP);
|
||||
//differentiate get and set state
|
||||
if (request.indexOf(F("SetBinaryState")) > 0) {
|
||||
if (request.indexOf(F("State>1</Binary")) > 0) {
|
||||
// ExecuteCommandPower(1, 1);
|
||||
ExecuteCommandPower(devices_present, 1);
|
||||
}
|
||||
if (request.indexOf(F("State>0</Binary")) > 0) {
|
||||
// ExecuteCommandPower(1, 0);
|
||||
else if (request.indexOf(F("State>0</Binary")) > 0) {
|
||||
ExecuteCommandPower(devices_present, 0);
|
||||
}
|
||||
}
|
||||
WebServer->send(200, FPSTR(HDR_CTYPE_PLAIN), "");
|
||||
else if(request.indexOf(F("GetBinaryState")) > 0){
|
||||
state_xml.replace("Set", "Get");
|
||||
}
|
||||
state_xml.replace("{x1", String(bitRead(power, devices_present -1)));
|
||||
WebServer->send(200, FPSTR(HDR_CTYPE_XML), state_xml);
|
||||
}
|
||||
|
||||
void HandleUpnpService()
|
||||
|
|
|
@ -130,20 +130,18 @@ boolean Xsns01(byte function)
|
|||
boolean result = false;
|
||||
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
CounterInit();
|
||||
break;
|
||||
// case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
// break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
CounterShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
CounterShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
case FUNC_XSNS_SAVE_BEFORE_RESTART:
|
||||
case FUNC_SAVE_BEFORE_RESTART:
|
||||
CounterSaveState();
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -41,7 +41,6 @@ const char kEnergyCommands[] PROGMEM =
|
|||
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
|
||||
D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW ;
|
||||
|
||||
bool energy_power_factor_ready = false;
|
||||
float energy_voltage = 0; // 123.1 V
|
||||
float energy_current = 0; // 123.123 A
|
||||
float energy_power = 0; // 123.1 W
|
||||
|
@ -208,25 +207,6 @@ void HlwEvery200ms()
|
|||
hlw_cf1_summed_pulse_length = 0;
|
||||
hlw_cf1_pulse_counter = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
energy_power = 0;
|
||||
if (hlw_cf_pulse_length && (power &1) && !hlw_load_off) {
|
||||
hlw_w = (HLW_PREF * Settings.hlw_power_calibration) / hlw_cf_pulse_length;
|
||||
energy_power = (float)hlw_w / 10;
|
||||
}
|
||||
energy_voltage = 0;
|
||||
if (hlw_cf1_voltage_pulse_length && (power &1)) { // If powered on always provide voltage
|
||||
hlw_u = (HLW_UREF * Settings.hlw_voltage_calibration) / hlw_cf1_voltage_pulse_length;
|
||||
energy_voltage = (float)hlw_u / 10;
|
||||
}
|
||||
energy_current = 0;
|
||||
if (hlw_cf1_current_pulse_length && energy_power) { // No current if no power being consumed
|
||||
hlw_i = (HLW_IREF * Settings.hlw_current_calibration) / hlw_cf1_current_pulse_length;
|
||||
energy_current = (float)hlw_i / 1000;
|
||||
}
|
||||
*/
|
||||
energy_power_factor_ready = true;
|
||||
}
|
||||
|
||||
void HlwInit()
|
||||
|
@ -269,119 +249,9 @@ void HlwInit()
|
|||
* Based on: PZEM004T library https://github.com/olehs/PZEM004T
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define PZEM_BAUD_RATE 9600
|
||||
#include <TasmotaSerial.h>
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Subset SoftwareSerial
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define PZEM_SERIAL_BUFFER_SIZE 20
|
||||
#define PZEM_SERIAL_WAIT { while (ESP.getCycleCount() -start < wait) optimistic_yield(1); wait += pzem_serial_bit_time; }
|
||||
|
||||
uint8_t pzem_serial_rx_pin;
|
||||
uint8_t pzem_serial_tx_pin;
|
||||
uint8_t pzem_serial_in_pos = 0;
|
||||
uint8_t pzem_serial_out_pos = 0;
|
||||
uint8_t pzem_serial_buffer[PZEM_SERIAL_BUFFER_SIZE];
|
||||
unsigned long pzem_serial_bit_time;
|
||||
unsigned long pzem_serial_bit_time_start;
|
||||
|
||||
bool PzemSerialValidGpioPin(uint8_t pin) {
|
||||
return (pin >= 0 && pin <= 5) || (pin >= 9 && pin <= 10) || (pin >= 12 && pin <= 15);
|
||||
}
|
||||
|
||||
bool PzemSerial(uint8_t receive_pin, uint8_t transmit_pin)
|
||||
{
|
||||
if (!((PzemSerialValidGpioPin(receive_pin)) && (PzemSerialValidGpioPin(transmit_pin) || transmit_pin == 16))) {
|
||||
return false;
|
||||
}
|
||||
pzem_serial_rx_pin = receive_pin;
|
||||
pinMode(pzem_serial_rx_pin, INPUT);
|
||||
attachInterrupt(pzem_serial_rx_pin, PzemSerialRxRead, FALLING);
|
||||
|
||||
pzem_serial_tx_pin = transmit_pin;
|
||||
pinMode(pzem_serial_tx_pin, OUTPUT);
|
||||
digitalWrite(pzem_serial_tx_pin, 1);
|
||||
|
||||
pzem_serial_bit_time = ESP.getCpuFreqMHz() *1000000 /PZEM_BAUD_RATE; // 8333
|
||||
pzem_serial_bit_time_start = pzem_serial_bit_time + pzem_serial_bit_time /3 -500; // 10610 ICACHE_RAM_ATTR start delay
|
||||
// pzem_serial_bit_time_start = pzem_serial_bit_time; // Non ICACHE_RAM_ATTR start delay (experimental)
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int PzemSerialRead() {
|
||||
if (pzem_serial_in_pos == pzem_serial_out_pos) {
|
||||
return -1;
|
||||
}
|
||||
int ch = pzem_serial_buffer[pzem_serial_out_pos];
|
||||
pzem_serial_out_pos = (pzem_serial_out_pos +1) % PZEM_SERIAL_BUFFER_SIZE;
|
||||
return ch;
|
||||
}
|
||||
|
||||
int PzemSerialAvailable() {
|
||||
int avail = pzem_serial_in_pos - pzem_serial_out_pos;
|
||||
if (avail < 0) {
|
||||
avail += PZEM_SERIAL_BUFFER_SIZE;
|
||||
}
|
||||
return avail;
|
||||
}
|
||||
|
||||
size_t PzemSerialTxWrite(uint8_t b)
|
||||
{
|
||||
unsigned long wait = pzem_serial_bit_time;
|
||||
digitalWrite(pzem_serial_tx_pin, HIGH);
