Update library for HVAC

This commit is contained in:
arendst 2017-04-03 15:07:49 +02:00
parent a8f2293a66
commit 6824c8ac8a
22 changed files with 2273 additions and 606 deletions

View File

@ -1,20 +1,13 @@
## Contributors of this project
- [Mark Szabo](https://github.com/markszabo/) : IR sending on ESP8266
- [Sébastien Warin](https://github.com/sebastienwarin/) (http://sebastien.warin.fr) : IR receiving on ESP8266
## Contributors of the original project (https://github.com/shirriff/Arduino-IRremote/)
These are the active contributors of this project that you may contact if there is anything you need help with or if you have suggestions.
- [z3t0](https://github.com/z3t0) : Active Contributor and currently also the main contributor.
* Email: zetoslab@gmail.com
* Skype: polarised16
- [shirriff](https://github.com/shirriff) : Owner of repository and creator of library.
- [Informatic](https://github.com/Informatic) : Active contributor
- [fmeschia](https://github.com/fmeschia) : Active contributor
- [PaulStoffregen](https://github.com/paulstroffregen) : Active contributor
- [crash7](https://github.com/crash7) : Active contributor
- [Neco777](https://github.com/neco777) : Active contributor
Note: This list is being updated constantly so please let [z3t0](https://github.com/z3t0) know if you have been missed.
### Main contributors & maintainers
- [Mark Szabo](https://github.com/markszabo/) : Initial IR sending on ESP8266
- [Sébastien Warin](https://github.com/sebastienwarin/) (http://sebastien.warin.fr) : Initial IR receiving on ESP8266
- [David Conran](https://github.com/crankyoldgit/)
- [Roi Dayan](https://github.com/roidayan/)
- [Marcos de Alcântara Marinho](https://github.com/marcosamarinho/)
- [Massimiliano Pinto](https://github.com/pintomax/)
- [Darsh Patel](https://github.com/darshkpatel/)
All contributors can be found on the [contributors site](https://github.com/markszabo/IRremoteESP8266/graphs/contributors).
### Contributors of the [original project](https://github.com/z3t0/Arduino-IRremote) can be found on the [original project's contributors page](https://github.com/z3t0/Arduino-IRremote/blob/master/Contributors.md)

View File

@ -0,0 +1,152 @@
/*
An Arduino sketch to emulate IR Daikin ARC433** remote control unit
Read more on http://harizanov.com/2012/02/control-daikin-air-conditioner-over-the-internet/
*/
#include <IRDaikinESP.h>
IRDaikinESP::IRDaikinESP(int pin) : _irsend(pin)
{
}
void IRDaikinESP::begin()
{
_irsend.begin();
}
void IRDaikinESP::send()
{
_irsend.sendDaikin(daikin);
}
void IRDaikinESP::checksum()
{
uint8_t sum = 0;
uint8_t i;
for(i = 0; i <= 6; i++){
sum += daikin[i];
}
daikin[7] = sum &0xFF;
sum=0;
for(i = 8; i <= 25; i++){
sum += daikin[i];
}
daikin[26] = sum &0xFF;
}
void IRDaikinESP::on()
{
//state = ON;
daikin[13] |= 0x01;
checksum();
}
void IRDaikinESP::off()
{
//state = OFF;
daikin[13] &= 0xFE;
checksum();
}
uint8_t IRDaikinESP::getPower()
{
return (daikin[13])&0x01;
}
// DAIKIN_SILENT or DAIKIN_POWERFUL
void IRDaikinESP::setAux(uint8_t aux)
{
daikin[21] = aux;
checksum();
}
uint8_t IRDaikinESP::getAux(){
return daikin[21];
}
// Set the temp in deg C
void IRDaikinESP::setTemp(uint8_t temp)
{
if (temp < 18)
temp = 18;
else if (temp > 32)
temp = 32;
daikin[14] = (temp)*2;
checksum();
}
uint8_t IRDaikinESP::getTemp()
{
return (daikin[14])/2;
}
// Set the speed of the fan, 0-5, 0 is auto, 1-5 is the speed
void IRDaikinESP::setFan(uint8_t fan)
{
// Set the fan speed bits, leave low 4 bits alone
uint8_t fanset;
daikin[16] = daikin[16] & 0x0F;
if (fan >= 1 && fan <= 5)
fanset = 0x20 + (0x10 * fan);
else
fanset = 0xA0;
daikin[16] = daikin[16] | fanset;
checksum();
}
uint8_t IRDaikinESP::getFan()
{
uint8_t fan = daikin[16] >> 4;
fan = fan - 2;
if (fan > 5)
fan = 0;
return fan;
}
uint8_t IRDaikinESP::getMode()
{/*
DAIKIN_COOL
DAIKIN_HEAT
DAIKIN_FAN
DAIKIN_AUTO
DAIKIN_DRY
*/
return (daikin[13])>>4;
}
void IRDaikinESP::setMode(uint8_t mode)
{
daikin[13]=mode<<4 | getPower();
checksum();
}
void IRDaikinESP::setSwingVertical(uint8_t swing)
{
if (swing)
daikin[16] = daikin[16] | 0x0F;
else
daikin[16] = daikin[16] & 0xF0;
checksum();
}
uint8_t IRDaikinESP::getSwingVertical()
{
return (daikin[16])&0x01;
}
void IRDaikinESP::setSwingHorizontal(uint8_t swing)
{
if (swing)
daikin[17] = daikin[17] | 0x0F;
else
daikin[17] = daikin[17] & 0xF0;
checksum();
}
uint8_t IRDaikinESP::getSwingHorizontal()
{
return (daikin[17])&0x01;
}

View File

@ -0,0 +1,100 @@
#include <IRremoteESP8266.h>
#include <Arduino.h>
#define DAIKIN_COOL B011
#define DAIKIN_HEAT B100
#define DAIKIN_FAN B110
#define DAIKIN_AUTO B000
#define DAIKIN_DRY B010
#define DAIKIN_POWERFUL B00000010
#define DAIKIN_SILENT B00100000
/*
Daikin AC map
byte 7= checksum of the first part (and last byte before a 29ms pause)
byte 13=mode
b7 = 0
b6+b5+b4 = Mode
Modes: b6+b5+b4
011 = Cool
100 = Heat (temp 23)
110 = FAN (temp not shown, but 25)
000 = Fully Automatic (temp 25)
010 = DRY (temp 0xc0 = 96 degrees c)
b3 = 0
b2 = OFF timer set
b1 = ON timer set
b0 = Air Conditioner ON
byte 14=temp*2 (Temp should be between 18 - 32)
byte 16=Fan
FAN control
b7+b6+b5+b4 = Fan speed
Fan: b7+b6+b5+b4
0×30 = 1 bar
0×40 = 2 bar
0×50 = 3 bar
0×60 = 4 bar
0×70 = 5 bar
0xa0 = Auto
0xb0 = Not auto, moon + tree
b3+b2+b1+b0 = Swing control up/down
Swing control up/down:
0000 = Swing up/down off
1111 = Swing up/down on
byte 17
Swing control left/right:
0000 = Swing left/right off
1111 = Swing left/right on
byte 21=Aux -> Powerful (bit 1), Silent (bit 5)
byte 24=Aux2 -> Intelligent eye on (bit 7)
byte 26= checksum of the second part
*/
#define DAIKIN_COMMAND_LENGTH 27
class IRDaikinESP
{
public:
IRDaikinESP(int pin);
//: IRsend(pin){};
void send();
void begin();
void on();
void off();
uint8_t getPower();
void setAux(uint8_t aux);
uint8_t getAux();
void setTemp(uint8_t temp);
uint8_t getTemp();
void setFan(uint8_t fan);
uint8_t getFan();
uint8_t getMode();
void setMode(uint8_t mode);
void setSwingVertical(uint8_t swing);
uint8_t getSwingVertical();
void setSwingHorizontal(uint8_t swing);
uint8_t getSwingHorizontal();
private:
// # of bytes per command
unsigned char daikin[DAIKIN_COMMAND_LENGTH] = {
0x11,0xDA,0x27,0xF0,0x00,0x00,0x00,0x20,
//0 1 2 3 4 5 6 7
0x11,0xDA,0x27,0x00,0x00,0x41,0x1E,0x00,
//8 9 10 11 12 13 14 15
0xB0,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0xE3 };
//16 17 18 19 20 21 22 23 24 25 26
void checksum();
IRsend _irsend;
};

View File

@ -0,0 +1,233 @@
/*
Code to emulate IR Kelvinator YALIF remote control unit, which should control
at least the following Kelvinator A/C units:
KSV26CRC, KSV26HRC, KSV35CRC, KSV35HRC, KSV53HRC, KSV62HRC, KSV70CRC,
KSV70HRC, KSV80HRC.
Note:
* Unsupported:
- All Sleep modes.
- All Timer modes.
- "I Feel" button & mode.
- Energy Saving mode.
- Low Heat mode.
- Farenheit.
*/
#include <IRKelvinator.h>
IRKelvinatorAC::IRKelvinatorAC(int pin) : _irsend(pin) {
stateReset();
}
void IRKelvinatorAC::stateReset() {
for (uint8_t i = 0; i < KELVINATOR_STATE_LENGTH; i++)
remote_state[i] = 0x0;
remote_state[3] = 0x50;
remote_state[11] = 0x70;
}
void IRKelvinatorAC::begin() {
_irsend.begin();
}
void IRKelvinatorAC::fixup() {
// X-Fan mode is only valid in COOL or DRY modes.
if (getMode() != KELVINATOR_COOL && getMode() != KELVINATOR_DRY)
setXFan(false);
checksum(); // Calculate the checksums
}
void IRKelvinatorAC::send() {
fixup(); // Ensure correct settings before sending.
_irsend.sendKelvinator(remote_state);
}
uint8_t* IRKelvinatorAC::getRaw() {
fixup(); // Ensure correct settings before sending.
return remote_state;
}
// Many Bothans died to bring us this information.
void IRKelvinatorAC::checksum() {
// For each command + options block.
for (uint8_t offset = 0; offset < KELVINATOR_STATE_LENGTH; offset += 8) {
uint8_t sum = KELVINATOR_CHECKSUM_START;
// Sum the lower half of the first 4 bytes of this block.
for(uint8_t i = 0; i < 4; i++) {
sum += (remote_state[i + offset] & 0xFU);
}
// then sum the upper half of the next 3 bytes.
for(uint8_t i = 4; i < 7; i++) {
sum += (remote_state[i + offset] >> 4);
}
// Trim it down to fit into the 4 bits allowed. i.e. Mod 16.
sum &= 0xFU;
// Place it into the IR code in the top half of the 8th & 16th byte.
remote_state[7 + offset] = (sum << 4) | (remote_state[7 + offset] & 0xFU);
}
}
void IRKelvinatorAC::on() {
//state = ON;
remote_state[0] |= KELVINATOR_POWER;
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
void IRKelvinatorAC::off() {
//state = OFF;
remote_state[0] &= ~KELVINATOR_POWER;
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
void IRKelvinatorAC::setPower(bool state) {
if (state)
on();
else
off();
}
bool IRKelvinatorAC::getPower() {
return ((remote_state[0] & KELVINATOR_POWER) != 0);
}
// Set the temp. in deg C
void IRKelvinatorAC::setTemp(uint8_t temp) {
temp = max(KELVINATOR_MIN_TEMP, temp);
temp = min(KELVINATOR_MAX_TEMP, temp);
remote_state[1] = (remote_state[1] & 0xF0U) | (temp - KELVINATOR_MIN_TEMP);
remote_state[9] = remote_state[1]; // Duplicate to the 2nd command chunk.
}
// Return the set temp. in deg C
uint8_t IRKelvinatorAC::getTemp() {
return ((remote_state[1] & 0xFU) + KELVINATOR_MIN_TEMP);
}
// Set the speed of the fan, 0-5, 0 is auto, 1-5 is the speed
void IRKelvinatorAC::setFan(uint8_t fan) {
fan = min(KELVINATOR_FAN_MAX, fan); // Bounds check
// Only change things if we need to.
if (fan != getFan()) {
// Set the basic fan values.
uint8_t fan_basic = min(KELVINATOR_BASIC_FAN_MAX, fan);
remote_state[0] = (remote_state[0] & KELVINATOR_BASIC_FAN_MASK) |
(fan_basic << KELVINATOR_FAN_OFFSET);
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
// Set the advanced(?) fan value.
remote_state[14] = (remote_state[14] & KELVINATOR_FAN_MASK) |
(fan << KELVINATOR_FAN_OFFSET);
setTurbo(false); // Turbo mode is turned off if we change the fan settings.
}
}
uint8_t IRKelvinatorAC::getFan() {
return ((remote_state[14] & ~KELVINATOR_FAN_MASK) >> KELVINATOR_FAN_OFFSET);
}
uint8_t IRKelvinatorAC::getMode() {
/*
KELVINATOR_AUTO
KELVINATOR_COOL
KELVINATOR_DRY
KELVINATOR_FAN
KELVINATOR_HEAT
*/
return (remote_state[0] & ~KELVINATOR_MODE_MASK);
}
void IRKelvinatorAC::setMode(uint8_t mode) {
// If we get an unexpected mode, default to AUTO.
if (mode > KELVINATOR_HEAT) mode = KELVINATOR_AUTO;
remote_state[0] = (remote_state[0] & KELVINATOR_MODE_MASK) | mode;
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
if (mode == KELVINATOR_AUTO)
// When the remote is set to Auto, it defaults to 25C and doesn't show it.
setTemp(KELVINATOR_AUTO_TEMP);
}
void IRKelvinatorAC::setSwingVertical(bool state) {
if (state) {
remote_state[0] |= KELVINATOR_VENT_SWING;
remote_state[4] |= KELVINATOR_VENT_SWING_V;
}
else {
remote_state[4] &= ~KELVINATOR_VENT_SWING_V;
if (! getSwingHorizontal())
remote_state[0] &= ~KELVINATOR_VENT_SWING;
}
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getSwingVertical() {
return ((remote_state[4] & KELVINATOR_VENT_SWING_V) != 0);
}
void IRKelvinatorAC::setSwingHorizontal(bool state) {
if (state) {
remote_state[0] |= KELVINATOR_VENT_SWING;
remote_state[4] |= KELVINATOR_VENT_SWING_H;
}
else {
remote_state[4] &= ~KELVINATOR_VENT_SWING_H;
if (! getSwingVertical())
remote_state[0] &= ~KELVINATOR_VENT_SWING;
}
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getSwingHorizontal() {
return ((remote_state[4] & KELVINATOR_VENT_SWING_H) != 0);
}
void IRKelvinatorAC::setQuiet(bool state) {
remote_state[12] &= ~KELVINATOR_QUIET;
remote_state[12] |= (state << KELVINATOR_QUIET_OFFSET);
}
bool IRKelvinatorAC::getQuiet() {
return ((remote_state[12] & KELVINATOR_QUIET) != 0);
}
void IRKelvinatorAC::setIonFilter(bool state) {
remote_state[2] &= ~KELVINATOR_ION_FILTER;
remote_state[2] |= (state << KELVINATOR_ION_FILTER_OFFSET);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getIonFilter() {
return ((remote_state[2] & KELVINATOR_ION_FILTER) != 0);
}
void IRKelvinatorAC::setLight(bool state) {
remote_state[2] &= ~KELVINATOR_LIGHT;
remote_state[2] |= (state << KELVINATOR_LIGHT_OFFSET);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getLight() {
return ((remote_state[2] & KELVINATOR_LIGHT) != 0);
}
// Note: XFan mode is only valid in Cool or Dry mode.
void IRKelvinatorAC::setXFan(bool state) {
remote_state[2] &= ~KELVINATOR_XFAN;
remote_state[2] |= (state << KELVINATOR_XFAN_OFFSET);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getXFan() {
return ((remote_state[2] & KELVINATOR_XFAN) != 0);
}
// Note: Turbo mode is turned off if the fan speed is changed.
void IRKelvinatorAC::setTurbo(bool state) {
remote_state[2] &= ~KELVINATOR_TURBO;
remote_state[2] |= (state << KELVINATOR_TURBO_OFFSET);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getTurbo() {
return ((remote_state[2] & KELVINATOR_TURBO) != 0);
}