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
// Start bit;
|
||||
digitalWrite(pzem_serial_tx_pin, LOW);
|
||||
PZEM_SERIAL_WAIT;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
digitalWrite(pzem_serial_tx_pin, (b & 1) ? HIGH : LOW);
|
||||
PZEM_SERIAL_WAIT;
|
||||
b >>= 1;
|
||||
}
|
||||
// Stop bit
|
||||
digitalWrite(pzem_serial_tx_pin, HIGH);
|
||||
PZEM_SERIAL_WAIT;
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t PzemSerialWrite(const uint8_t *buffer, size_t size = 1) {
|
||||
size_t n = 0;
|
||||
while(size--) {
|
||||
n += PzemSerialTxWrite(*buffer++);
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
//void PzemSerialRxRead() ICACHE_RAM_ATTR; // Add 215 bytes to iram usage
|
||||
void PzemSerialRxRead() {
|
||||
// Advance the starting point for the samples but compensate for the
|
||||
// initial delay which occurs before the interrupt is delivered
|
||||
unsigned long wait = pzem_serial_bit_time_start;
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
uint8_t rec = 0;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
PZEM_SERIAL_WAIT;
|
||||
rec >>= 1;
|
||||
if (digitalRead(pzem_serial_rx_pin)) {
|
||||
rec |= 0x80;
|
||||
}
|
||||
}
|
||||
// Stop bit
|
||||
PZEM_SERIAL_WAIT;
|
||||
// Store the received value in the buffer unless we have an overflow
|
||||
int next = (pzem_serial_in_pos +1) % PZEM_SERIAL_BUFFER_SIZE;
|
||||
if (next != pzem_serial_out_pos) {
|
||||
pzem_serial_buffer[pzem_serial_in_pos] = rec;
|
||||
pzem_serial_in_pos = next;
|
||||
}
|
||||
// Must clear this bit in the interrupt register,
|
||||
// it gets set even when interrupts are disabled
|
||||
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << pzem_serial_rx_pin);
|
||||
}
|
||||
|
||||
/*********************************************************************************************/
|
||||
TasmotaSerial *PzemSerial;
|
||||
|
||||
#define PZEM_VOLTAGE (uint8_t)0xB0
|
||||
#define RESP_VOLTAGE (uint8_t)0xA0
|
||||
|
@ -402,7 +272,6 @@ void PzemSerialRxRead() {
|
|||
#define RESP_POWER_ALARM (uint8_t)0xA5
|
||||
|
||||
#define PZEM_DEFAULT_READ_TIMEOUT 500
|
||||
#define PZEM_ERROR_VALUE -1.0
|
||||
|
||||
struct PZEMCommand {
|
||||
uint8_t command;
|
||||
|
@ -413,52 +282,16 @@ struct PZEMCommand {
|
|||
|
||||
IPAddress pzem_ip(192, 168, 1, 1);
|
||||
|
||||
float PZEM004T_voltage_rcv()
|
||||
uint8_t PzemCrc(uint8_t *data)
|
||||
{
|
||||
uint8_t data[sizeof(PZEMCommand) -2];
|
||||
|
||||
if (!PZEM004T_recieve(RESP_VOLTAGE, data)) {
|
||||
return PZEM_ERROR_VALUE;
|
||||
uint16_t crc = 0;
|
||||
for (uint8_t i = 0; i < sizeof(PZEMCommand) -1; i++) {
|
||||
crc += *data++;
|
||||
}
|
||||
return (data[0] << 8) + data[1] + (data[2] / 10.0); // 65535.x V
|
||||
return (uint8_t)(crc & 0xFF);
|
||||
}
|
||||
|
||||
float PZEM004T_current_rcv()
|
||||
{
|
||||
uint8_t data[sizeof(PZEMCommand) -2];
|
||||
|
||||
if (!PZEM004T_recieve(RESP_CURRENT, data)) {
|
||||
return PZEM_ERROR_VALUE;
|
||||
}
|
||||
return (data[0] << 8) + data[1] + (data[2] / 100.0); // 65535.xx A
|
||||
}
|
||||
|
||||
float PZEM004T_power_rcv()
|
||||
{
|
||||
uint8_t data[sizeof(PZEMCommand) -2];
|
||||
|
||||
if (!PZEM004T_recieve(RESP_POWER, data)) {
|
||||
return PZEM_ERROR_VALUE;
|
||||
}
|
||||
return (data[0] << 8) + data[1]; // 65535 W
|
||||
}
|
||||
|
||||
float PZEM004T_energy_rcv()
|
||||
{
|
||||
uint8_t data[sizeof(PZEMCommand) -2];
|
||||
|
||||
if (!PZEM004T_recieve(RESP_ENERGY, data)) {
|
||||
return PZEM_ERROR_VALUE;
|
||||
}
|
||||
return ((uint32_t)data[0] << 16) + ((uint16_t)data[1] << 8) + data[2]; // 16777215 Wh
|
||||
}
|
||||
|
||||
bool PZEM004T_setAddress_rcv()
|
||||
{
|
||||
return PZEM004T_recieve(RESP_SET_ADDRESS, 0);
|
||||
}
|
||||
|
||||
void PZEM004T_send(uint8_t cmd)
|
||||
void PzemSend(uint8_t cmd)
|
||||
{
|
||||
PZEMCommand pzem;
|
||||
|
||||
|
@ -469,41 +302,37 @@ void PZEM004T_send(uint8_t cmd)
|
|||
pzem.data = 0;
|
||||
|
||||
uint8_t *bytes = (uint8_t*)&pzem;
|
||||
pzem.crc = PZEM004T_crc(bytes, sizeof(pzem) - 1);
|
||||
pzem.crc = PzemCrc(bytes);
|
||||
|
||||
while (PzemSerialAvailable()) {
|
||||
PzemSerialRead();
|
||||
}
|
||||
PzemSerialWrite(bytes, sizeof(pzem));
|
||||
PzemSerial->write(bytes, sizeof(pzem));
|
||||
}
|
||||
|
||||
bool PZEM004T_isReady()
|
||||
bool PzemReceiveReady()
|
||||
{
|
||||
return PzemSerialAvailable() >= sizeof(PZEMCommand);
|
||||
return PzemSerial->available() >= sizeof(PZEMCommand);
|
||||
}
|
||||
|
||||
bool PZEM004T_recieve(uint8_t resp, uint8_t *data)
|
||||
bool PzemRecieve(uint8_t resp, float *data)
|
||||
{
|
||||
uint8_t buffer[sizeof(PZEMCommand)];
|
||||
|
||||
unsigned long startTime = millis();
|
||||
unsigned long start = millis();
|
||||
uint8_t len = 0;
|
||||
while ((len < sizeof(PZEMCommand)) && (millis() - startTime < PZEM_DEFAULT_READ_TIMEOUT)) {
|
||||
if (PzemSerialAvailable() > 0) {
|
||||
uint8_t c = (uint8_t)PzemSerialRead();
|
||||
while ((len < sizeof(PZEMCommand)) && (millis() - start < PZEM_DEFAULT_READ_TIMEOUT)) {
|
||||
if (PzemSerial->available() > 0) {
|
||||
uint8_t c = (uint8_t)PzemSerial->read();
|
||||
if (!c && !len) {
|
||||
continue; // skip 0 at startup
|
||||
}
|
||||
buffer[len++] = c;
|
||||
}
|
||||
// yield(); // do background netw tasks while blocked for IO (prevents ESP watchdog trigger) - This triggers Watchdog!!!
|
||||
}
|
||||
|
||||
if (len != sizeof(PZEMCommand)) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem comms timeout"));
|
||||
return false;
|
||||
}
|
||||
if (buffer[6] != PZEM004T_crc(buffer, len - 1)) {
|
||||
if (buffer[6] != PzemCrc(buffer)) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem crc error"));
|
||||
return false;
|
||||
}
|
||||
|
@ -511,77 +340,51 @@ bool PZEM004T_recieve(uint8_t resp, uint8_t *data)
|
|||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem bad response"));
|
||||
return false;
|
||||
}
|
||||
if (data) {
|
||||
for (int i = 0; i < sizeof(PZEMCommand) -2; i++) {
|
||||
data[i] = buffer[1 + i];
|
||||
}
|
||||
}
|
||||
|
||||
switch (resp) {
|
||||
case RESP_VOLTAGE:
|
||||
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 10.0); // 65535.x V
|
||||
break;
|
||||
case RESP_CURRENT:
|
||||
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 100.0); // 65535.xx A
|
||||
break;
|
||||
case RESP_POWER:
|
||||
*data = (float)(buffer[1] << 8) + buffer[2]; // 65535 W
|
||||
break;
|
||||
case RESP_ENERGY:
|
||||
*data = (float)((uint32_t)buffer[1] << 16) + ((uint16_t)buffer[2] << 8) + buffer[3]; // 16777215 Wh
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
uint8_t PZEM004T_crc(uint8_t *data, uint8_t sz)
|
||||
{
|
||||
uint16_t crc = 0;
|
||||
for (uint8_t i = 0; i < sz; i++) {
|
||||
crc += *data++;
|
||||
}
|
||||
return (uint8_t)(crc & 0xFF);
|
||||
}
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
typedef enum
|
||||
{
|
||||
SET_ADDRESS,
|
||||
READ_VOLTAGE,
|
||||
READ_CURRENT,
|
||||
READ_POWER,
|
||||
READ_ENERGY,
|
||||
} PZEMReadStates;
|
||||
const uint8_t pzem_commands[] { PZEM_SET_ADDRESS, PZEM_VOLTAGE, PZEM_CURRENT, PZEM_POWER, PZEM_ENERGY };
|
||||
const uint8_t pzem_responses[] { RESP_SET_ADDRESS, RESP_VOLTAGE, RESP_CURRENT, RESP_POWER, RESP_ENERGY };
|
||||
|
||||
PZEMReadStates pzem_read_state = SET_ADDRESS;
|
||||
|
||||
byte pzem_sendRetry = 0;
|
||||
uint8_t pzem_read_state = 0;
|
||||
uint8_t pzem_sendRetry = 0;
|
||||
|
||||
void PzemEvery200ms()
|
||||
{
|
||||
bool dataReady = PZEM004T_isReady();
|
||||
bool data_ready = PzemReceiveReady();
|
||||
|
||||
if (dataReady) {
|
||||
float pzem_value;
|
||||
switch (pzem_read_state) {
|
||||
case SET_ADDRESS:
|
||||
if (PZEM004T_setAddress_rcv()) {
|
||||
pzem_read_state = READ_VOLTAGE;
|
||||
}
|
||||
break;
|
||||
case READ_VOLTAGE:
|
||||
pzem_value = PZEM004T_voltage_rcv();
|
||||
if (pzem_value != PZEM_ERROR_VALUE) {
|
||||
energy_voltage = pzem_value; // 230.2V
|
||||
pzem_read_state = READ_CURRENT;
|
||||
}
|
||||
break;
|
||||
case READ_CURRENT:
|
||||
pzem_value = PZEM004T_current_rcv();
|
||||
if (pzem_value != PZEM_ERROR_VALUE) {
|
||||
energy_current = pzem_value; // 17.32A
|
||||
pzem_read_state = READ_POWER;
|
||||
}
|
||||
break;
|
||||
case READ_POWER:
|
||||
pzem_value = PZEM004T_power_rcv();
|
||||
if (pzem_value != PZEM_ERROR_VALUE) {
|
||||
energy_power = pzem_value; // 20W
|
||||
energy_power_factor_ready = true;
|
||||
pzem_read_state = READ_ENERGY;
|
||||
}
|
||||
break;
|
||||
case READ_ENERGY:
|
||||
pzem_value = PZEM004T_energy_rcv();
|
||||
if (pzem_value != PZEM_ERROR_VALUE) {
|
||||
energy_total = pzem_value / 1000; // 99999Wh
|
||||
if (data_ready) {
|
||||
float value = 0;
|
||||
if (PzemRecieve(pzem_responses[pzem_read_state], &value)) {
|
||||
switch (pzem_read_state) {
|
||||
case 1:
|
||||
energy_voltage = value; // 230.2V
|
||||
break;
|
||||
case 2:
|
||||
energy_current = value; // 17.32A
|
||||
break;
|
||||
case 3:
|
||||
energy_power = value; // 20W
|
||||
break;
|
||||
case 4:
|
||||
energy_total = value / 1000; // 99999Wh
|
||||
if (!energy_startup) {
|
||||
if (energy_total < energy_start) {
|
||||
energy_start = energy_total;
|
||||
|
@ -590,32 +393,18 @@ void PzemEvery200ms()
|
|||
energy_kWhtoday = (energy_total - energy_start) * 100000000;
|
||||
energy_daily = (float)energy_kWhtoday / 100000000;
|
||||
}
|
||||
pzem_read_state = READ_VOLTAGE;
|
||||
}
|
||||
break;
|
||||
break;
|
||||
}
|
||||
pzem_read_state++;
|
||||
if (5 == pzem_read_state) {
|
||||
pzem_read_state = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (0 == pzem_sendRetry || dataReady) {
|
||||
if (0 == pzem_sendRetry || data_ready) {
|
||||
pzem_sendRetry = 5;
|
||||
|
||||
switch (pzem_read_state) {
|
||||
case SET_ADDRESS:
|
||||
PZEM004T_send(PZEM_SET_ADDRESS);
|
||||
break;
|
||||
case READ_VOLTAGE:
|
||||
PZEM004T_send(PZEM_VOLTAGE);
|
||||
break;
|
||||
case READ_CURRENT:
|
||||
PZEM004T_send(PZEM_CURRENT);
|
||||
break;
|
||||
case READ_POWER:
|
||||
PZEM004T_send(PZEM_POWER);
|
||||
break;
|
||||
case READ_ENERGY:
|
||||
PZEM004T_send(PZEM_ENERGY);
|
||||
break;
|
||||
}
|
||||
PzemSend(pzem_commands[pzem_read_state]);
|
||||
}
|
||||
else {
|
||||
pzem_sendRetry--;
|
||||
|
@ -624,7 +413,8 @@ void PzemEvery200ms()
|
|||
|
||||
bool PzemInit()
|
||||
{
|
||||
return PzemSerial(pin[GPIO_PZEM_RX], pin[GPIO_PZEM_TX]);
|
||||
PzemSerial = new TasmotaSerial(pin[GPIO_PZEM_RX], pin[GPIO_PZEM_TX]);
|
||||
return PzemSerial->begin();
|
||||
}
|
||||
|
||||
/********************************************************************************************/
|
||||
|
@ -676,14 +466,14 @@ void Energy200ms()
|
|||
#endif // USE_PZEM004T
|
||||
}
|
||||
|
||||
if (energy_power_factor_ready && energy_voltage && energy_current && energy_power) {
|
||||
energy_power_factor_ready = false;
|
||||
float power_factor = energy_power / (energy_voltage * energy_current);
|
||||
float power_factor = 0;
|
||||
if (energy_voltage && energy_current && energy_power) {
|
||||
power_factor = energy_power / (energy_voltage * energy_current);
|
||||
if (power_factor > 1) {
|
||||
power_factor = 1;
|
||||
}
|
||||
energy_power_factor = power_factor;
|
||||
}
|
||||
energy_power_factor = power_factor;
|
||||
}
|
||||
|
||||
void EnergySaveState()
|
||||
|
@ -1143,23 +933,21 @@ boolean Xsns03(byte function)
|
|||
|
||||
if (energy_flg) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
EnergyInit();
|
||||
break;
|
||||
case FUNC_XSNS_EVERY_SECOND:
|
||||
case FUNC_EVERY_SECOND:
|
||||
EnergyMarginCheck();
|
||||
break;
|
||||
// case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
// break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
EnergyShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
EnergyShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
case FUNC_XSNS_SAVE_BEFORE_RESTART:
|
||||
case FUNC_SAVE_BEFORE_RESTART:
|
||||
EnergySaveState();
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -148,16 +148,14 @@ boolean Xsns04(byte function)
|
|||
|
||||
if (SONOFF_SC == Settings.module) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
SonoffScInit();
|
||||
break;
|
||||
// case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
// break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
SonoffScShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
SonoffScShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -219,17 +219,17 @@ boolean Xsns05(byte function)
|
|||
|
||||
if (pin[GPIO_DSB] < 99) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
Ds18x20Init();
|
||||
break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Ds18x20Convert(); // Start conversion, takes up to one second
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Ds18b20Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Ds18b20Show(0);
|
||||
Ds18x20Convert(); // Start conversion, takes up to one second
|
||||
break;
|
||||
|
|
|
@ -401,17 +401,17 @@ boolean Xsns05(byte function)
|
|||
|
||||
if (pin[GPIO_DSB] < 99) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
Ds18x20Init();
|
||||