View File

@ -0,0 +1,160 @@
#include <IRremoteESP8266.h>
#include <Arduino.h>
#define KELVINATOR_AUTO 0U
#define KELVINATOR_COOL 1U
#define KELVINATOR_DRY 2U
#define KELVINATOR_FAN 3U
#define KELVINATOR_HEAT 4U
#define KELVINATOR_MODE_MASK 0xF8U
#define KELVINATOR_POWER 8U
#define KELVINATOR_FAN_OFFSET 4U
#define KELVINATOR_BASIC_FAN_MAX 3U
#define KELVINATOR_BASIC_FAN_MASK uint8_t(0xFFU ^ (3U << KELVINATOR_FAN_OFFSET))
#define KELVINATOR_FAN_MASK uint8_t(0xFFU ^ (7U << KELVINATOR_FAN_OFFSET))
#define KELVINATOR_FAN_MAX 5U
#define KELVINATOR_VENT_SWING_OFFSET 6U
#define KELVINATOR_VENT_SWING uint8_t(1U << KELVINATOR_VENT_SWING_OFFSET)
#define KELVINATOR_VENT_SWING_V uint8_t(1U)
#define KELVINATOR_VENT_SWING_H uint8_t(1U << 4)
#define KELVINATOR_SLEEP_1_AND_3 uint8_t(1U << 7)
#define KELVINATOR_MIN_TEMP 16U // 16C
#define KELVINATOR_MAX_TEMP 30U // 30C
#define KELVINATOR_AUTO_TEMP 25U // 25C
#define KELVINATOR_CHECKSUM_START 10U
#define KELVINATOR_QUIET_OFFSET 7U
#define KELVINATOR_QUIET uint8_t(1U << KELVINATOR_QUIET_OFFSET)
#define KELVINATOR_ION_FILTER_OFFSET 6U
#define KELVINATOR_ION_FILTER uint8_t(1U << KELVINATOR_ION_FILTER_OFFSET)
#define KELVINATOR_LIGHT_OFFSET 5U
#define KELVINATOR_LIGHT uint8_t(1U << KELVINATOR_LIGHT_OFFSET)
#define KELVINATOR_XFAN_OFFSET 7U
#define KELVINATOR_XFAN uint8_t(1U << KELVINATOR_XFAN_OFFSET)
#define KELVINATOR_TURBO_OFFSET 4U
#define KELVINATOR_TURBO uint8_t(1U << KELVINATOR_TURBO_OFFSET)
/*
Kelvinator AC map
(header mark and space)
byte 0 = Basic Modes
b2-0 = Modes
Modes:
000 = Auto (temp = 25C)
001 = Cool
010 = Dry (temp = 25C, but not shown)
011 = Fan
100 = Heat
b3 = Power Status (1 = On, 0 = Off)
b5-4 = Fan (Basic modes)
Fan:
00 = Auto
01 = Fan 1
10 = Fan 2
11 = Fan 3 or higher (See byte 14)
b6 = Vent swing (1 = On, 0 = Off) (See byte 4)
b7 = Sleep Modes 1 & 3 (1 = On, 0 = Off)
byte 1 = Temperature
b3-0: Degrees C.
0000 (0) = 16C
0001 (1) = 17C
0010 (2) = 18C
...
1101 (13) = 29C
1110 (14) = 30C
byte 2 = Extras
b3-0 = UNKNOWN, typically 0.
b4 = Turbo Fan (1 = On, 0 = Off)
b5 = Light (Display) (1 = On, 0 = Off)
b6 = Ion Filter (1 = On, 0 = Off)
b7 = X-Fan (Fan runs for a while after power off) (1 = On, 0 = Off)
byte 3 = Section Indicator
b3-0 = Unused (Typically 0)
b5-4 = Unknown (possibly timer related) (Typically B01)
b7-6 = End of command block (B01)
(B010 marker and a gap of 20ms)
byte 4 = Extended options
b0 = Swing Vent Vertical (1 = On, 0 = Off)
b4 = Swing Vent Horizontal (1 = On, 0 = Off)
byte 5-6 = Timer related. Typically 0 except when timer in use.
byte 7 = checksum
b3-0 = Unknown (Used in Timer mode)
b7-4 = checksum of the previous bytes (0-6)
(gap of 40ms)
(header mark and space)
byte 8 = Repeat of byte 0
byte 9 = Repeat of byte 1
byte 10 = Repeat of byte 2
byte 11 = Section Indicator
b3-0 = Unused (Typically 0)
b5-4 = Unknown (possibly timer related) (Typically B11)
b7-6 = End of command block (B01)
(B010 marker and a gap of 20ms)
byte 12 = Extended options
b0 = Sleep mode 2 (1 = On, 0=Off)
b6-1 = Unknown (Used in Sleep Mode 3, Typically B000000)
b7 = Quiet Mode (1 = On, 0=Off)
byte 13 = Unknown (Sleep Mode 3 related, Typically 0x00)
byte 14 = Fan control
b3-0 = Unknown (Sleep Mode 3 related, Typically B0000)
b6-4 = Fan speed
B000 (0) = Automatic
B001 (1) = Fan 1
B010 (2) = Fan 2
B011 (3) = Fan 3
B100 (4) = Fan 4
B101 (5) = Fan 5
byte 15 = checksum
b3-0 = Unknown (Typically B0000)
b7-4 = checksum of the previous bytes (8-14)
*/
#define KELVINATOR_STATE_LENGTH 16
class IRKelvinatorAC
{
public:
IRKelvinatorAC(int pin);
//: IRsend(pin){};
void stateReset();
void send();
void begin();
void on();
void off();
void setPower(bool state);
bool getPower();
void setTemp(uint8_t temp);
uint8_t getTemp();
void setFan(uint8_t fan);
uint8_t getFan();
void setMode(uint8_t mode);
uint8_t getMode();
void setSwingVertical(bool state);
bool getSwingVertical();
void setSwingHorizontal(bool state);
bool getSwingHorizontal();
void setQuiet(bool state);
bool getQuiet();
void setIonFilter(bool state);
bool getIonFilter();
void setLight(bool state);
bool getLight();
void setXFan(bool state);
bool getXFan();
void setTurbo(bool state);
bool getTurbo();
uint8_t* getRaw();
private:
// The state of the IR remote in IR code form.
uint8_t remote_state[KELVINATOR_STATE_LENGTH];
void checksum();
void fixup();
IRsend _irsend;
};