break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Ds18x20Convert(); // Start conversion, takes up to one second
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Ds18x20Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Ds18x20Show(0);
|
||||
Ds18x20Convert(); // Start conversion, takes up to one second
|
||||
break;
|
||||
|
|
|
@ -219,18 +219,18 @@ boolean Xsns05(byte function)
|
|||
|
||||
if (pin[GPIO_DSB] < 99) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
Ds18x20Init();
|
||||
break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Ds18x20Search(); // Check for changes in sensors number
|
||||
Ds18x20Convert(); // Start Conversion, takes up to one second
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Ds18x20Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Ds18x20Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -253,17 +253,17 @@ boolean Xsns06(byte function)
|
|||
|
||||
if (dht_flg) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
DhtInit();
|
||||
break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
DhtReadPrep();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
DhtShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
DhtShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -223,16 +223,14 @@ boolean Xsns07(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
ShtDetect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
ShtShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
ShtShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -284,16 +284,14 @@ boolean Xsns08(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
HtuDetect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
HtuShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
HtuShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -502,19 +502,17 @@ boolean Xsns09(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
BmpDetect();
|
||||
#ifdef USE_BME680
|
||||
Bme680PerformReading();
|
||||
#endif // USE_BME680
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
BmpShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
BmpShow(0);
|
||||
#ifdef USE_BME680
|
||||
Bme680PerformReading();
|
||||
|
|
|
@ -99,16 +99,14 @@ boolean Xsns10(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Bh1750Detect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Bh1750Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Bh1750Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -104,16 +104,14 @@ boolean Xsns11(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Veml6070Detect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Veml6070Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Veml6070Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -218,16 +218,14 @@ boolean Xsns12(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Ads1115Detect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Ads1115Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Ads1115Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -138,16 +138,14 @@ boolean Xsns12(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Ads1115Detect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Ads1115Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Ads1115Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -219,16 +219,14 @@ boolean Xsns13(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Ina219Detect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Ina219Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Ina219Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -125,17 +125,17 @@ boolean Xsns14(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
Sht3xDetect();
|
||||
break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Sht3xConvert();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Sht3xShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Sht3xShow(0);
|
||||
Sht3xConvert();
|
||||
break;
|
||||
|
|
|
@ -122,16 +122,14 @@ boolean Xsns14(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
Sht3xDetect();
|
||||
break;
|
||||
// case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
// break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Sht3xShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Sht3xShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -132,17 +132,17 @@ boolean Xsns14(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
Sht3xDetect();
|
||||
break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Sht3xConvert();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Sht3xShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Sht3xShow(0);
|
||||
Sht3xConvert();
|
||||
break;
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
* Select filter usage on low stability readings
|
||||
\*********************************************************************************************/
|
||||
|
||||
enum Mhz19FilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW};
|
||||
enum MhzFilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW};
|
||||
|
||||
#define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST
|
||||
|
||||
|
@ -52,159 +52,47 @@ enum Mhz19FilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FI
|
|||
|
||||
/*********************************************************************************************/
|
||||
|
||||
#define MHZ19_BAUDRATE 9600
|
||||
#include <TasmotaSerial.h>
|
||||
|
||||
TasmotaSerial *MhzSerial;
|
||||
|
||||
#define MHZ19_READ_TIMEOUT 500 // Must be way less than 1000
|
||||
#define MHZ19_RETRY_COUNT 8
|
||||
|
||||
const char kMhz19Types[] PROGMEM = "MHZ19|MHZ19B";
|
||||
const char kMhzTypes[] PROGMEM = "MHZ19|MHZ19B";
|
||||
|
||||
const uint8_t mhz19_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
|
||||
const uint8_t mhz19_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
|
||||
const uint8_t mhz19_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
|
||||
const uint8_t mhz_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
|
||||
const uint8_t mhz_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
|
||||
const uint8_t mhz_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
|
||||
|
||||
uint8_t mhz19_type = 1;
|
||||
uint16_t mhz19_last_ppm = 0;
|
||||
uint8_t mhz19_filter = MHZ19_FILTER_OPTION;
|
||||
bool mhz19_abc_enable = MHZ19_ABC_ENABLE;
|
||||
bool mhz19_abc_must_apply = false;
|
||||
char mhz19_types[7];
|
||||
uint8_t mhz_type = 1;
|
||||
uint16_t mhz_last_ppm = 0;
|
||||
uint8_t mhz_filter = MHZ19_FILTER_OPTION;
|
||||
bool mhz_abc_enable = MHZ19_ABC_ENABLE;
|
||||
bool mhz_abc_must_apply = false;
|
||||
char mhz_types[7];
|
||||
|
||||
float mhz19_temperature = 0;
|
||||
uint8_t mhz19_timer = 0;
|
||||
uint8_t mhz19_retry = MHZ19_RETRY_COUNT;
|
||||
Ticker mhz19_ticker;
|
||||
float mhz_temperature = 0;
|
||||
uint8_t mhz_timer = 0;
|
||||
uint8_t mhz_retry = MHZ19_RETRY_COUNT;
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Subset SoftwareSerial
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define MHZ19_SERIAL_BUFFER_SIZE 20
|
||||
#define MHZ19_SERIAL_WAIT { while (ESP.getCycleCount() -start < wait) optimistic_yield(1); wait += mhz19_serial_bit_time; }
|
||||
|
||||
uint8_t mhz19_serial_rx_pin;
|
||||
uint8_t mhz19_serial_tx_pin;
|
||||
uint8_t mhz19_serial_in_pos = 0;
|
||||
uint8_t mhz19_serial_out_pos = 0;
|
||||
uint8_t mhz19_serial_buffer[MHZ19_SERIAL_BUFFER_SIZE];
|
||||
unsigned long mhz19_serial_bit_time;
|
||||
unsigned long mhz19_serial_bit_time_start;
|
||||
|
||||
bool Mhz19SerialValidGpioPin(uint8_t pin) {
|
||||
return (pin >= 0 && pin <= 5) || (pin >= 9 && pin <= 10) || (pin >= 12 && pin <= 15);
|
||||
}
|
||||
|
||||
bool Mhz19Serial(uint8_t receive_pin, uint8_t transmit_pin)
|
||||
{
|
||||
if (!((Mhz19SerialValidGpioPin(receive_pin)) && (Mhz19SerialValidGpioPin(transmit_pin) || transmit_pin == 16))) {
|
||||
return false;
|
||||
}
|
||||
mhz19_serial_rx_pin = receive_pin;
|
||||
pinMode(mhz19_serial_rx_pin, INPUT);
|
||||
attachInterrupt(mhz19_serial_rx_pin, Mhz19SerialRxRead, FALLING);
|
||||
|
||||
mhz19_serial_tx_pin = transmit_pin;
|
||||
pinMode(mhz19_serial_tx_pin, OUTPUT);
|
||||
digitalWrite(mhz19_serial_tx_pin, 1);
|
||||
|
||||
mhz19_serial_bit_time = ESP.getCpuFreqMHz() *1000000 /MHZ19_BAUDRATE; // 8333
|
||||
mhz19_serial_bit_time_start = mhz19_serial_bit_time + mhz19_serial_bit_time /3 -500; // 10610 ICACHE_RAM_ATTR start delay
|
||||
// mhz19_serial_bit_time_start = mhz19_serial_bit_time; // Non ICACHE_RAM_ATTR start delay (experimental)
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int Mhz19SerialRead() {
|
||||
if (mhz19_serial_in_pos == mhz19_serial_out_pos) {
|
||||
return -1;
|
||||
}
|
||||
int ch = mhz19_serial_buffer[mhz19_serial_out_pos];
|
||||
mhz19_serial_out_pos = (mhz19_serial_out_pos +1) % MHZ19_SERIAL_BUFFER_SIZE;
|
||||
return ch;
|
||||
}
|
||||
|
||||
int Mhz19SerialAvailable() {
|
||||
int avail = mhz19_serial_in_pos - mhz19_serial_out_pos;
|
||||
if (avail < 0) {
|
||||
avail += MHZ19_SERIAL_BUFFER_SIZE;
|
||||
}
|
||||
return avail;
|
||||
}
|
||||
|
||||
void Mhz19SerialFlush()
|
||||
{
|
||||
mhz19_serial_in_pos = 0;
|
||||
mhz19_serial_out_pos = 0;
|
||||
}
|
||||
|
||||
size_t Mhz19SerialTxWrite(uint8_t b)
|
||||
{
|
||||
unsigned long wait = mhz19_serial_bit_time;
|
||||
digitalWrite(mhz19_serial_tx_pin, HIGH);
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
// Start bit;
|
||||
digitalWrite(mhz19_serial_tx_pin, LOW);
|
||||
MHZ19_SERIAL_WAIT;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
digitalWrite(mhz19_serial_tx_pin, (b & 1) ? HIGH : LOW);
|
||||
MHZ19_SERIAL_WAIT;
|
||||
b >>= 1;
|
||||
}
|
||||
// Stop bit
|
||||
digitalWrite(mhz19_serial_tx_pin, HIGH);
|
||||
MHZ19_SERIAL_WAIT;
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t Mhz19SerialWrite(const uint8_t *buffer, size_t size = 1) {
|
||||
size_t n = 0;
|
||||
while(size--) {
|
||||
n += Mhz19SerialTxWrite(*buffer++);
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
//void Mhz19SerialRxRead() ICACHE_RAM_ATTR; // Add 215 bytes to iram usage
|
||||
void Mhz19SerialRxRead() {
|
||||
// Advance the starting point for the samples but compensate for the
|
||||
// initial delay which occurs before the interrupt is delivered
|
||||
unsigned long wait = mhz19_serial_bit_time_start;
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
uint8_t rec = 0;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
MHZ19_SERIAL_WAIT;
|
||||
rec >>= 1;
|
||||
if (digitalRead(mhz19_serial_rx_pin)) {
|
||||
rec |= 0x80;
|
||||
}
|
||||
}
|
||||
// Stop bit
|
||||
MHZ19_SERIAL_WAIT;
|
||||
// Store the received value in the buffer unless we have an overflow
|
||||
int next = (mhz19_serial_in_pos +1) % MHZ19_SERIAL_BUFFER_SIZE;
|
||||
if (next != mhz19_serial_out_pos) {
|
||||
mhz19_serial_buffer[mhz19_serial_in_pos] = rec;
|
||||
mhz19_serial_in_pos = next;
|
||||
}
|
||||
// Must clear this bit in the interrupt register,
|
||||
// it gets set even when interrupts are disabled
|
||||
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << mhz19_serial_rx_pin);
|
||||
}
|
||||
uint8_t mhz_state = 0;
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
bool Mhz19CheckAndApplyFilter(uint16_t ppm, uint8_t s)
|
||||
bool MhzCheckAndApplyFilter(uint16_t ppm, uint8_t s)
|
||||
{
|
||||
if (1 == s) {
|
||||
return false; // S==1 => "A" version sensor bootup, do not use values.
|
||||
}
|
||||
if (mhz19_last_ppm < 400 || mhz19_last_ppm > 5000) {
|
||||
if (mhz_last_ppm < 400 || mhz_last_ppm > 5000) {
|
||||
// Prevent unrealistic values during start-up with filtering enabled.
|
||||
// Just assume the entered value is correct.
|
||||
mhz19_last_ppm = ppm;
|
||||
mhz_last_ppm = ppm;
|
||||
return true;
|
||||
}
|
||||
int32_t difference = ppm - mhz19_last_ppm;
|
||||
if (s > 0 && s < 64 && mhz19_filter != MHZ19_FILTER_OFF) {
|
||||
int32_t difference = ppm - mhz_last_ppm;
|
||||
if (s > 0 && s < 64 && mhz_filter != MHZ19_FILTER_OFF) {
|
||||
// Not the "B" version of the sensor, S value is used.
|
||||
// S==0 => "B" version, else "A" version
|
||||
// The S value is an indication of the stability of the reading.
|
||||
|
@ -216,127 +104,129 @@ bool Mhz19CheckAndApplyFilter(uint16_t ppm, uint8_t s)
|
|||
difference *= s;
|
||||
difference /= 64;
|
||||
}
|
||||
if (MHZ19_FILTER_OFF == mhz19_filter) {
|
||||
if (MHZ19_FILTER_OFF == mhz_filter) {
|
||||
if (s != 0 && s != 64) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
difference >>= (mhz19_filter -1);
|
||||
difference >>= (mhz_filter -1);
|
||||
}
|
||||
mhz19_last_ppm = static_cast<uint16_t>(mhz19_last_ppm + difference);
|
||||
mhz_last_ppm = static_cast<uint16_t>(mhz_last_ppm + difference);
|
||||
return true;
|
||||
}
|
||||
|
||||
void Mhz19Ticker()
|
||||
void Mhz50ms()
|
||||
{
|
||||
uint8_t mhz19_response[9];
|
||||
mhz_state++;
|
||||
if (4 == mhz_state) { // Every 200 mSec
|
||||
mhz_state = 0;
|
||||
|
||||
mhz19_timer++;
|
||||
if (6 == mhz19_timer) { // MH-Z19 measuring cycle takes 1005 +5% ms
|
||||
mhz19_timer = 0;
|
||||
uint8_t mhz_response[9];
|
||||
|
||||
Mhz19SerialFlush();
|
||||
Mhz19SerialWrite(mhz19_cmnd_read_ppm, 9);
|
||||
}
|
||||
mhz_timer++;
|
||||
if (6 == mhz_timer) { // MH-Z19 measuring cycle takes 1005 +5% ms
|
||||
mhz_timer = 0;
|
||||
|
||||
if (1 == mhz19_timer) {
|
||||
if (mhz19_retry) {
|
||||
mhz19_retry--;
|
||||
if (!mhz19_retry) {
|
||||
mhz19_last_ppm = 0;
|
||||
mhz19_temperature = 0;
|
||||
MhzSerial->write(mhz_cmnd_read_ppm, 9);
|
||||
}
|
||||
|
||||
if (1 == mhz_timer) {
|
||||
if (mhz_retry) {
|
||||
mhz_retry--;
|
||||
if (!mhz_retry) {
|
||||
mhz_last_ppm = 0;
|
||||
mhz_temperature = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned long start = millis();
|
||||
uint8_t counter = 0;
|
||||
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
|
||||
if (Mhz19SerialAvailable() > 0) {
|
||||
mhz19_response[counter++] = Mhz19SerialRead();
|
||||
unsigned long start = millis();
|
||||
uint8_t counter = 0;
|
||||
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
|
||||
if (MhzSerial->available() > 0) {
|
||||
mhz_response[counter++] = MhzSerial->read();
|
||||
}
|
||||
}
|
||||
}
|
||||
if (counter < 9) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 comms timeout"));
|
||||
return;
|
||||
}
|
||||
|
||||
byte crc = 0;
|
||||
for (uint8_t i = 1; i < 8; i++) {
|
||||
crc += mhz19_response[i];
|
||||
}
|
||||
crc = 255 - crc;
|
||||
crc++;
|
||||
if (mhz19_response[8] != crc) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 crc error"));
|
||||
return;
|
||||
}
|
||||
if (0xFF != mhz19_response[0] || 0x86 != mhz19_response[1]) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 bad response"));
|
||||
return;
|
||||
}
|
||||
|
||||
uint16_t u = (mhz19_response[6] << 8) | mhz19_response[7];
|
||||
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
|
||||
if (!mhz19_abc_enable) {
|
||||
// After bootup of the sensor the ABC will be enabled.
|
||||
// Thus only actively disable after bootup.
|
||||
mhz19_abc_must_apply = true;
|
||||
if (counter < 9) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 comms timeout"));
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
uint16_t ppm = (mhz19_response[2] << 8) | mhz19_response[3];
|
||||
mhz19_temperature = ConvertTemp((float)mhz19_response[4] - 40);
|
||||
uint8_t s = mhz19_response[5];
|
||||
mhz19_type = (s) ? 1 : 2;
|
||||
if (Mhz19CheckAndApplyFilter(ppm, s)) {
|
||||
mhz19_retry = MHZ19_RETRY_COUNT;
|
||||
|
||||
if (0 == s || 64 == s) { // Reading is stable.