View File

@ -0,0 +1,148 @@
/*
Code to emulate Mitsubishi A/C IR remote control unit.
Inspired and derived from the work done at:
https://github.com/r45635/HVAC-IR-Control
Warning: Consider this very alpha code. Seems to work, but not validated.
Equipment it seems compatible with:
* <Add models (A/C & remotes) you've gotten it working with here>
*/
#include <IRMitsubishiAC.h>
// Initialise the object.
IRMitsubishiAC::IRMitsubishiAC(int pin) : _irsend(pin) {
stateReset();
}
// Reset the state of the remote to a known good state/sequence.
void IRMitsubishiAC::stateReset() {
for (uint8_t i = 0; i < MITSUBISHI_AC_STATE_LENGTH; i++)
remote_state[i] = known_good_state[i];
checksum(); // Calculate the checksum
}
// Configure the pin for output.
void IRMitsubishiAC::begin() {
_irsend.begin();
}
// Send the current desired state to the IR LED.
void IRMitsubishiAC::send() {
checksum(); // Ensure correct checksum before sending.
_irsend.sendMitsubishiAC(remote_state);
}
// Return a pointer to the internal state date of the remote.
uint8_t* IRMitsubishiAC::getRaw() {
checksum();
return remote_state;
}
// Calculate the checksum for the current internal state of the remote.
void IRMitsubishiAC::checksum() {
uint8_t sum = 0;
// Checksum is simple addition of all previous bytes stored
// as a 8 bit value.
for (uint8_t i = 0; i < 17; i++)
sum += remote_state[i];
remote_state[17] = sum & 0xFFU;
}
// Set the requested power state of the A/C to off.
void IRMitsubishiAC::on() {
//state = ON;
remote_state[5] |= MITSUBISHI_AC_POWER;
}
// Set the requested power state of the A/C to off.
void IRMitsubishiAC::off() {
//state = OFF;
remote_state[5] &= ~MITSUBISHI_AC_POWER;
}
// Set the requested power state of the A/C.
void IRMitsubishiAC::setPower(bool state) {
if (state)
on();
else
off();
}
// Return the requested power state of the A/C.
bool IRMitsubishiAC::getPower() {
return((remote_state[5] & MITSUBISHI_AC_POWER) != 0);
}
// Set the temp. in deg C
void IRMitsubishiAC::setTemp(uint8_t temp) {
temp = max(MITSUBISHI_AC_MIN_TEMP, temp);
temp = min(MITSUBISHI_AC_MAX_TEMP, temp);
remote_state[7] = temp - MITSUBISHI_AC_MIN_TEMP;
}
// Return the set temp. in deg C
uint8_t IRMitsubishiAC::getTemp() {
return(remote_state[7] + MITSUBISHI_AC_MIN_TEMP);
}
// Set the speed of the fan, 0-6.
// 0 is auto, 1-5 is the speed, 6 is silent.
void IRMitsubishiAC::setFan(uint8_t fan) {
// Bounds check
if (fan > MITSUBISHI_AC_FAN_SILENT)
fan = MITSUBISHI_AC_FAN_MAX; // Set the fan to maximum if out of range.
if (fan == MITSUBISHI_AC_FAN_AUTO) { // Automatic is a special case.
remote_state[9] = B10000000 | (remote_state[9] & B01111000);
return;
} else if (fan >= MITSUBISHI_AC_FAN_MAX) {
fan--; // There is no spoon^H^H^Heed 5 (max), pretend it doesn't exist.
}
remote_state[9] |= fan;
}
// Return the requested state of the unit's fan.
uint8_t IRMitsubishiAC::getFan() {
uint8_t fan = remote_state[9] & B111;
if (fan == MITSUBISHI_AC_FAN_MAX)
return MITSUBISHI_AC_FAN_SILENT;
return fan;
}
// Return the requested climate operation mode of the a/c unit.
uint8_t IRMitsubishiAC::getMode() {
/*
MITSUBISHI_AC_AUTO
MITSUBISHI_AC_COOL
MITSUBISHI_AC_DRY
MITSUBISHI_AC_HEAT
*/
return(remote_state[6]);
}
// Set the requested climate operation mode of the a/c unit.
void IRMitsubishiAC::setMode(uint8_t mode) {
// If we get an unexpected mode, default to AUTO.
switch (mode) {
case MITSUBISHI_AC_AUTO: break;
case MITSUBISHI_AC_COOL: break;
case MITSUBISHI_AC_DRY: break;
case MITSUBISHI_AC_HEAT: break;
default: mode = MITSUBISHI_AC_AUTO;
}
remote_state[6] = mode;
}
// Set the requested vane operation mode of the a/c unit.
void IRMitsubishiAC::setVane(uint8_t mode) {
mode = max(mode, B111); // bounds check
mode |= B1000;
mode <<= 3;
remote_state[9] |= mode;
}
// Return the requested vane operation mode of the a/c unit.
uint8_t IRMitsubishiAC::getVane() {
return ((remote_state[9] & B00111000) >> 3);
}

View File

@ -0,0 +1,52 @@
#include <IRremoteESP8266.h>
#include <Arduino.h>
#define MITSUBISHI_AC_AUTO 0x20U
#define MITSUBISHI_AC_COOL 0x18U
#define MITSUBISHI_AC_DRY 0x10U
#define MITSUBISHI_AC_HEAT 0x08U
#define MITSUBISHI_AC_POWER 0x20U
#define MITSUBISHI_AC_FAN_AUTO 0U
#define MITSUBISHI_AC_FAN_MAX 5U
#define MITSUBISHI_AC_FAN_SILENT 6U
#define MITSUBISHI_AC_MIN_TEMP 16U // 16C
#define MITSUBISHI_AC_MAX_TEMP 31U // 31C
#define MITSUBISHI_AC_VANE_AUTO 0U
#define MITSUBISHI_AC_VANE_AUTO_MOVE 7U
#define MITSUBISHI_AC_STATE_LENGTH 18
class IRMitsubishiAC
{
public:
IRMitsubishiAC(int pin);
void stateReset();
void send();
void begin();
void on();
void off();
void setPower(bool state);
bool getPower();
void setTemp(uint8_t temp);
uint8_t getTemp();
void setFan(uint8_t fan);
uint8_t getFan();
void setMode(uint8_t mode);
uint8_t getMode();
void setVane(uint8_t mode);
uint8_t getVane();
uint8_t* getRaw();
private:
// The state of the IR remote in IR code form.
// Known good state obtained from:
// https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266.ino#L108
uint8_t known_good_state[MITSUBISHI_AC_STATE_LENGTH] = { 0x23, 0xCB, 0x26, 0x01, 0x00, 0x20, 0x08, 0x06, 0x30, 0x45, 0x67, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F };
uint8_t remote_state[MITSUBISHI_AC_STATE_LENGTH];
void checksum();
IRsend _irsend;
};

File diff suppressed because it is too large Load Diff

View File

@ -15,16 +15,24 @@
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
* Whynter A/C ARC-110WD added by Francesco Meschia
*
* Coolix A/C / heatpump added by bakrus
* Denon: sendDenon, decodeDenon added by Massimiliano Pinto
(from https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Denon.cpp)
* Kelvinator A/C and Sherwood added by crankyoldgit
* Updated by markszabo (https://github.com/markszabo/IRremoteESP8266) for sending IR code on ESP8266
* Updated by Sebastien Warin (http://sebastien.warin.fr) for receiving IR code on ESP8266
*
* Updated by sillyfrog for Daikin, adopted from
* (https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/)
*
* GPL license, all text above must be included in any redistribution
****************************************************/
#ifndef IRremote_h
#define IRremote_h
#include <stdint.h>
// The following are compile-time library options.
// If you change them, recompile the library.
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
@ -33,23 +41,34 @@
//#define DEBUG
//#define TEST
/*
* Always add to the end of the list and should never remove entries
* or change order. Projects may save the type number for later usage
* so numbering should always stay the same.
*/
enum decode_type_t {
NEC = 1,
SONY = 2,
RC5 = 3,
RC6 = 4,
DISH = 5,
SHARP = 6,
PANASONIC = 7,
JVC = 8,
SANYO = 9,
MITSUBISHI = 10,
SAMSUNG = 11,
LG = 12,
WHYNTER = 13,
AIWA_RC_T501 = 14,
UNKNOWN = -1
UNKNOWN = -1,
UNUSED = 0,
RC5,
RC6,
NEC,
SONY,
PANASONIC,
JVC,
SAMSUNG,
WHYNTER,
AIWA_RC_T501,
LG,
SANYO,
MITSUBISHI,
DISH,
SHARP,
COOLIX,
DAIKIN,
DENON,
KELVINATOR,
SHERWOOD,
MITSUBISHI_AC
};
// Results returned from the decoder
@ -64,51 +83,53 @@ public:
int bits; // Number of bits in decoded value
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
int rawlen; // Number of records in rawbuf.
bool overflow;
};
// Values for decode_type
#define NEC 1
#define SONY 2
#define RC5 3
#define RC6 4
#define DISH 5
#define SHARP 6
#define PANASONIC 7
#define JVC 8
#define SANYO 9
#define MITSUBISHI 10
#define SAMSUNG 11
#define LG 12
#define WHYNTER 13
#define UNKNOWN -1
// Decoded value for NEC when a repeat code is received
#define REPEAT 0xffffffff
#define SEND_PROTOCOL_NEC case NEC: sendNEC(data, nbits); break;
#define SEND_PROTOCOL_SONY case SONY: sendSony(data, nbits); break;
#define SEND_PROTOCOL_RC5 case RC5: sendRC5(data, nbits); break;
#define SEND_PROTOCOL_RC6 case RC6: sendRC6(data, nbits); break;
#define SEND_PROTOCOL_DISH case DISH: sendDISH(data, nbits); break;
#define SEND_PROTOCOL_JVC case JVC: sendJVC(data, nbits, 0); break;
#define SEND_PROTOCOL_SAMSUNG case SAMSUNG: sendSAMSUNG(data, nbits); break;
#define SEND_PROTOCOL_LG case LG: sendLG(data, nbits); break;
#define SEND_PROTOCOL_WHYNTER case WHYNTER: sendWhynter(data, nbits); break;
#define SEND_PROTOCOL_COOLIX case COOLIX: sendCOOLIX(data, nbits); break;
#define SEND_PROTOCOL_DENON case DENON: sendDenon(data, nbits); break;
#define SEND_PROTOCOL_SHERWOOD case SHERWOOD: sendSherwood(data, nbits); break;
// main class for receiving IR
class IRrecv
{
public:
IRrecv(int recvpin);
int decode(decode_results *results);
bool decode(decode_results *results);
void enableIRIn();
void disableIRIn();
void resume();
private:
// These are called by decode
int getRClevel(decode_results *results, int *offset, int *used, int t1);
long decodeNEC(decode_results *results);
long decodeSony(decode_results *results);
long decodeSanyo(decode_results *results);
long decodeMitsubishi(decode_results *results);
long decodeRC5(decode_results *results);
long decodeRC6(decode_results *results);
long decodePanasonic(decode_results *results);
long decodeLG(decode_results *results);
long decodeJVC(decode_results *results);
long decodeSAMSUNG(decode_results *results);
long decodeWhynter(decode_results *results);
long decodeHash(decode_results *results);
bool decodeNEC(decode_results *results);
bool decodeSony(decode_results *results);
bool decodeSanyo(decode_results *results);
bool decodeMitsubishi(decode_results *results);
bool decodeRC5(decode_results *results);
bool decodeRC6(decode_results *results);
bool decodePanasonic(decode_results *results);
bool decodeLG(decode_results *results);
bool decodeJVC(decode_results *results);
bool decodeSAMSUNG(decode_results *results);
bool decodeWhynter(decode_results *results);
bool decodeHash(decode_results *results);
// COOLIX decode is not implemented yet
// bool decodeCOOLIX(decode_results *results);
bool decodeDaikin(decode_results *results);
bool decodeDenon(decode_results *results);
int compare(unsigned int oldval, unsigned int newval);
};
@ -123,13 +144,36 @@ class IRsend
public:
IRsend(int IRsendPin);
void begin();
void send(int type, unsigned long data, int nbits) {
switch (type) {
SEND_PROTOCOL_NEC
SEND_PROTOCOL_SONY
SEND_PROTOCOL_RC5
SEND_PROTOCOL_RC6
SEND_PROTOCOL_DISH
SEND_PROTOCOL_JVC
SEND_PROTOCOL_SAMSUNG
SEND_PROTOCOL_LG
SEND_PROTOCOL_WHYNTER
SEND_PROTOCOL_COOLIX
SEND_PROTOCOL_DENON
SEND_PROTOCOL_SHERWOOD
}
};
void sendCOOLIX(unsigned long data, int nbits);
void sendWhynter(unsigned long data, int nbits);
void sendNEC(unsigned long data, int nbits);
void sendSony(unsigned long data, int nbits);
void sendNEC(unsigned long data, int nbits=32, unsigned int repeat=0);
void sendLG(unsigned long data, int nbits);
// sendSony() should typically be called with repeat=2 as Sony devices
// expect the code to be sent at least 3 times. (code + 2 repeats = 3 codes)
// As the legacy use of this procedure was only to send a single code
// it defaults to repeat=0 for backward compatiblity.
void sendSony(unsigned long data, int nbits, unsigned int repeat=0);
// Neither Sanyo nor Mitsubishi send is implemented yet
// void sendSanyo(unsigned long data, int nbits);
// void sendMitsubishi(unsigned long data, int nbits);
void sendRaw(unsigned int buf[], int len, int hz);
void sendGC(unsigned int buf[], int len);
void sendRC5(unsigned long data, int nbits);
void sendRC6(unsigned long data, int nbits);
void sendDISH(unsigned long data, int nbits);
@ -138,12 +182,32 @@ public:
void sendPanasonic(unsigned int address, unsigned long data);
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
void sendSAMSUNG(unsigned long data, int nbits);
void sendDaikin(unsigned char daikin[]);
void sendDaikinChunk(unsigned char buf[], int len, int start);
void sendDenon(unsigned long data, int nbits);
void sendKelvinator(unsigned char data[]);
void sendSherwood(unsigned long data, int nbits=32, unsigned int repeat=1);
void sendMitsubishiAC(unsigned char data[]);
void enableIROut(int khz);
VIRTUAL void mark(int usec);
VIRTUAL void space(int usec);
VIRTUAL void mark(unsigned int usec);
VIRTUAL void space(unsigned long usec);
private:
int halfPeriodicTime;
int IRpin;
void sendMitsubishiACChunk(unsigned char data);
void sendData(uint16_t onemark, uint32_t onespace,
uint16_t zeromark, uint32_t zerospace,
uint32_t data, uint8_t nbits, bool MSBfirst=true);
void ledOff();
} ;
class IRtimer {
public:
IRtimer();
void reset();
uint32_t elapsed();
private:
uint32_t start;
};
// Some useful constants

View File

@ -14,6 +14,12 @@
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* Whynter A/C ARC-110WD added by Francesco Meschia
* Coolix A/C / heatpump added by bakrus
* Denon: sendDenon, decodeDenon added by Massimiliano Pinto
(from https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Denon.cpp)
* Kelvinator A/C added by crankyoldgit
* Mitsubishi A/C added by crankyoldgit
* (based on https://github.com/r45635/HVAC-IR-Control)
*
* 09/23/2015 : Samsung pulse parameters updated by Sebastien Warin to be compatible with EUxxD6200
*
@ -32,6 +38,12 @@
// Pulse parms are *50-100 for the Mark and *50+100 for the space
// First MARK is the one after the long gap
// pulse parameters in usec
#define COOLIX_BIT_MARK 560 // Approximately 21 cycles at 38kHz
#define COOLIX_ONE_SPACE COOLIX_BIT_MARK * 3
#define COOLIX_ZERO_SPACE COOLIX_BIT_MARK * 1
#define COOLIX_HDR_MARK COOLIX_BIT_MARK * 8
#define COOLIX_HDR_SPACE COOLIX_BIT_MARK * 8
#define WHYNTER_HDR_MARK 2850
#define WHYNTER_HDR_SPACE 2850
#define WHYNTER_BIT_MARK 750
@ -46,20 +58,21 @@
#define NEC_ONE_SPACE 1690
#define NEC_ZERO_SPACE 560
#define NEC_RPT_SPACE 2250
#define NEC_MIN_COMMAND_LENGTH 108000UL
#define SONY_HDR_MARK 2400
#define SONY_HDR_SPACE 600
#define SONY_ONE_MARK 1200
#define SONY_ZERO_MARK 600
#define SONY_RPT_LENGTH 45000
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
#define SONY_DOUBLE_SPACE_USECS 500 // usually see 713 - not using ticks as get number wrapround
// SA 8650B
#define SANYO_HDR_MARK 3500 // seen range 3500
#define SANYO_HDR_SPACE 950 // seen 950
#define SANYO_ONE_MARK 2400 // seen 2400
#define SANYO_ZERO_MARK 700 // seen 700
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
#define SANYO_DOUBLE_SPACE_USECS 800 // usually see 713 - not using ticks as get number wrapround
#define SANYO_RPT_LENGTH 45000
// Mitsubishi RM 75501
@ -72,6 +85,17 @@
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
// #define MITSUBISHI_RPT_LENGTH 45000
// Mitsubishi A/C
// Values were initially obtained from:
// https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266.ino#L84
#define MITSUBISHI_AC_HDR_MARK 3400
#define MITSUBISHI_AC_HDR_SPACE 1750
#define MITSUBISHI_AC_BIT_MARK 450
#define MITSUBISHI_AC_ONE_SPACE 1300
#define MITSUBISHI_AC_ZERO_SPACE 420
#define MITSUBISHI_AC_RPT_MARK 440
#define MITSUBISHI_AC_RPT_SPACE 17100L
#define RC5_T1 889
#define RC5_RPT_LENGTH 46000
@ -136,6 +160,30 @@
#define SHARP_BITS 15
#define DISH_BITS 16
// Daikin, from https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/tree/master/IRremote
#define DAIKIN_HDR_MARK 3650 //DAIKIN_ZERO_MARK*8
#define DAIKIN_HDR_SPACE 1623 //DAIKIN_ZERO_MARK*4
#define DAIKIN_ONE_SPACE 1280
#define DAIKIN_ONE_MARK 428
#define DAIKIN_ZERO_MARK 428
#define DAIKIN_ZERO_SPACE 428
//Denon, from https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Denon.cpp
#define DENON_BITS 14 // The number of bits in the command
#define DENON_HDR_MARK 300 // The length of the Header:Mark
#define DENON_HDR_SPACE 750 // The lenght of the Header:Space
#define DENON_BIT_MARK 300 // The length of a Bit:Mark
#define DENON_ONE_SPACE 1800 // The length of a Bit:Space for 1's
#define DENON_ZERO_SPACE 750 // The length of a Bit:Space for 0's
#define KELVINATOR_HDR_MARK 8990U
#define KELVINATOR_HDR_SPACE 4490U
#define KELVINATOR_BIT_MARK 675U
#define KELVINATOR_ONE_SPACE 1560U
#define KELVINATOR_ZERO_SPACE 520U
#define KELVINATOR_GAP_SPACE 19950U
#define KELVINATOR_CMD_FOOTER 2U
#define TOLERANCE 25 // percent tolerance in measurements
#define LTOL (1.0 - TOLERANCE/100.)
#define UTOL (1.0 + TOLERANCE/100.)
@ -152,9 +200,6 @@
#define STATE_SPACE 4
#define STATE_STOP 5
#define ERR 0
#define DECODED 1
// information for the interrupt handler
typedef struct {
uint8_t recvpin; // pin for IR data from detector
@ -162,6 +207,7 @@ typedef struct {
unsigned int timer; // state timer, counts 50uS ticks.
unsigned int rawbuf[RAWBUF]; // raw data
uint8_t rawlen; // counter of entries in rawbuf
uint8_t overflow;
}
irparams_t;
@ -185,5 +231,7 @@ extern volatile irparams_t irparams;
#define LG_BITS 28
#define SAMSUNG_BITS 32
#define WHYNTER_BITS 32
#define COOLIX_NBYTES 3
#define DAIKIN_BITS 99
#endif

View File

@ -1,5 +1,7 @@
# IRremote ESP8266 Library
[![Build Status](https://travis-ci.org/markszabo/IRremoteESP8266.svg?branch=master)](https://travis-ci.org/markszabo/IRremoteESP8266)
This library enables you to **send and receive** infra-red signals on an ESP8266 using Arduino framework (https://github.com/esp8266/Arduino)
This library is based on Ken Shirriff's work (https://github.com/shirriff/Arduino-IRremote/)

View File

@ -0,0 +1,26 @@
/*
* IRremoteESP8266: IRsendGCDemo - demonstrates sending Global Cache-formatted IR codes with IRsend
* An IR LED must be connected to ESP8266 pin 0.
* Version 0.1 30 March, 2016
* Based on Ken Shirriff's IrsendDemo Version 0.1 July, 2009, Copyright 2009 Ken Shirriff, http://arcfn.com
*/
#include <IRremoteESP8266.h>
// Codes are in Global Cache format less the emitter ID and request ID. These codes can be found in GC's Control Tower database.
unsigned int Samsung_power_toggle[71] = {38000,1,1,170,170,20,63,20,63,20,63,20,20,20,20,20,20,20,20,20,20,20,63,20,63,20,63,20,20,20,20,20,20,20,20,20,20,20,20,20,63,20,20,20,20,20,20,20,20,20,20,20,20,20,63,20,20,20,63,20,63,20,63,20,63,20,63,20,63,20,1798};
IRsend irsend(4); //an IR emitter led is connected to GPIO pin 4
void setup()
{
irsend.begin();
Serial.begin(115200);
}
void loop() {
Serial.println("Toggling power");
irsend.sendGC(Samsung_power_toggle, 71);
delay(10000);
}

View File

@ -0,0 +1,85 @@
/*
* IRremoteESP8266: IRGCTCPServer - send Global Cache-formatted codes via TCP.
* An IR emitter must be connected to GPIO pin 4.
* Version 0.1 1 April, 2016
* Hisham Khalifa, http://www.hishamkhalifa.com
*
* Example command - Samsung TV power toggle: 38000,1,1,170,170,20,63,20,63,20,63,20,20,20,20,20,20,20,20,20,20,20,63,20,63,20,63,20,20,20,20,20,20,20,20,20,20,20,20,20,63,20,20,20,20,20,20,20,20,20,20,20,20,20,63,20,20,20,63,20,63,20,63,20,63,20,63,20,63,20,1798\r\n
*/
#include <IRremoteESP8266.h>
#include <IRremoteInt.h>
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <WiFiServer.h>
const char* ssid = "...";
const char* password = "...";
WiFiServer server(4998); // Uses port 4998.
WiFiClient client;
unsigned int *codeArray;
IRsend irsend(4); //an IR emitter led is connected to GPIO pin 4
void parseString(String str) {
int nextIndex;
int codeLength = 1;
int currentIndex = 0;
nextIndex = str.indexOf(',');
// change to do/until and remove superfluous repetition below...
while (nextIndex != -1) {
if (codeLength > 1) {
codeArray = (unsigned int*) realloc(codeArray, codeLength * sizeof(unsigned int));
} else {
codeArray = (unsigned int*) malloc(codeLength * sizeof(unsigned int));
}
codeArray[codeLength-1] = (unsigned int) (str.substring(currentIndex, nextIndex).toInt());
codeLength++;
currentIndex = nextIndex + 1;
nextIndex = str.indexOf(',', currentIndex);
}
codeArray = (unsigned int*) realloc(codeArray, codeLength * sizeof(unsigned int));
codeArray[codeLength-1] = (unsigned int) (str.substring(currentIndex, nextIndex).toInt());
irsend.sendGC(codeArray,codeLength);
}
void setup() {
// initialize serial:
Serial.begin(115200);
Serial.println(" ");
Serial.println("IR TCP Server");
while (WiFi.status() != WL_CONNECTED) {
delay(900);
Serial.print(".");
}
server.begin();
IPAddress myAddress = WiFi.localIP();
Serial.println(myAddress);
irsend.begin();
}
void loop() {
while(!client) {
client = server.available();
}
while(!client.connected()){
delay(900);
client = server.available();
}
if(client.available()){
String irCode = client.readStringUntil('\r'); // Exclusive of \r
client.readStringUntil('\n'); // Skip new line as well
client.flush();
parseString(irCode);
}
}

View File

@ -27,7 +27,7 @@ void handleIr(){
if(server.argName(i) == "code")
{
unsigned long code = server.arg(i).toInt();
irsend.sendNEC(code, 36);
irsend.sendNEC(code, 32);
}
}
handleRoot();

View File

@ -62,6 +62,11 @@ void encoding (decode_results *results)
//
void dumpInfo (decode_results *results)
{
if (results->overflow) {
Serial.println("IR code too long. Edit IRremoteInt.h and increase RAWBUF");
return;
}
// Show Encoding standard
Serial.print("Encoding : ");
encoding(results);

View File

@ -17,7 +17,7 @@ void setup()
void loop() {
Serial.println("NEC");
irsend.sendNEC(0x00FFE01F, 36);
irsend.sendNEC(0x00FFE01FUL, 32);
delay(2000);
Serial.println("Sony");
irsend.sendSony(0xa90, 12);

View File

@ -0,0 +1,27 @@
#include <IRDaikinESP.h>
IRDaikinESP dakinir(D1);
void setup(){
dakinir.begin();
Serial.begin(115200);
}
void loop(){
Serial.println("Sending...");
// Set up what we want to send. See IRDaikinESP.cpp for all the options.
dakinir.on();
dakinir.setFan(1);
dakinir.setMode(DAIKIN_COOL);
dakinir.setTemp(25);
dakinir.setSwingVertical(0);
dakinir.setSwingHorizontal(0);
// Now send the IR signal.
dakinir.send();
delay(5000);
}

View File

@ -0,0 +1,52 @@
#include <IRKelvinator.h>
IRKelvinatorAC kelvir(D1); // IR led controlled by Pin D1.
void printState() {
// Display the settings.
Serial.println("Kelvinator A/C remote is in the following state:");
Serial.printf(" Basic\n Power: %d, Mode: %d, Temp: %dC, Fan Speed: %d\n",
kelvir.getPower(), kelvir.getMode(), kelvir.getTemp(),
kelvir.getFan());
Serial.printf(" Options\n X-Fan: %d, Light: %d, Ion Filter: %d\n",
kelvir.getXFan(), kelvir.getLight(), kelvir.getIonFilter());
Serial.printf(" Swing (V): %d, Swing (H): %d, Turbo: %d, Quiet: %d\n",
kelvir.getSwingVertical(), kelvir.getSwingHorizontal(),
kelvir.getTurbo(), kelvir.getQuiet());
// Display the encoded IR sequence.
unsigned char* ir_code = kelvir.getRaw();
Serial.print("IR Code: 0x");
for (int i = 0; i < KELVINATOR_STATE_LENGTH; i++)
Serial.printf("%02X", ir_code[i]);
Serial.println();
}
void setup(){
kelvir.begin();
Serial.begin(115200);
delay(200);
// Set up what we want to send. See IRKelvinator.cpp for all the options.
// Most things default to off.
Serial.println("Default state of the remote.");
printState();
Serial.println("Setting desired state for A/C.");
kelvir.on();
kelvir.setFan(1);
kelvir.setMode(KELVINATOR_COOL);
kelvir.setTemp(26);
kelvir.setSwingVertical(false);
kelvir.setSwingHorizontal(true);
kelvir.setXFan(true);
kelvir.setIonFilter(false);
kelvir.setLight(true);
}
void loop() {
// Now send the IR signal.
Serial.println("Sending IR command to A/C ...");
kelvir.send();
printState();
delay(5000);
}

View File

@ -0,0 +1,42 @@
#include <IRMitsubishiAC.h>
IRMitsubishiAC mitsubir(D1); // IR led controlled by Pin D1.
void printState() {
// Display the settings.
Serial.println("Mitsubishi A/C remote is in the following state:");
Serial.printf(" Power: %d, Mode: %d, Temp: %dC, Fan Speed: %d, Vane Mode: %d\n",
mitsubir.getPower(), mitsubir.getMode(), mitsubir.getTemp(),
mitsubir.getFan(), mitsubir.getVane());
// Display the encoded IR sequence.
unsigned char* ir_code = mitsubir.getRaw();
Serial.print("IR Code: 0x");
for (int i = 0; i < MITSUBISHI_AC_STATE_LENGTH; i++)
Serial.printf("%02X", ir_code[i]);
Serial.println();
}
void setup(){
mitsubir.begin();
Serial.begin(115200);
delay(200);
// Set up what we want to send. See IRMitsubishiAC.cpp for all the options.
Serial.println("Default state of the remote.");
printState();
Serial.println("Setting desired state for A/C.");
mitsubir.on();
mitsubir.setFan(1);
mitsubir.setMode(MITSUBISHI_AC_COOL);
mitsubir.setTemp(26);
mitsubir.setVane(MITSUBISHI_AC_VANE_AUTO);
}
void loop() {
// Now send the IR signal.
Serial.println("Sending IR command to A/C ...");
mitsubir.send();
printState();
delay(5000);
}

View File

@ -21,6 +21,7 @@ resume KEYWORD2
begin KEYWORD2
enableIROut KEYWORD2
sendNEC KEYWORD2
sendNECRepeat KEYWORD2
sendSony KEYWORD2
sendSanyo KEYWORD2
sendMitsubishi KEYWORD2
@ -34,6 +35,11 @@ sendPanasonic KEYWORD2
sendJVC KEYWORD2
sendWhynter KEYWORD2
sendSAMSUNG KEYWORD2
sendCOOLIX KEYWORD2
sendDenon KEYWORD2
sendKelvinator KEYWORD2
sendSherwood KEYWORD2
sendMitsubishiAC KEYWORD2
#######################################
# Constants (LITERAL1)
@ -53,5 +59,10 @@ LG LITERAL1
SAMSUNG LITERAL1
WHYNTER LITERAL1
AIWA_RC_T501 LITERAL1
COOLIX LITERAL1
UNKNOWN LITERAL1
REPEAT LITERAL1
DENON LITERAL1
KELVINATOR LITERAL1
SHERWOOD LITERAL1
MITSUBISHIAC LITERAL1

View File

@ -1,12 +1,44 @@
{
"name": "IRremoteESP8266",
"keywords": "infrared, ir, remote",
"description": "Send and receive infrared signals with multiple protocols",
"version": "1.0.2",
"keywords": "infrared, ir, remote, esp8266",
"description": "Send and receive infrared signals with multiple protocols (ESP8266)",
"repository":
{
"type": "git",
"url": "https://github.com/sebastienwarin/IRremoteESP8266.git"
"url": "https://github.com/markszabo/IRremoteESP8266.git"
},
"frameworks": "arduino",
"platforms": "esp8266"
"authors": [
{
"name": "Ken Shirriff",
"email": "zetoslab@gmail.com"
},
{
"name": "Mark Szabo",
"url": "http://nomartini-noparty.blogspot.com/",
"maintainer": true
},
{
"name": "Sebastien Warin",
"url": "http://sebastien.warin.fr",
"maintainer": true
},
{
"name": "David Conran",
"url": "https://plus.google.com/+davidconran",
"maintainer": true
},
{
"name": "Roi Dayan",
"url": "https://github.com/roidayan/",
"maintainer": true
},
{
"name": "Massimiliano Pinto",
"url": "https://github.com/pintomax/",
"maintainer": true
}
],
"frameworks": "arduino",
"platforms": "espressif8266"
}

View File

@ -1,9 +1,9 @@
name=IRremoteESP8266
version=1.0.0
author=Sebastien Warin, Mark Szabo, Ken Shirriff
maintainer=Sebastien Warin
sentence=Send and receive infrared signals with multiple protocols.
version=1.0.2
author=Sebastien Warin, Mark Szabo, Ken Shirriff, David Conran
maintainer=Mark Szabo, David Conran, Sebastien Warin, Roi Dayan, Massimiliano Pinto
sentence=Send and receive infrared signals with multiple protocols (ESP8266)
paragraph=This library enables you to send and receive infra-red signals on an ESP8266.
category=Device Control
url=https://github.com/sebastienwarin/IRremoteESP8266
url=https://github.com/markszabo/IRremoteESP8266
architectures=esp8266