|
||||
if (mhz19_abc_must_apply) {
|
||||
mhz19_abc_must_apply = false;
|
||||
if (mhz19_abc_enable) {
|
||||
Mhz19SerialWrite(mhz19_cmnd_abc_enable, 9); // Sent sensor ABC Enable
|
||||
} else {
|
||||
Mhz19SerialWrite(mhz19_cmnd_abc_disable, 9); // Sent sensor ABC Disable
|
||||
byte crc = 0;
|
||||
for (uint8_t i = 1; i < 8; i++) {
|
||||
crc += mhz_response[i];
|
||||
}
|
||||
crc = 255 - crc;
|
||||
crc++;
|
||||
if (mhz_response[8] != crc) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 crc error"));
|
||||
return;
|
||||
}
|
||||
if (0xFF != mhz_response[0] || 0x86 != mhz_response[1]) {
|
||||
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 bad response"));
|
||||
return;
|
||||
}
|
||||
|
||||
uint16_t u = (mhz_response[6] << 8) | mhz_response[7];
|
||||
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
|
||||
if (!mhz_abc_enable) {
|
||||
// After bootup of the sensor the ABC will be enabled.
|
||||
// Thus only actively disable after bootup.
|
||||
mhz_abc_must_apply = true;
|
||||
}
|
||||
} else {
|
||||
uint16_t ppm = (mhz_response[2] << 8) | mhz_response[3];
|
||||
mhz_temperature = ConvertTemp((float)mhz_response[4] - 40);
|
||||
uint8_t s = mhz_response[5];
|
||||
mhz_type = (s) ? 1 : 2;
|
||||
if (MhzCheckAndApplyFilter(ppm, s)) {
|
||||
mhz_retry = MHZ19_RETRY_COUNT;
|
||||
|
||||
if (0 == s || 64 == s) { // Reading is stable.
|
||||
if (mhz_abc_must_apply) {
|
||||
mhz_abc_must_apply = false;
|
||||
if (mhz_abc_enable) {
|
||||
MhzSerial->write(mhz_cmnd_abc_enable, 9); // Sent sensor ABC Enable
|
||||
} else {
|
||||
MhzSerial->write(mhz_cmnd_abc_disable, 9); // Sent sensor ABC Disable
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
void Mhz19Init()
|
||||
void MhzInit()
|
||||
{
|
||||
mhz19_type = 0;
|
||||
mhz_type = 0;
|
||||
if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) {
|
||||
if (Mhz19Serial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD])) {
|
||||
mhz19_type = 1;
|
||||
mhz19_ticker.attach_ms(222, Mhz19Ticker);
|
||||
MhzSerial = new TasmotaSerial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD]);
|
||||
if (MhzSerial->begin()) {
|
||||
mhz_type = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Mhz19Show(boolean json)
|
||||
void MhzShow(boolean json)
|
||||
{
|
||||
char temperature[10];
|
||||
dtostrfd(mhz19_temperature, Settings.flag2.temperature_resolution, temperature);
|
||||
GetTextIndexed(mhz19_types, sizeof(mhz19_types), mhz19_type -1, kMhz19Types);
|
||||
// uint8_t co2_limit = (mhz19_last_ppm > 1200) ? 3 : (mhz19_last_ppm > 800) ? 2 : 1;
|
||||
// uint16_t co2_limit = mhz19_last_ppm / 400; // <800 = 1(Green), <1200 = 2(Orange), >1200 = 3(Red)
|
||||
dtostrfd(mhz_temperature, Settings.flag2.temperature_resolution, temperature);
|
||||
GetTextIndexed(mhz_types, sizeof(mhz_types), mhz_type -1, kMhzTypes);
|
||||
|
||||
if (json) {
|
||||
// snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_LIMIT "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, mhz19_last_ppm, co2_limit, temperature);
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz19_types, mhz19_last_ppm, temperature);
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_TEMPERATURE "\":%s}"), mqtt_data, mhz_types, mhz_last_ppm, temperature);
|
||||
#ifdef USE_DOMOTICZ
|
||||
DomoticzSensor(DZ_AIRQUALITY, mhz19_last_ppm);
|
||||
DomoticzSensor(DZ_AIRQUALITY, mhz_last_ppm);
|
||||
#endif // USE_DOMOTICZ
|
||||
#ifdef USE_WEBSERVER
|
||||
} else {
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz19_types, mhz19_last_ppm);
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz19_types, temperature, TempUnit());
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz_types, mhz_last_ppm);
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz_types, temperature, TempUnit());
|
||||
#endif // USE_WEBSERVER
|
||||
}
|
||||
}
|
||||
|
@ -351,17 +241,20 @@ boolean Xsns15(byte function)
|
|||
{
|
||||
boolean result = false;
|
||||
|
||||
if (mhz19_type) {
|
||||
if (mhz_type) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
Mhz19Init();
|
||||
case FUNC_INIT:
|
||||
MhzInit();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
Mhz19Show(1);
|
||||
case FUNC_EVERY_50_MSECOND:
|
||||
Mhz50ms();
|
||||
break;
|
||||
case FUNC_JSON_APPEND:
|
||||
MhzShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
Mhz19Show(0);
|
||||
case FUNC_WEB_APPEND:
|
||||
MhzShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
}
|
||||
|
|
|
@ -91,16 +91,14 @@ boolean Xsns16(byte function)
|
|||
|
||||
if (i2c_flg) {
|
||||
switch (function) {
|
||||
// case FUNC_XSNS_INIT:
|
||||
// break;
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
Tsl2561Detect();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_JSON_APPEND:
|
||||
Tsl2561Show(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
Tsl2561Show(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
xsns_17_senseair_s8.ino - SenseAir S8 CO2 sensor support for Sonoff-Tasmota
|
||||
xsns_17_senseair.ino - SenseAir CO2 sensor support for Sonoff-Tasmota
|
||||
|
||||
Copyright (C) 2018 Theo Arends
|
||||
|
||||
|
@ -19,16 +19,14 @@
|
|||
|
||||
#ifdef USE_SENSEAIR
|
||||
/*********************************************************************************************\
|
||||
* SenseAir S8 - CO2 sensor
|
||||
* SenseAir K30, K70 and S8 - CO2 sensor
|
||||
*
|
||||
* Adapted from EspEasy plugin P052 by Mikael Trieb (mikael__AT__triebconsulting.se)
|
||||
**********************************************************************************************
|
||||
* Filter usage
|
||||
*
|
||||
* Select filter usage on low stability readings
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define SENSEAIR_BAUDRATE 9600
|
||||
#include <TasmotaSerial.h>
|
||||
|
||||
TasmotaSerial *SensairSerial;
|
||||
|
||||
const char kSenseairTypes[] PROGMEM = "Kx0|S8";
|
||||
|
||||
|
@ -39,123 +37,7 @@ uint16_t senseair_co2 = 0;
|
|||
float senseair_temperature = 0;
|
||||
float senseair_humidity = 0;
|
||||
|
||||
Ticker senseair_ticker;
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Subset SoftwareSerial
|
||||
\*********************************************************************************************/
|
||||
|
||||
#define SENSEAIR_SERIAL_BUFFER_SIZE 20
|
||||
#define SENSEAIR_SERIAL_WAIT { while (ESP.getCycleCount() -start < wait) optimistic_yield(1); wait += senseair_serial_bit_time; }
|
||||
|
||||
uint8_t senseair_serial_rx_pin;
|
||||
uint8_t senseair_serial_tx_pin;
|
||||
uint8_t senseair_serial_in_pos = 0;
|
||||
uint8_t senseair_serial_out_pos = 0;
|
||||
uint8_t senseair_serial_buffer[SENSEAIR_SERIAL_BUFFER_SIZE];
|
||||
unsigned long senseair_serial_bit_time;
|
||||
unsigned long senseair_serial_bit_time_start;
|
||||
|
||||
bool SenseairSerialValidGpioPin(uint8_t pin) {
|
||||
return (pin >= 0 && pin <= 5) || (pin >= 9 && pin <= 10) || (pin >= 12 && pin <= 15);
|
||||
}
|
||||
|
||||
bool SenseairSerial(uint8_t receive_pin, uint8_t transmit_pin)
|
||||
{
|
||||
if (!((SenseairSerialValidGpioPin(receive_pin)) && (SenseairSerialValidGpioPin(transmit_pin) || transmit_pin == 16))) {
|
||||
return false;
|
||||
}
|
||||
senseair_serial_rx_pin = receive_pin;
|
||||
pinMode(senseair_serial_rx_pin, INPUT);
|
||||
attachInterrupt(senseair_serial_rx_pin, SenseairSerialRxRead, FALLING);
|
||||
|
||||
senseair_serial_tx_pin = transmit_pin;
|
||||
pinMode(senseair_serial_tx_pin, OUTPUT);
|
||||
digitalWrite(senseair_serial_tx_pin, 1);
|
||||
|
||||
senseair_serial_bit_time = ESP.getCpuFreqMHz() *1000000 /SENSEAIR_BAUDRATE; // 8333
|
||||
senseair_serial_bit_time_start = senseair_serial_bit_time + senseair_serial_bit_time /3 -500; // 10610 ICACHE_RAM_ATTR start delay
|
||||
// senseair_serial_bit_time_start = senseair_serial_bit_time; // Non ICACHE_RAM_ATTR start delay (experimental)
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int SenseairSerialRead() {
|
||||
if (senseair_serial_in_pos == senseair_serial_out_pos) {
|
||||
return -1;
|
||||
}
|
||||
int ch = senseair_serial_buffer[senseair_serial_out_pos];
|
||||
senseair_serial_out_pos = (senseair_serial_out_pos +1) % SENSEAIR_SERIAL_BUFFER_SIZE;
|
||||
return ch;
|
||||
}
|
||||
|
||||
int SenseairSerialAvailable() {
|
||||
int avail = senseair_serial_in_pos - senseair_serial_out_pos;
|
||||
if (avail < 0) {
|
||||
avail += SENSEAIR_SERIAL_BUFFER_SIZE;
|
||||
}
|
||||
return avail;
|
||||
}
|
||||
|
||||
void SenseairSerialFlush()
|
||||
{
|
||||
senseair_serial_in_pos = 0;
|
||||
senseair_serial_out_pos = 0;
|
||||
}
|
||||
|
||||
size_t SenseairSerialTxWrite(uint8_t b)
|
||||
{
|
||||
unsigned long wait = senseair_serial_bit_time;
|
||||
digitalWrite(senseair_serial_tx_pin, HIGH);
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
// Start bit;
|
||||
digitalWrite(senseair_serial_tx_pin, LOW);
|
||||
SENSEAIR_SERIAL_WAIT;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
digitalWrite(senseair_serial_tx_pin, (b & 1) ? HIGH : LOW);
|
||||
SENSEAIR_SERIAL_WAIT;
|
||||
b >>= 1;
|
||||
}
|
||||
// Stop bit
|
||||
digitalWrite(senseair_serial_tx_pin, HIGH);
|
||||
SENSEAIR_SERIAL_WAIT;
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t SenseairSerialWrite(const uint8_t *buffer, size_t size = 1) {
|
||||
size_t n = 0;
|
||||
while(size--) {
|
||||
n += SenseairSerialTxWrite(*buffer++);
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
//void SenseairSerialRxRead() ICACHE_RAM_ATTR; // Add 215 bytes to iram usage
|
||||
void SenseairSerialRxRead() {
|
||||
// Advance the starting point for the samples but compensate for the
|
||||
// initial delay which occurs before the interrupt is delivered
|
||||
unsigned long wait = senseair_serial_bit_time_start;
|
||||
unsigned long start = ESP.getCycleCount();
|
||||
uint8_t rec = 0;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
SENSEAIR_SERIAL_WAIT;
|
||||
rec >>= 1;
|
||||
if (digitalRead(senseair_serial_rx_pin)) {
|
||||
rec |= 0x80;
|
||||
}
|
||||
}
|
||||
// Stop bit
|
||||
SENSEAIR_SERIAL_WAIT;
|
||||
// Store the received value in the buffer unless we have an overflow
|
||||
int next = (senseair_serial_in_pos +1) % SENSEAIR_SERIAL_BUFFER_SIZE;
|
||||
if (next != senseair_serial_out_pos) {
|
||||
senseair_serial_buffer[senseair_serial_in_pos] = rec;
|
||||
senseair_serial_in_pos = next;
|
||||
}
|
||||
// Must clear this bit in the interrupt register,
|
||||
// it gets set even when interrupts are disabled
|
||||
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << senseair_serial_rx_pin);
|
||||
}
|
||||
uint8_t senseair_state = 0;
|
||||
|
||||
/*********************************************************************************************/
|
||||
|
||||
|
@ -185,13 +67,12 @@ void ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register
|
|||
frame[7] = (uint8_t)((crc >> 8) & 0xFF);
|
||||
frame[6] = (uint8_t)(crc & 0xFF);
|
||||
|
||||
SenseairSerialFlush();
|
||||
SenseairSerialWrite(frame, sizeof(frame));
|
||||
SensairSerial->write(frame, sizeof(frame));
|
||||
}
|
||||
|
||||
bool ModbusReceiveReady()
|
||||
{
|
||||
return (SenseairSerialAvailable() >= 5); // 5 - Error frame, 7 - Ok frame
|
||||
return (SensairSerial->available() >= 5); // 5 - Error frame, 7 - Ok frame
|
||||
}
|
||||
|
||||
uint8_t ModbusReceive(uint16_t *value)
|
||||
|
@ -199,8 +80,8 @@ uint8_t ModbusReceive(uint16_t *value)
|
|||
uint8_t buffer[7];
|
||||
|
||||
uint8_t len = 0;
|
||||
while (SenseairSerialAvailable() > 0) {
|
||||
buffer[len++] = (uint8_t)SenseairSerialRead();
|
||||
while (SensairSerial->available() > 0) {
|
||||
buffer[len++] = (uint8_t)SensairSerial->read();
|
||||
if (3 == len) {
|
||||
if (buffer[1] & 0x80) { // fe 84 02 f2 f1
|
||||
return buffer[2]; // 1 = Illegal Function, 2 = Illegal Data Address, 3 = Illegal Data Value
|
||||
|
@ -221,68 +102,74 @@ const uint8_t start_addresses[] { 0x1A, 0x00, 0x03, 0x04, 0x05, 0x1C, 0x0A };
|
|||
uint8_t senseair_read_state = 0;
|
||||
uint8_t senseair_send_retry = 0;
|
||||
|
||||
void SenseairTicker()
|
||||
void Senseair50ms() // Every 50 mSec
|
||||
{
|
||||
uint16_t value = 0;
|
||||
bool data_ready = ModbusReceiveReady();
|
||||
senseair_state++;
|
||||
if (6 == senseair_state) { // Every 300 mSec
|
||||
senseair_state = 0;
|
||||
|
||||
if (data_ready) {
|
||||
uint8_t error = ModbusReceive(&value);
|
||||
if (error) {
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir response error %d"), error);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
} else {
|
||||
switch(senseair_read_state) {
|
||||
case 0: // 0x1A (26) READ_TYPE_LOW - S8: fe 04 02 01 77 ec 92
|
||||
senseair_type = 2;
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir type id low %04X"), value);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
break;
|
||||
case 1: // 0x00 (0) READ_ERRORLOG - fe 04 02 00 00 ad 24
|
||||
if (value) {
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir error %04X"), value);
|
||||
uint16_t value = 0;
|
||||
bool data_ready = ModbusReceiveReady();
|
||||
|
||||
if (data_ready) {
|
||||
uint8_t error = ModbusReceive(&value);
|
||||
if (error) {
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir response error %d"), error);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
} else {
|
||||
switch(senseair_read_state) {
|
||||
case 0: // 0x1A (26) READ_TYPE_LOW - S8: fe 04 02 01 77 ec 92
|
||||
senseair_type = 2;
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir type id low %04X"), value);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
break;
|
||||
case 1: // 0x00 (0) READ_ERRORLOG - fe 04 02 00 00 ad 24
|
||||
if (value) {
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir error %04X"), value);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
}
|
||||
break;
|
||||
case 2: // 0x03 (3) READ_CO2 - fe 04 02 06 2c af 59
|
||||
senseair_co2 = value;
|
||||
break;
|
||||
case 3: // 0x04 (4) READ_TEMPERATURE - S8: fe 84 02 f2 f1 - Illegal Data Address
|
||||
senseair_temperature = ConvertTemp((float)value / 100);
|
||||
break;
|
||||
case 4: // 0x05 (5) READ_HUMIDITY - S8: fe 84 02 f2 f1 - Illegal Data Address
|
||||
senseair_humidity = (float)value / 100;
|
||||
break;
|
||||
case 5: // 0x1C (28) READ_RELAY_STATE - S8: fe 04 02 01 54 ad 4b - firmware version
|
||||
{
|
||||
bool relay_state = value >> 8 & 1;
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir relay state %d"), relay_state);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case 2: // 0x03 (3) READ_CO2 - fe 04 02 06 2c af 59
|
||||
senseair_co2 = value;
|
||||
break;
|
||||
case 3: // 0x04 (4) READ_TEMPERATURE - S8: fe 84 02 f2 f1 - Illegal Data Address
|
||||
senseair_temperature = ConvertTemp((float)value / 100);
|
||||
break;
|
||||
case 4: // 0x05 (5) READ_HUMIDITY - S8: fe 84 02 f2 f1 - Illegal Data Address
|
||||
senseair_humidity = (float)value / 100;
|
||||
break;
|
||||
case 5: // 0x1C (28) READ_RELAY_STATE - S8: fe 04 02 01 54 ad 4b - firmware version
|
||||
{
|
||||
bool relay_state = value >> 8 & 1;
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir relay state %d"), relay_state);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
break;
|
||||
case 6: // 0x0A (10) READ_TEMP_ADJUSTMENT - S8: fe 84 02 f2 f1 - Illegal Data Address
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir temp adjustment %d"), value);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
break;
|
||||
}
|
||||
}
|
||||
senseair_read_state++;
|
||||
if (2 == senseair_type) { // S8
|
||||
if (3 == senseair_read_state) {
|
||||
senseair_read_state = 1;
|
||||
}
|
||||
} else { // K30, K70
|
||||
if (sizeof(start_addresses) == senseair_read_state) {
|
||||
senseair_read_state = 1;
|
||||
}
|
||||
case 6: // 0x0A (10) READ_TEMP_ADJUSTMENT - S8: fe 84 02 f2 f1 - Illegal Data Address
|
||||
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SenseAir temp adjustment %d"), value);
|
||||
AddLog(LOG_LEVEL_DEBUG);
|
||||
break;
|
||||
}
|
||||
}
|
||||
senseair_read_state++;
|
||||
if (2 == senseair_type) { // S8
|
||||
if (3 == senseair_read_state) {
|
||||
senseair_read_state = 1;
|
||||
}
|
||||
} else { // K30, K70
|
||||
if (sizeof(start_addresses) == senseair_read_state) {
|
||||
senseair_read_state = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (0 == senseair_send_retry || data_ready) {
|
||||
senseair_send_retry = 5;
|
||||
ModbusSend(0x04, (uint16_t)start_addresses[senseair_read_state], 1);
|
||||
} else {
|
||||
senseair_send_retry--;
|
||||
if (0 == senseair_send_retry || data_ready) {
|
||||
senseair_send_retry = 5;
|
||||
ModbusSend(0x04, (uint16_t)start_addresses[senseair_read_state], 1);
|
||||
} else {
|
||||
senseair_send_retry--;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -292,9 +179,9 @@ void SenseairInit()
|
|||
{
|
||||
senseair_type = 0;
|
||||
if ((pin[GPIO_SAIR_RX] < 99) && (pin[GPIO_SAIR_TX] < 99)) {
|
||||
if (SenseairSerial(pin[GPIO_SAIR_RX], pin[GPIO_SAIR_TX])) {
|
||||
SensairSerial = new TasmotaSerial(pin[GPIO_SAIR_RX], pin[GPIO_SAIR_TX]);
|
||||
if (SensairSerial->begin()) {
|
||||
senseair_type = 1;
|
||||
senseair_ticker.attach_ms(510, SenseairTicker);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -306,11 +193,8 @@ void SenseairShow(boolean json)
|
|||
dtostrfd(senseair_temperature, Settings.flag2.temperature_resolution, temperature);
|
||||
dtostrfd(senseair_humidity, Settings.flag2.temperature_resolution, humidity);
|
||||
GetTextIndexed(senseair_types, sizeof(senseair_types), senseair_type -1, kSenseairTypes);
|
||||
// uint8_t co2_limit = (senseair_co2 > 1200) ? 3 : (senseair_co2 > 800) ? 2 : 1;
|
||||
// uint16_t co2_limit = senseair_co2 / 400; // <800 = 1(Green), <1200 = 2(Orange), >1200 = 3(Red)
|
||||
|
||||
if (json) {
|
||||
// snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d,\"" D_LIMIT "\":%d"), mqtt_data, senseair_types, senseair_co2, co2_limit);
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_CO2 "\":%d"), mqtt_data, senseair_types, senseair_co2);
|
||||
if (senseair_type != 2) {
|
||||
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_TEMPERATURE "\":%s,\"" D_HUMIDITY "\":%s"), mqtt_data, temperature, humidity);
|
||||
|
@ -342,14 +226,17 @@ boolean Xsns17(byte function)
|
|||
|
||||
if (senseair_type) {
|
||||
switch (function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_INIT:
|
||||
SenseairInit();
|
||||
break;
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_EVERY_50_MSECOND:
|
||||
Senseair50ms();
|
||||
break;
|
||||
case FUNC_JSON_APPEND:
|
||||
SenseairShow(1);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
SenseairShow(0);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
|
|
|
@ -104,7 +104,10 @@ void XSnsInit()
|
|||
xsns_func_ptr[xsns_present++] = &Xsns20;
|
||||
#endif
|
||||
|
||||
XsnsCall(FUNC_XSNS_INIT);
|
||||
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "Sensors found %d"), xsns_present);
|
||||
// AddLog(LOG_LEVEL_DEBUG);
|
||||
|
||||
XsnsCall(FUNC_INIT);
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
|
@ -115,18 +118,23 @@ boolean XsnsCall(byte Function)
|
|||
{
|
||||
boolean result = false;
|
||||
|
||||
/*
|
||||
switch (Function) {
|
||||
case FUNC_XSNS_INIT:
|
||||
case FUNC_XSNS_EVERY_SECOND:
|
||||
case FUNC_XSNS_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_XSNS_JSON_APPEND:
|
||||
case FUNC_XSNS_WEB_APPEND:
|
||||
case FUNC_XSNS_SAVE_BEFORE_RESTART:
|
||||
case FUNC_INIT:
|
||||
case FUNC_EVERY_50_MSECOND:
|
||||
case FUNC_EVERY_SECOND:
|
||||
case FUNC_PREP_BEFORE_TELEPERIOD:
|
||||
case FUNC_JSON_APPEND:
|
||||
case FUNC_WEB_APPEND:
|
||||
case FUNC_SAVE_BEFORE_RESTART:
|
||||
*/
|
||||
for (byte x = 0; x < xsns_present; x++) {
|
||||
xsns_func_ptr[x](Function);
|
||||
}
|
||||
/*
|
||||
break;
|
||||
}
|
||||
*/
|
||||
|
||||
return result;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue