Merge pull request #9491 from s-hadinger/zigee_zbdata

Add Zigbee ``ZbData`` command for better support of device specific data
This commit is contained in:
s-hadinger 2020-10-07 21:33:10 +02:00 committed by GitHub
commit 6927e1d305
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1858 additions and 1287 deletions

View File

@ -106,6 +106,13 @@ void JsonGeneratorObject::add(const char* key, const String & str) {
post();
}
// Add up to 32 bits hex value
void JsonGeneratorObject::addHex32(const char* key, uint32_t uval32) {
char hex[16];
snprintf_P(hex, sizeof(hex), PSTR("\"0x%8X\""), uval32);
addStrRaw(key, hex);
}
// Add a raw string, that will not be escaped.
// Can be used to add a sub-array, sub-object or 'null', 'true', 'false' values
void JsonGeneratorObject::addStrRaw(const char* key, const char * sval) {

View File

@ -58,6 +58,7 @@ public:
void add(const char* key, uint32_t uval32);
void add(const char* key, int32_t uval32);
void add(const char* key, const String & str);
void addHex32(const char* key, uint32_t uval32);
void addStrRaw(const char* key, const char * sval);
void addStr(const char* key, const char * sval);

View File

@ -24,6 +24,7 @@
- Add support for inverted NeoPixelBus data line by enabling ``#define USE_WS2812_INVERTED`` (#8988)
- Add PWM dimmer color/trigger on tap, SO88 led, DGR WITH_LOCAL flag by Paul Diem (#9474)
- Add support for stateful ACs using ``StateMode`` in tasmota-ir.bin by Arik Yavilevich (#9472)
- Add Zigbee ``ZbData`` command for better support of device specific data
## Released

View File

@ -572,6 +572,7 @@
#define D_CMND_ZIGBEE_RESTORE "Restore"
#define D_CMND_ZIGBEE_CONFIG "Config"
#define D_JSON_ZIGBEE_CONFIG "Config"
#define D_CMND_ZIGBEE_DATA "Data"
// Commands xdrv_25_A4988_Stepper.ino
#define D_CMND_MOTOR "MOTOR"

View File

@ -72,6 +72,10 @@ public:
T & addHead(void);
T & addHead(const T &val);
T & addToLast(void);
// add an element allocated externally
// memory is free by us now -- don't free it!
T & addHead(LList_elt<T> * elt);
T & addToLast(LList_elt<T> * elt);
// iterator
// see https://stackoverflow.com/questions/8164567/how-to-make-my-custom-type-to-work-with-range-based-for-loops
@ -174,6 +178,13 @@ T & LList<T>::addHead(const T &val) {
return elt->_val;
}
template <typename T>
T & LList<T>::addHead(LList_elt<T> * elt) {
elt->next(_head); // insert at the head
_head = elt;
return elt->_val;
}
template <typename T>
T & LList<T>::addToLast(void) {
LList_elt<T> **curr_ptr = &_head;
@ -183,4 +194,15 @@ T & LList<T>::addToLast(void) {
LList_elt<T> * elt = new LList_elt<T>(); // create element
*curr_ptr = elt;
return elt->_val;
}
}
template <typename T>
T & LList<T>::addToLast(LList_elt<T> * elt) {
LList_elt<T> **curr_ptr = &_head;
while (*curr_ptr) {
curr_ptr = &((*curr_ptr)->_next);
}
*curr_ptr = elt;
elt->_next = nullptr;
return elt->_val;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,779 @@
/*
xdrv_23_zigbee_2a_devices_impl.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* Implementation
\*********************************************************************************************/
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return (Z_Device&) device_unk; } // it is not legal to create this entry
Z_Device device(shortaddr, longaddr);
dirty();
return _devices.addHead(device);
}
void Z_Devices::freeDeviceEntry(Z_Device *device) {
if (device->manufacturerId) { free(device->manufacturerId); }
if (device->modelId) { free(device->modelId); }
if (device->friendlyName) { free(device->friendlyName); }
free(device);
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (not BAD_SHORTADDR)
// Out:
// reference to device, or to device_unk if not found
// (use foundDevice() to check if found)
Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) {
for (auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return (Z_Device&) device_unk;
}
const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const {
for (const auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) {
if (!longaddr) { return (Z_Device&) device_unk; }
for (auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return (Z_Device&) device_unk;
}
const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const {
if (!longaddr) { return device_unk; }
for (const auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findFriendlyName(const char * name) const {
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem.friendlyName) {
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
}
found++;
}
}
return -1;
}
uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const {
const Z_Device & device = findLongAddr(longaddr);
if (foundDevice(device)) {
return device.shortaddr; // can be zero, if not yet registered
} else {
return BAD_SHORTADDR;
}
}
uint16_t Z_Devices::isKnownIndex(uint32_t index) const {
if (index < devicesSize()) {
const Z_Device & device = devicesAt(index);
return device.shortaddr;
} else {
return BAD_SHORTADDR;
}
}
uint16_t Z_Devices::isKnownFriendlyName(const char * name) const {
if ((!name) || (0 == strlen(name))) { return BAD_SHORTADDR; } // Error
int32_t found = findFriendlyName(name);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.shortaddr; // can be zero, if not yet registered
} else {
return BAD_SHORTADDR;
}
}
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00
}
//
// We have a seen a shortaddr on the network, get the corresponding device object
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
if (BAD_SHORTADDR == shortaddr) { return (Z_Device&) device_unk; } // this is not legal
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(shortaddr, 0);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
if (!longaddr) { return (Z_Device&) device_unk; }
Z_Device & device = findLongAddr(longaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(0, longaddr);
}
// Remove device from list, return true if it was known, false if it was not recorded
bool Z_Devices::removeDevice(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
_devices.remove(&device);
dirty();
return true;
}
return false;
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry
Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry
if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
} else { // they don't match
// the device with longaddr got a new shortaddr
l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
freeDeviceEntry(s_found);
_devices.remove(s_found);
dirty();
}
} else if (foundDevice(*s_found)) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
s_found->longaddr = longaddr;
dirty();
} else if (foundDevice(*l_found)) {
// longaddr entry exists, update shortaddr
l_found->shortaddr = shortaddr;
dirty();
} else {
// neither short/lonf addr are found.
if ((BAD_SHORTADDR != shortaddr) || longaddr) {
createDeviceEntry(shortaddr, longaddr);
}
}
}
//
// Clear all endpoints
//
void Z_Devices::clearEndpoints(uint16_t shortaddr) {
Z_Device &device = getShortAddr(shortaddr);
for (uint32_t i = 0; i < endpoints_max; i++) {
device.endpoints[i] = 0;
// no dirty here because it doesn't make sense to store it, does it?
}
}
//
// Add an endpoint to a shortaddr
//
void Z_Devices::addEndpoint(uint16_t shortaddr, uint8_t endpoint) {
if (0x00 == endpoint) { return; }
Z_Device &device = getShortAddr(shortaddr);
for (uint32_t i = 0; i < endpoints_max; i++) {
if (endpoint == device.endpoints[i]) {
return; // endpoint already there
}
if (0 == device.endpoints[i]) {
device.endpoints[i] = endpoint;
dirty();
return;
}
}
}
//
// Count the number of known endpoints
//
uint32_t Z_Devices::countEndpoints(uint16_t shortaddr) const {
uint32_t count_ep = 0;
const Z_Device & device =findShortAddr(shortaddr);
if (!foundDevice(device)) return 0;
for (uint32_t i = 0; i < endpoints_max; i++) {
if (0 != device.endpoints[i]) {
count_ep++;
}
}
return count_ep;
}
// Find the first endpoint of the device
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
// When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1
if (0x0000 == shortaddr) { return 1; }
return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint
}
void Z_Devices::setStringAttribute(char*& attr, const char * str) {
if (nullptr == str) { return; } // ignore a null parameter
size_t str_len = strlen(str);
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
if (attr) {
// we already have a value
if (strcmp(attr, str) != 0) {
// new value
free(attr); // free previous value
attr = nullptr;
} else {
return; // same value, don't change anything
}
}
if (str_len) {
attr = (char*) malloc(str_len + 1);
strlcpy(attr, str, str_len + 1);
}
dirty();
}
//
// Sets the ManufId for a device.
// No action taken if the device does not exist.
// Inputs:
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
// - str: string pointer, if nullptr it is considered as empty string
// Impact:
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
//
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
setStringAttribute(getShortAddr(shortaddr).manufacturerId, str);
}
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
setStringAttribute(getShortAddr(shortaddr).modelId, str);
}
void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) {
setStringAttribute(getShortAddr(shortaddr).friendlyName, str);
}
void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) {
getShortAddr(shortaddr).setReachable(reachable);
}
void Z_Devices::setLQI(uint16_t shortaddr, uint8_t lqi) {
if (shortaddr == localShortAddr) { return; }
getShortAddr(shortaddr).lqi = lqi;
}
void Z_Devices::setLastSeenNow(uint16_t shortaddr) {
if (shortaddr == localShortAddr) { return; }
// Only update time if after 2020-01-01 0000.
// Fixes issue where zigbee device pings before WiFi/NTP has set utc_time
// to the correct time, and "last seen" calculations are based on the
// pre-corrected last_seen time and the since-corrected utc_time.
if (Rtc.utc_time < 1577836800) { return; }
getShortAddr(shortaddr).last_seen = Rtc.utc_time;
}
void Z_Devices::setBatteryPercent(uint16_t shortaddr, uint8_t bp) {
getShortAddr(shortaddr).batterypercent = bp;
}
// get the next sequance number for the device, or use the global seq number if device is unknown
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
device.seqNumber += 1;
return device.seqNumber;
} else {
_seqNumber += 1;
return _seqNumber;
}
}
// General Zigbee device profile support
void Z_Devices::setLightProfile(uint16_t shortaddr, uint8_t light_profile) {
Z_Device &device = getShortAddr(shortaddr);
if (device.setLightChannels(light_profile)) {
dirty();
}
}
// Returns the device profile or 0xFF if the device or profile is unknown
uint8_t Z_Devices::getLightProfile(uint16_t shortaddr) const {
const Z_Device &device = findShortAddr(shortaddr);
return device.getLightChannels();
}
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const {
int8_t light_profile = getLightProfile(shortaddr);
if (0x00 == (light_profile & 0xF0)) {
return (light_profile & 0x07);
} else {
// not a bulb
return -1;
}
}
void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) {
Z_Device &device = getShortAddr(shortaddr);
if (device.hidden != hidden) {
device.hidden = hidden;
dirty();
}
}
// true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb
bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const {
const Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device.hidden;
}
return true; // Fallback - Device is considered as hidden
}
// Deferred actions
// Parse for a specific category, of all deferred for a device if category == 0xFF
// Only with specific cluster number or for all clusters if cluster == 0xFFFF
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) {
// iterate the list of deferred, and remove any linked to the shortaddr
for (auto & defer : _deferred) {
if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) {
if ((0xFF == category) || (defer.category == category)) {
if ((0xFFFF == cluster) || (defer.cluster == cluster)) {
if ((0xFF == endpoint) || (defer.endpoint == endpoint)) {
_deferred.remove(&defer);
}
}
}
}
}
}
// Set timer for a specific device
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers
resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster
}
// Now create the new timer
Z_Deferred & deferred = _deferred.addHead();
deferred = { wait_ms + millis(), // timer
shortaddr,
groupaddr,
cluster,
endpoint,
category,
value,
func };
}
// Set timer after the already queued events
// I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future
void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
Z_Device & device = getShortAddr(shortaddr);
uint32_t now_millis = millis();
if (TimeReached(device.defer_last_message_sent)) {
device.defer_last_message_sent = now_millis;
}
// defer_last_message_sent equals now or a value in the future
device.defer_last_message_sent += wait_ms;
// for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS
setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func);
}
// Run timer at each tick
// WARNING: don't set a new timer within a running timer, this causes memory corruption
void Z_Devices::runTimer(void) {
// visit all timers
for (auto & defer : _deferred) {
uint32_t timer = defer.timer;
if (TimeReached(timer)) {
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
_deferred.remove(&defer);
}
}
// check if we need to save to Flash
if ((_saveTimer) && TimeReached(_saveTimer)) {
saveZigbeeDevices();
_saveTimer = 0;
}
}
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
// false - new attributes can be safely added
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const {
const Z_Device & device = findShortAddr(shortaddr);
if (!foundDevice(device)) { return false; }
if (attr_list.isEmpty()) {
return false; // if no previous value, no conflict
}
// compare groups
if (device.attr_list.isValidGroupId() && attr_list.isValidGroupId()) {
if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict
}
// compare src_ep
if (device.attr_list.isValidSrcEp() && attr_list.isValidSrcEp()) {
if (device.attr_list.src_ep != attr_list.src_ep) { return true; }
}
// LQI does not count as conflicting
// parse all other parameters
for (const auto & attr : attr_list) {
const Z_attribute * curr_attr = device.attr_list.findAttribute(attr);
if (nullptr != curr_attr) {
if (!curr_attr->equalsVal(attr)) {
return true; // the value already exists and is different - conflict!
}
}
}
return false;
}
void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) {
Z_Device & device = getShortAddr(shortaddr);
device.attr_list.mergeList(attr_list);
}
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (!device.valid()) { return; } // safeguard
Z_attribute_list &attr_list = device.attr_list;
if (!attr_list.isEmpty()) {
const char * fname = zigbee_devices.getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
// save parameters is global variables to be used by Rules
gZbLastMessage.device = shortaddr; // %zbdevice%
gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup%
gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint%
mqtt_data[0] = 0; // clear string
// Do we prefix with `ZbReceived`?
if (!Settings.flag4.remove_zbreceived) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":"));
}
// What key do we use, shortaddr or name?
if (use_fname) {
Response_P(PSTR("%s{\"%s\":{"), mqtt_data, fname);
} else {
Response_P(PSTR("%s{\"0x%04X\":{"), mqtt_data, shortaddr);
}
// Add "Device":"0x...."
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), mqtt_data, shortaddr);
// Add "Name":"xxx" if name is present
if (fname) {
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), mqtt_data, EscapeJSONString(fname).c_str());
}
// Add all other attributes
Response_P(PSTR("%s%s}}"), mqtt_data, attr_list.toString().c_str());
if (!Settings.flag4.remove_zbreceived) {
Response_P(PSTR("%s}"), mqtt_data);
}
attr_list.reset(); // clear the attributes
if (Settings.flag4.zigbee_distinct_topics) {
if (Settings.flag4.zb_topic_fname && fname) {
//Clean special characters and check size of friendly name
char stemp[TOPSZ];
strlcpy(stemp, (!strlen(fname)) ? MQTT_TOPIC : fname, sizeof(stemp));
MakeValidMqtt(0, stemp);
//Create topic with Prefix3 and cleaned up friendly name
char frtopic[TOPSZ];
snprintf_P(frtopic, sizeof(frtopic), PSTR("%s/%s/" D_RSLT_SENSOR), SettingsText(SET_MQTTPREFIX3), stemp);
MqttPublish(frtopic, Settings.flag.mqtt_sensor_retain);
} else {
char subtopic[16];
snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr);
MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain);
}
} else {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
}
XdrvRulesProcess(); // apply rules
}
}
void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) {
jsonPublishFlush(shortaddr); // flush any previous buffer
jsonAppend(shortaddr, attr_list);
jsonPublishFlush(shortaddr); // publish now
}
void Z_Devices::dirty(void) {
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
}
void Z_Devices::clean(void) {
_saveTimer = 0;
}
// Parse the command parameters for either:
// - a short address starting with "0x", example: 0x1234
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
// - a number 0..99, the index number in ZigbeeStatus
// - a friendly name, between quotes, example: "Room_Temp"
uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const {
if (nullptr == param) { return BAD_SHORTADDR; }
size_t param_len = strlen(param);
char dataBuf[param_len + 1];
strcpy(dataBuf, param);
RemoveSpace(dataBuf);
uint16_t shortaddr = BAD_SHORTADDR; // start with unknown
if (strlen(dataBuf) < 4) {
// simple number 0..99
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1);
}
} else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) {
// starts with 0x
if (strlen(dataBuf) < 18) {
// expect a short address
shortaddr = strtoull(dataBuf, nullptr, 0);
if (short_must_be_known) {
shortaddr = zigbee_devices.findShortAddr(shortaddr).shortaddr; // if not found, it reverts to the unknown_device with address BAD_SHORTADDR
}
// else we don't check if it's already registered to force unregistered devices
} else {
// expect a long address
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
shortaddr = zigbee_devices.isKnownLongAddr(longaddr);
}
} else {
// expect a Friendly Name
shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf);
}
return shortaddr;
}
// Display the tracked status for a light
String Z_Devices::dumpLightState(uint16_t shortaddr) const {
Z_attribute_list attr_list;
char hex[8];
const Z_Device & device = findShortAddr(shortaddr);
const char * fname = getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
if (fname) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(fname);
}
if (foundDevice(device)) {
// dump all known values
attr_list.addAttribute(F("Reachable")).setBool(device.getReachable());
if (device.validPower()) { attr_list.addAttribute(F("Power")).setUInt(device.getPower()); }
Z_Data_Light::toAttributes(attr_list, device.data.find<Z_Data_Light>(0));
}
Z_attribute_list attr_list_root;
Z_attribute * attr_root;
if (use_fname) {
attr_root = &attr_list_root.addAttribute(fname);
} else {
attr_root = &attr_list_root.addAttribute(hex);
}
attr_root->setStrRaw(attr_list.toString(true).c_str());
return attr_list_root.toString(true);
}
// Dump the internal memory of Zigbee devices
// Mode = 1: simple dump of devices addresses
// Mode = 2: simple dump of devices addresses and names, endpoints, light
String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const {
Z_json_array json_arr;
for (const auto & device : _devices) {
uint16_t shortaddr = device.shortaddr;
char hex[22];
// ignore non-current device, if device specified
if ((BAD_SHORTADDR != status_shortaddr) && (status_shortaddr != shortaddr)) { continue; }
Z_attribute_list attr_list;
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
if (device.friendlyName > 0) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(device.friendlyName);
}
if (2 <= dump_mode) {
hex[0] = '0'; // prefix with '0x'
hex[1] = 'x';
Uint64toHex(device.longaddr, &hex[2], 64);
attr_list.addAttribute(F("IEEEAddr")).setStr(hex);
if (device.modelId) {
attr_list.addAttribute(F(D_JSON_MODEL D_JSON_ID)).setStr(device.modelId);
}
int8_t bulbtype = getHueBulbtype(shortaddr);
if (bulbtype >= 0) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(bulbtype); // sign extend, 0xFF changed as -1
}
if (device.manufacturerId) {
attr_list.addAttribute(F("Manufacturer")).setStr(device.manufacturerId);
}
Z_json_array arr_ep;
for (uint32_t i = 0; i < endpoints_max; i++) {
uint8_t endpoint = device.endpoints[i];
if (0x00 == endpoint) { break; }
arr_ep.add(endpoint);
}
attr_list.addAttribute(F("Endpoints")).setStrRaw(arr_ep.toString().c_str());
}
json_arr.addStrRaw(attr_list.toString(true).c_str());
}
return json_arr.toString();
}
// Restore a single device configuration based on json export
// Input: json element as expported by `ZbStatus2``
// Mandatory attribue: `Device`
//
// Returns:
// 0 : Ok
// <0 : Error
//
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
int32_t Z_Devices::deviceRestore(JsonParserObject json) {
// params
uint16_t device = 0x0000; // 0x0000 is coordinator so considered invalid
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
const char * modelid = nullptr;
const char * manufid = nullptr;
const char * friendlyname = nullptr;
int8_t bulbtype = -1;
size_t endpoints_len = 0;
// read mandatory "Device"
JsonParserToken val_device = json[PSTR("Device")];
if (val_device) {
device = (uint32_t) val_device.getUInt(device);
} else {
return -1; // missing "Device" attribute
}
ieeeaddr = json.getULong(PSTR("IEEEAddr"), ieeeaddr); // read "IEEEAddr" 64 bits in format "0x0000000000000000"
friendlyname = json.getStr(PSTR("Name"), nullptr); // read "Name"
modelid = json.getStr(PSTR("ModelId"), nullptr);
manufid = json.getStr(PSTR("Manufacturer"), nullptr);
JsonParserToken tok_bulbtype = json[PSTR(D_JSON_ZIGBEE_LIGHT)];
// update internal device information
updateDevice(device, ieeeaddr);
if (modelid) { setModelId(device, modelid); }
if (manufid) { setManufId(device, manufid); }
if (friendlyname) { setFriendlyName(device, friendlyname); }
if (tok_bulbtype) { setLightProfile(device, tok_bulbtype.getInt()); }
// read "Endpoints"
JsonParserToken val_endpoints = json[PSTR("Endpoints")];
if (val_endpoints.isArray()) {
JsonParserArray arr_ep = JsonParserArray(val_endpoints);
clearEndpoints(device); // clear even if array is empty
for (auto ep_elt : arr_ep) {
uint8_t ep = ep_elt.getUInt();
if (ep) { addEndpoint(device, ep); }
}
}
return 0;
}
Z_Data_Light & Z_Devices::getLight(uint16_t shortaddr) {
return getShortAddr(shortaddr).data.get<Z_Data_Light>();
}
/*********************************************************************************************\
* Export device specific attributes to ZbData
\*********************************************************************************************/
void Z_Device::toAttributes(Z_attribute_list & attr_list) const {
if (validLqi()) { attr_list.addAttribute(PSTR(D_CMND_ZIGBEE_LINKQUALITY)).setUInt(lqi); }
if (validBatteryPercent()) { attr_list.addAttribute(PSTR("BatteryPercentage")).setUInt(batterypercent); }
if (validLastSeen()) { attr_list.addAttribute(PSTR("LastSeen")).setUInt(last_seen); }
}
/*********************************************************************************************\
* Device specific data handlers
\*********************************************************************************************/
void Z_Device::setPower(bool power_on, uint8_t ep) {
data.get<Z_Data_OnOff>(ep).setPower(power_on);
}
bool Z_Device::validPower(uint8_t ep) const {
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
return (&onoff != nullptr);
}
bool Z_Device::getPower(uint8_t ep) const {
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
if (&onoff != nullptr) return onoff.getPower();
return false;
}
#endif // USE_ZIGBEE

View File

@ -29,23 +29,29 @@ void HueLightStatus1Zigbee(uint16_t shortaddr, uint8_t local_light_subtype, Stri
"\"effect\":\"none\","
"\"reachable\":%s}";
bool power, reachable;
uint8_t colormode, bri, sat;
uint16_t ct, hue;
uint16_t x, y;
bool power = false;
bool reachable = false;
uint8_t colormode = 0xFF;
uint8_t bri = 0xFF;
uint8_t sat = 0xFF;
uint16_t ct = 0xFFFF;
uint16_t hue = 0xFFFF;
uint16_t x = 0xFFFF, y = 0xFFFF;
String light_status = "";
uint32_t echo_gen = findEchoGeneration(); // 1 for 1st gen =+ Echo Dot 2nd gen, 2 for 2nd gen and above
const Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
// TODO TODO check also validity
bri = device.dimmer;
const Z_Data_Light & light = device.data.find<Z_Data_Light>();
if (&light != nullptr) {
bri = light.getDimmer();
colormode = light.getColorMode();
sat = light.getSat();
ct = light.getCT();
hue = light.getHue();
x = light.getX();
y = light.getY();
}
power = device.getPower();
colormode = device.colormode;
sat = device.sat;
ct = device.ct;
hue = device.hue;
x = device.x;
y = device.y;
reachable = device.getReachable();
if (bri > 254) bri = 254; // Philips Hue bri is between 1 and 254
@ -148,7 +154,7 @@ void ZigbeeHueGroups(String * lights) {
// Power On/Off
void ZigbeeHuePower(uint16_t shortaddr, bool power) {
zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0006, power ? 1 : 0, "");
zigbee_devices.getShortAddr(shortaddr).setPower(power);
zigbee_devices.getShortAddr(shortaddr).setPower(power, 0);
}
// Dimmer
@ -157,7 +163,7 @@ void ZigbeeHueDimmer(uint16_t shortaddr, uint8_t dimmer) {
char param[8];
snprintf_P(param, sizeof(param), PSTR("%02X0A00"), dimmer);
zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0008, 0x04, param);
zigbee_devices.getShortAddr(shortaddr).dimmer = dimmer;
zigbee_devices.getLight(shortaddr).setDimmer(dimmer);
}
// CT
@ -168,9 +174,9 @@ void ZigbeeHueCT(uint16_t shortaddr, uint16_t ct) {
snprintf_P(param, sizeof(param), PSTR("%02X%02X0A00"), ct & 0xFF, ct >> 8);
uint8_t colormode = 2; // "ct"
zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0300, 0x0A, param);
Z_Device & device = zigbee_devices.getShortAddr(shortaddr);
device.colormode = colormode;
device.ct = ct;
Z_Data_Light & light = zigbee_devices.getLight(shortaddr);
light.setColorMode(colormode);
light.setCT(ct);
}
// XY
@ -181,10 +187,10 @@ void ZigbeeHueXY(uint16_t shortaddr, uint16_t x, uint16_t y) {
snprintf_P(param, sizeof(param), PSTR("%02X%02X%02X%02X0A00"), x & 0xFF, x >> 8, y & 0xFF, y >> 8);
uint8_t colormode = 1; // "xy"
zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0300, 0x07, param);
Z_Device & device = zigbee_devices.getShortAddr(shortaddr);
device.colormode = colormode;
device.x = x;
device.y = y;
Z_Data_Light & light = zigbee_devices.getLight(shortaddr);
light.setColorMode(colormode);
light.setX(x);
light.setY(y);
}
// HueSat
@ -195,10 +201,10 @@ void ZigbeeHueHS(uint16_t shortaddr, uint16_t hue, uint8_t sat) {
snprintf_P(param, sizeof(param), PSTR("%02X%02X0000"), hue8, sat);
uint8_t colormode = 0; // "hs"
zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0300, 0x06, param);
Z_Device device = zigbee_devices.getShortAddr(shortaddr);
device.colormode = colormode;
device.sat = sat;
device.hue = hue;
Z_Data_Light & light = zigbee_devices.getLight(shortaddr);
light.setColorMode(colormode);
light.setSat(sat);
light.setHue(hue);
}
void ZigbeeHandleHue(uint16_t shortaddr, uint32_t device_id, String &response) {

View File

@ -127,7 +127,7 @@ class SBuffer hibernateDevice(const struct Z_Device &device) {
buf.add8(0x00); // end of string marker
// Zigbee Profile
buf.add8(device.zb_profile);
buf.add8(device.getLightChannels());
// update overall length
buf.set8(0, buf.len());
@ -170,7 +170,6 @@ void hydrateDevices(const SBuffer &buf) {
uint32_t k = 0;
uint32_t num_devices = buf.get8(k++);
//size_t before = 0;
for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) {
uint32_t dev_record_len = buf.get8(k);
@ -200,7 +199,6 @@ void hydrateDevices(const SBuffer &buf) {
// ignore
}
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Device 0x%04X Memory3.shrink = %d"), shortaddr, ESP_getFreeHeap());
// parse 3 strings
char empty[] = "";
@ -225,13 +223,12 @@ void hydrateDevices(const SBuffer &buf) {
// Hue bulbtype - if present
if (d < dev_record_len) {
zigbee_devices.setZbProfile(shortaddr, buf_d.get8(d));
zigbee_devices.setLightProfile(shortaddr, buf_d.get8(d));
d++;
}
// next iteration
k += dev_record_len;
//AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Device %d After Memory = %d"), i, ESP_getFreeHeap());
}
}

View File

@ -91,14 +91,20 @@ bool Z_isDiscreteDataType(uint8_t t) {
}
typedef struct Z_AttributeConverter {
uint8_t type;
uint8_t cluster_short;
uint16_t attribute;
uint16_t name_offset;
int8_t multiplier; // multiplier for numerical value, (if > 0 multiply by x, if <0 device by x)
uint8_t type;
uint8_t cluster_short;
uint16_t attribute;
uint16_t name_offset;
int8_t multiplier; // multiplier for numerical value, (if > 0 multiply by x, if <0 device by x)
uint8_t mapping; // high 4 bits = type, low 4 bits = offset in bytes from header
// still room for a byte
} Z_AttributeConverter;
// Get offset in bytes of attributes, starting after the header (skipping first 4 bytes)
#define Z_OFFSET(c,a) (offsetof(class c, a) - sizeof(Z_Data))
#define Z_CLASS(c) c // necessary to get a valid token without concatenation (which wouldn't work)
#define Z_MAPPING(c,a) (((((uint8_t)Z_CLASS(c)::type) & 0x0F) << 4) | Z_OFFSET(c,a))
// Cluster numbers are store in 8 bits format to save space,
// the following tables allows the conversion from 8 bits index Cx...
// to the 16 bits actual cluster number
@ -135,413 +141,415 @@ uint8_t ClusterToCx(uint16_t cluster) {
}
// list of post-processing directives
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winvalid-offsetof" // avoid warnings since we're using offsetof() in a risky way
const Z_AttributeConverter Z_PostProcess[] PROGMEM = {
{ Zuint8, Cx0000, 0x0000, Z_(ZCLVersion), 1 },
{ Zuint8, Cx0000, 0x0001, Z_(AppVersion), 1 },
{ Zuint8, Cx0000, 0x0002, Z_(StackVersion), 1 },
{ Zuint8, Cx0000, 0x0003, Z_(HWVersion), 1 },
{ Zstring, Cx0000, 0x0004, Z_(Manufacturer), 1 }, // record Manufacturer
{ Zstring, Cx0000, 0x0005, Z_(ModelId), 1 }, // record Model
// { Zstring, Cx0000, 0x0004, Z_(Manufacturer), 1, Z_ManufKeep }, // record Manufacturer
// { Zstring, Cx0000, 0x0005, Z_(ModelId), 1, Z_ModelKeep }, // record Model
{ Zstring, Cx0000, 0x0006, Z_(DateCode), 1 },
{ Zenum8, Cx0000, 0x0007, Z_(PowerSource), 1 },
{ Zenum8, Cx0000, 0x0008, Z_(GenericDeviceClass), 1 },
{ Zenum8, Cx0000, 0x0009, Z_(GenericDeviceType), 1 },
{ Zoctstr, Cx0000, 0x000A, Z_(ProductCode), 1 },
{ Zstring, Cx0000, 0x000B, Z_(ProductURL), 1 },
{ Zstring, Cx0000, 0x4000, Z_(SWBuildID), 1 },
// { Zunk, Cx0000, 0xFFFF, nullptr, 0 }, // Remove all other values
{ Zuint8, Cx0000, 0x0000, Z_(ZCLVersion), 1, 0 },
{ Zuint8, Cx0000, 0x0001, Z_(AppVersion), 1, 0 },
{ Zuint8, Cx0000, 0x0002, Z_(StackVersion), 1, 0 },
{ Zuint8, Cx0000, 0x0003, Z_(HWVersion), 1, 0 },
{ Zstring, Cx0000, 0x0004, Z_(Manufacturer), 1, 0 }, // record Manufacturer
{ Zstring, Cx0000, 0x0005, Z_(ModelId), 1, 0 }, // record Model
// { Zstring, Cx0000, 0x0004, Z_(Manufacturer), 1, Z_ManufKeep, 0 }, // record Manufacturer
// { Zstring, Cx0000, 0x0005, Z_(ModelId), 1, Z_ModelKeep, 0 }, // record Model
{ Zstring, Cx0000, 0x0006, Z_(DateCode), 1, 0 },
{ Zenum8, Cx0000, 0x0007, Z_(PowerSource), 1, 0 },
{ Zenum8, Cx0000, 0x0008, Z_(GenericDeviceClass), 1, 0 },
{ Zenum8, Cx0000, 0x0009, Z_(GenericDeviceType), 1, 0 },
{ Zoctstr, Cx0000, 0x000A, Z_(ProductCode), 1, 0 },
{ Zstring, Cx0000, 0x000B, Z_(ProductURL), 1, 0 },
{ Zstring, Cx0000, 0x4000, Z_(SWBuildID), 1, 0 },
// { Zunk, Cx0000, 0xFFFF, nullptr, 0, 0 }, // Remove all other values
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ Zmap8, Cx0000, 0xFF01, Z_(), 0 },
{ Zmap8, Cx0000, 0xFF02, Z_(), 0 },
// { Zmap8, Cx0000, 0xFF01, Z_(), 0, Z_AqaraSensor },
// { Zmap8, Cx0000, 0xFF02, Z_(), 0, Z_AqaraSensor2 },
{ Zmap8, Cx0000, 0xFF01, Z_(), 0, 0 },
{ Zmap8, Cx0000, 0xFF02, Z_(), 0, 0 },
// { Zmap8, Cx0000, 0xFF01, Z_(), 0, Z_AqaraSensor, 0 },
// { Zmap8, Cx0000, 0xFF02, Z_(), 0, Z_AqaraSensor2, 0 },
// Power Configuration cluster
{ Zuint16, Cx0001, 0x0000, Z_(MainsVoltage), 1 },
{ Zuint8, Cx0001, 0x0001, Z_(MainsFrequency), 1 },
{ Zuint8, Cx0001, 0x0020, Z_(BatteryVoltage), -10 }, // divide by 10
{ Zuint8, Cx0001, 0x0021, Z_(BatteryPercentage), -2 }, // divide by 2
// { Zuint8, Cx0001, 0x0021, Z_(BatteryPercentage), -2, Z_BatteryPercentage }, // divide by 2
{ Zuint16, Cx0001, 0x0000, Z_(MainsVoltage), 1, 0 },
{ Zuint8, Cx0001, 0x0001, Z_(MainsFrequency), 1, 0 },
{ Zuint8, Cx0001, 0x0020, Z_(BatteryVoltage), -10, 0 }, // divide by 10
{ Zuint8, Cx0001, 0x0021, Z_(BatteryPercentage), -2, 0 }, // divide by 2
// { Zuint8, Cx0001, 0x0021, Z_(BatteryPercentage), -2, Z_BatteryPercentage, 0 }, // divide by 2
// Device Temperature Configuration cluster
{ Zint16, Cx0002, 0x0000, Z_(CurrentTemperature), 1 },
{ Zint16, Cx0002, 0x0001, Z_(MinTempExperienced), 1 },
{ Zint16, Cx0002, 0x0002, Z_(MaxTempExperienced), 1 },
{ Zuint16, Cx0002, 0x0003, Z_(OverTempTotalDwell), 1 },
{ Zint16, Cx0002, 0x0000, Z_(CurrentTemperature), 1, 0 },
{ Zint16, Cx0002, 0x0001, Z_(MinTempExperienced), 1, 0 },
{ Zint16, Cx0002, 0x0002, Z_(MaxTempExperienced), 1, 0 },
{ Zuint16, Cx0002, 0x0003, Z_(OverTempTotalDwell), 1, 0 },
// Identify cluster
{ Zuint16, Cx0003, 0x0000, Z_(IdentifyTime), 1 },
{ Zuint16, Cx0003, 0x0000, Z_(IdentifyTime), 1, 0 },
// Groups cluster
{ Zmap8, Cx0004, 0x0000, Z_(GroupNameSupport), 1 },
{ Zmap8, Cx0004, 0x0000, Z_(GroupNameSupport), 1, 0 },
// Scenes cluster
{ Zuint8, Cx0005, 0x0000, Z_(SceneCount), 1 },
{ Zuint8, Cx0005, 0x0001, Z_(CurrentScene), 1 },
{ Zuint16, Cx0005, 0x0002, Z_(CurrentGroup), 1 },
{ Zbool, Cx0005, 0x0003, Z_(SceneValid), 1 },
//{ Zmap8, Cx0005, 0x0004, (NameSupport), 1 },
{ Zuint8, Cx0005, 0x0000, Z_(SceneCount), 1, 0 },
{ Zuint8, Cx0005, 0x0001, Z_(CurrentScene), 1, 0 },
{ Zuint16, Cx0005, 0x0002, Z_(CurrentGroup), 1, 0 },
{ Zbool, Cx0005, 0x0003, Z_(SceneValid), 1, 0 },
//{ Zmap8, Cx0005, 0x0004, (NameSupport), 1, 0 },
// On/off cluster
{ Zbool, Cx0006, 0x0000, Z_(Power), 1 },
{ Zenum8, Cx0006, 0x4003, Z_(StartUpOnOff), 1 },
{ Zbool, Cx0006, 0x8000, Z_(Power), 1 }, // See 7280
{ Zbool, Cx0006, 0x0000, Z_(Power), 1, 0 },
{ Zenum8, Cx0006, 0x4003, Z_(StartUpOnOff), 1, 0 },
{ Zbool, Cx0006, 0x8000, Z_(Power), 1, 0 }, // See 7280
// On/Off Switch Configuration cluster
{ Zenum8, Cx0007, 0x0000, Z_(SwitchType), 1 },
{ Zenum8, Cx0007, 0x0000, Z_(SwitchType), 1, 0 },
// Level Control cluster
{ Zuint8, Cx0008, 0x0000, Z_(Dimmer), 1 },
{ Zmap8, Cx0008, 0x000F, Z_(DimmerOptions), 1 },
{ Zuint16, Cx0008, 0x0001, Z_(DimmerRemainingTime), 1 },
{ Zuint16, Cx0008, 0x0010, Z_(OnOffTransitionTime), 1 },
// { Zuint8, Cx0008, 0x0011, (OnLevel), 1 },
// { Zuint16, Cx0008, 0x0012, (OnTransitionTime), 1 },
// { Zuint16, Cx0008, 0x0013, (OffTransitionTime), 1 },
// { Zuint16, Cx0008, 0x0014, (DefaultMoveRate), 1 },
{ Zuint8, Cx0008, 0x0000, Z_(Dimmer), 1, Z_MAPPING(Z_Data_Light, dimmer) },
{ Zmap8, Cx0008, 0x000F, Z_(DimmerOptions), 1, 0 },
{ Zuint16, Cx0008, 0x0001, Z_(DimmerRemainingTime), 1, 0 },
{ Zuint16, Cx0008, 0x0010, Z_(OnOffTransitionTime), 1, 0 },
// { Zuint8, Cx0008, 0x0011, (OnLevel), 1, 0 },
// { Zuint16, Cx0008, 0x0012, (OnTransitionTime), 1, 0 },
// { Zuint16, Cx0008, 0x0013, (OffTransitionTime), 1, 0 },
// { Zuint16, Cx0008, 0x0014, (DefaultMoveRate), 1, 0 },
// Alarms cluster
{ Zuint16, Cx0009, 0x0000, Z_(AlarmCount), 1 },
{ Zuint16, Cx0009, 0x0000, Z_(AlarmCount), 1, 0 },
// Time cluster
{ ZUTC, Cx000A, 0x0000, Z_(Time), 1 },
{ Zmap8, Cx000A, 0x0001, Z_(TimeStatus), 1 },
{ Zint32, Cx000A, 0x0002, Z_(TimeZone), 1 },
{ Zuint32, Cx000A, 0x0003, Z_(DstStart), 1 },
{ Zuint32, Cx000A, 0x0004, Z_(DstEnd), 1 },
{ Zint32, Cx000A, 0x0005, Z_(DstShift), 1 },
{ Zuint32, Cx000A, 0x0006, Z_(StandardTime), 1 },
{ Zuint32, Cx000A, 0x0007, Z_(LocalTime), 1 },
{ ZUTC, Cx000A, 0x0008, Z_(LastSetTime), 1 },
{ ZUTC, Cx000A, 0x0009, Z_(ValidUntilTime), 1 },
{ ZUTC, Cx000A, 0xFF00, Z_(TimeEpoch), 1 }, // Tasmota specific, epoch
{ ZUTC, Cx000A, 0x0000, Z_(Time), 1, 0 },
{ Zmap8, Cx000A, 0x0001, Z_(TimeStatus), 1, 0 },
{ Zint32, Cx000A, 0x0002, Z_(TimeZone), 1, 0 },
{ Zuint32, Cx000A, 0x0003, Z_(DstStart), 1, 0 },
{ Zuint32, Cx000A, 0x0004, Z_(DstEnd), 1, 0 },
{ Zint32, Cx000A, 0x0005, Z_(DstShift), 1, 0 },
{ Zuint32, Cx000A, 0x0006, Z_(StandardTime), 1, 0 },
{ Zuint32, Cx000A, 0x0007, Z_(LocalTime), 1, 0 },
{ ZUTC, Cx000A, 0x0008, Z_(LastSetTime), 1, 0 },
{ ZUTC, Cx000A, 0x0009, Z_(ValidUntilTime), 1, 0 },
{ ZUTC, Cx000A, 0xFF00, Z_(TimeEpoch), 1, 0 }, // Tasmota specific, epoch
// RSSI Location cluster
{ Zdata8, Cx000B, 0x0000, Z_(LocationType), 1 },
{ Zenum8, Cx000B, 0x0001, Z_(LocationMethod), 1 },
{ Zuint16, Cx000B, 0x0002, Z_(LocationAge), 1 },
{ Zuint8, Cx000B, 0x0003, Z_(QualityMeasure), 1 },
{ Zuint8, Cx000B, 0x0004, Z_(NumberOfDevices), 1 },
{ Zdata8, Cx000B, 0x0000, Z_(LocationType), 1, 0 },
{ Zenum8, Cx000B, 0x0001, Z_(LocationMethod), 1, 0 },
{ Zuint16, Cx000B, 0x0002, Z_(LocationAge), 1, 0 },
{ Zuint8, Cx000B, 0x0003, Z_(QualityMeasure), 1, 0 },
{ Zuint8, Cx000B, 0x0004, Z_(NumberOfDevices), 1, 0 },
// Analog Input cluster
// { 0xFF, Cx000C, 0x0004, (AnalogInActiveText), 1 },
{ Zstring, Cx000C, 0x001C, Z_(AnalogInDescription), 1 },
// { 0xFF, Cx000C, 0x002E, (AnalogInInactiveText), 1 },
{ Zsingle, Cx000C, 0x0041, Z_(AnalogInMaxValue), 1 },
{ Zsingle, Cx000C, 0x0045, Z_(AnalogInMinValue), 1 },
{ Zbool, Cx000C, 0x0051, Z_(AnalogInOutOfService), 1 },
{ Zsingle, Cx000C, 0x0055, Z_(AqaraRotate), 1 },
// { 0xFF, Cx000C, 0x0057, (AnalogInPriorityArray),1 },
{ Zenum8, Cx000C, 0x0067, Z_(AnalogInReliability), 1 },
// { 0xFF, Cx000C, 0x0068, (AnalogInRelinquishDefault),1 },
{ Zsingle, Cx000C, 0x006A, Z_(AnalogInResolution), 1 },
{ Zmap8, Cx000C, 0x006F, Z_(AnalogInStatusFlags), 1 },
{ Zenum16, Cx000C, 0x0075, Z_(AnalogInEngineeringUnits),1 },
{ Zuint32, Cx000C, 0x0100, Z_(AnalogInApplicationType),1 },
{ Zuint16, Cx000C, 0xFF05, Z_(Aqara_FF05), 1 },
// { 0xFF, Cx000C, 0x0004, (AnalogInActiveText), 1, 0 },
{ Zstring, Cx000C, 0x001C, Z_(AnalogInDescription), 1, 0 },
// { 0xFF, Cx000C, 0x002E, (AnalogInInactiveText), 1, 0 },
{ Zsingle, Cx000C, 0x0041, Z_(AnalogInMaxValue), 1, 0 },
{ Zsingle, Cx000C, 0x0045, Z_(AnalogInMinValue), 1, 0 },
{ Zbool, Cx000C, 0x0051, Z_(AnalogInOutOfService), 1, 0 },
{ Zsingle, Cx000C, 0x0055, Z_(AqaraRotate), 1, 0 },
// { 0xFF, Cx000C, 0x0057, (AnalogInPriorityArray),1, 0 },
{ Zenum8, Cx000C, 0x0067, Z_(AnalogInReliability), 1, 0 },
// { 0xFF, Cx000C, 0x0068, (AnalogInRelinquishDefault),1, 0 },
{ Zsingle, Cx000C, 0x006A, Z_(AnalogInResolution), 1, 0 },
{ Zmap8, Cx000C, 0x006F, Z_(AnalogInStatusFlags), 1, 0 },
{ Zenum16, Cx000C, 0x0075, Z_(AnalogInEngineeringUnits),1, 0 },
{ Zuint32, Cx000C, 0x0100, Z_(AnalogInApplicationType),1, 0 },
{ Zuint16, Cx000C, 0xFF05, Z_(Aqara_FF05), 1, 0 },
// Analog Output cluster
{ Zstring, Cx000D, 0x001C, Z_(AnalogOutDescription), 1 },
{ Zsingle, Cx000D, 0x0041, Z_(AnalogOutMaxValue), 1 },
{ Zsingle, Cx000D, 0x0045, Z_(AnalogOutMinValue), 1 },
{ Zbool, Cx000D, 0x0051, Z_(AnalogOutOutOfService),1 },
{ Zsingle, Cx000D, 0x0055, Z_(AnalogOutValue), 1 },
// { Zunk, Cx000D, 0x0057, (AnalogOutPriorityArray),1 },
{ Zenum8, Cx000D, 0x0067, Z_(AnalogOutReliability), 1 },
{ Zsingle, Cx000D, 0x0068, Z_(AnalogOutRelinquishDefault),1 },
{ Zsingle, Cx000D, 0x006A, Z_(AnalogOutResolution), 1 },
{ Zmap8, Cx000D, 0x006F, Z_(AnalogOutStatusFlags), 1 },
{ Zenum16, Cx000D, 0x0075, Z_(AnalogOutEngineeringUnits),1 },
{ Zuint32, Cx000D, 0x0100, Z_(AnalogOutApplicationType),1 },
{ Zstring, Cx000D, 0x001C, Z_(AnalogOutDescription), 1, 0 },
{ Zsingle, Cx000D, 0x0041, Z_(AnalogOutMaxValue), 1, 0 },
{ Zsingle, Cx000D, 0x0045, Z_(AnalogOutMinValue), 1, 0 },
{ Zbool, Cx000D, 0x0051, Z_(AnalogOutOutOfService),1, 0 },
{ Zsingle, Cx000D, 0x0055, Z_(AnalogOutValue), 1, 0 },
// { Zunk, Cx000D, 0x0057, (AnalogOutPriorityArray),1, 0 },
{ Zenum8, Cx000D, 0x0067, Z_(AnalogOutReliability), 1, 0 },
{ Zsingle, Cx000D, 0x0068, Z_(AnalogOutRelinquishDefault),1, 0 },
{ Zsingle, Cx000D, 0x006A, Z_(AnalogOutResolution), 1, 0 },
{ Zmap8, Cx000D, 0x006F, Z_(AnalogOutStatusFlags), 1, 0 },
{ Zenum16, Cx000D, 0x0075, Z_(AnalogOutEngineeringUnits),1, 0 },
{ Zuint32, Cx000D, 0x0100, Z_(AnalogOutApplicationType),1, 0 },
// Analog Value cluster
{ Zstring, Cx000E, 0x001C, Z_(AnalogDescription), 1 },
{ Zbool, Cx000E, 0x0051, Z_(AnalogOutOfService), 1 },
{ Zsingle, Cx000E, 0x0055, Z_(AnalogValue), 1 },
{ Zunk, Cx000E, 0x0057, Z_(AnalogPriorityArray), 1 },
{ Zenum8, Cx000E, 0x0067, Z_(AnalogReliability), 1 },
{ Zsingle, Cx000E, 0x0068, Z_(AnalogRelinquishDefault),1 },
{ Zmap8, Cx000E, 0x006F, Z_(AnalogStatusFlags), 1 },
{ Zenum16, Cx000E, 0x0075, Z_(AnalogEngineeringUnits),1 },
{ Zuint32, Cx000E, 0x0100, Z_(AnalogApplicationType),1 },
{ Zstring, Cx000E, 0x001C, Z_(AnalogDescription), 1, 0 },
{ Zbool, Cx000E, 0x0051, Z_(AnalogOutOfService), 1, 0 },
{ Zsingle, Cx000E, 0x0055, Z_(AnalogValue), 1, 0 },
{ Zunk, Cx000E, 0x0057, Z_(AnalogPriorityArray), 1, 0 },
{ Zenum8, Cx000E, 0x0067, Z_(AnalogReliability), 1, 0 },
{ Zsingle, Cx000E, 0x0068, Z_(AnalogRelinquishDefault),1, 0 },
{ Zmap8, Cx000E, 0x006F, Z_(AnalogStatusFlags), 1, 0 },
{ Zenum16, Cx000E, 0x0075, Z_(AnalogEngineeringUnits),1, 0 },
{ Zuint32, Cx000E, 0x0100, Z_(AnalogApplicationType),1, 0 },
// Binary Input cluster
{ Zstring, Cx000F, 0x0004, Z_(BinaryInActiveText), 1 },
{ Zstring, Cx000F, 0x001C, Z_(BinaryInDescription), 1 },
{ Zstring, Cx000F, 0x002E, Z_(BinaryInInactiveText),1 },
{ Zbool, Cx000F, 0x0051, Z_(BinaryInOutOfService),1 },
{ Zenum8, Cx000F, 0x0054, Z_(BinaryInPolarity), 1 },
{ Zstring, Cx000F, 0x0055, Z_(BinaryInValue), 1 },
// { 0xFF, Cx000F, 0x0057, (BinaryInPriorityArray),1 },
{ Zenum8, Cx000F, 0x0067, Z_(BinaryInReliability), 1 },
{ Zmap8, Cx000F, 0x006F, Z_(BinaryInStatusFlags), 1 },
{ Zuint32, Cx000F, 0x0100, Z_(BinaryInApplicationType),1 },
{ Zstring, Cx000F, 0x0004, Z_(BinaryInActiveText), 1, 0 },
{ Zstring, Cx000F, 0x001C, Z_(BinaryInDescription), 1, 0 },
{ Zstring, Cx000F, 0x002E, Z_(BinaryInInactiveText),1, 0 },
{ Zbool, Cx000F, 0x0051, Z_(BinaryInOutOfService),1, 0 },
{ Zenum8, Cx000F, 0x0054, Z_(BinaryInPolarity), 1, 0 },
{ Zstring, Cx000F, 0x0055, Z_(BinaryInValue), 1, 0 },
// { 0xFF, Cx000F, 0x0057, (BinaryInPriorityArray),1, 0 },
{ Zenum8, Cx000F, 0x0067, Z_(BinaryInReliability), 1, 0 },
{ Zmap8, Cx000F, 0x006F, Z_(BinaryInStatusFlags), 1, 0 },
{ Zuint32, Cx000F, 0x0100, Z_(BinaryInApplicationType),1, 0 },
// Binary Output cluster
{ Zstring, Cx0010, 0x0004, Z_(BinaryOutActiveText), 1 },
{ Zstring, Cx0010, 0x001C, Z_(BinaryOutDescription), 1 },
{ Zstring, Cx0010, 0x002E, Z_(BinaryOutInactiveText),1 },
{ Zuint32, Cx0010, 0x0042, Z_(BinaryOutMinimumOffTime),1 },
{ Zuint32, Cx0010, 0x0043, Z_(BinaryOutMinimumOnTime),1 },
{ Zbool, Cx0010, 0x0051, Z_(BinaryOutOutOfService),1 },
{ Zenum8, Cx0010, 0x0054, Z_(BinaryOutPolarity), 1 },
{ Zbool, Cx0010, 0x0055, Z_(BinaryOutValue), 1 },
// { Zunk, Cx0010, 0x0057, (BinaryOutPriorityArray),1 },
{ Zenum8, Cx0010, 0x0067, Z_(BinaryOutReliability), 1 },
{ Zbool, Cx0010, 0x0068, Z_(BinaryOutRelinquishDefault),1 },
{ Zmap8, Cx0010, 0x006F, Z_(BinaryOutStatusFlags), 1 },
{ Zuint32, Cx0010, 0x0100, Z_(BinaryOutApplicationType),1 },
{ Zstring, Cx0010, 0x0004, Z_(BinaryOutActiveText), 1, 0 },
{ Zstring, Cx0010, 0x001C, Z_(BinaryOutDescription), 1, 0 },
{ Zstring, Cx0010, 0x002E, Z_(BinaryOutInactiveText),1, 0 },
{ Zuint32, Cx0010, 0x0042, Z_(BinaryOutMinimumOffTime),1, 0 },
{ Zuint32, Cx0010, 0x0043, Z_(BinaryOutMinimumOnTime),1, 0 },
{ Zbool, Cx0010, 0x0051, Z_(BinaryOutOutOfService),1, 0 },
{ Zenum8, Cx0010, 0x0054, Z_(BinaryOutPolarity), 1, 0 },
{ Zbool, Cx0010, 0x0055, Z_(BinaryOutValue), 1, 0 },
// { Zunk, Cx0010, 0x0057, (BinaryOutPriorityArray),1, 0 },
{ Zenum8, Cx0010, 0x0067, Z_(BinaryOutReliability), 1, 0 },
{ Zbool, Cx0010, 0x0068, Z_(BinaryOutRelinquishDefault),1, 0 },
{ Zmap8, Cx0010, 0x006F, Z_(BinaryOutStatusFlags), 1, 0 },
{ Zuint32, Cx0010, 0x0100, Z_(BinaryOutApplicationType),1, 0 },
// Binary Value cluster
{ Zstring, Cx0011, 0x0004, Z_(BinaryActiveText), 1 },
{ Zstring, Cx0011, 0x001C, Z_(BinaryDescription), 1 },
{ Zstring, Cx0011, 0x002E, Z_(BinaryInactiveText), 1 },
{ Zuint32, Cx0011, 0x0042, Z_(BinaryMinimumOffTime), 1 },
{ Zuint32, Cx0011, 0x0043, Z_(BinaryMinimumOnTime), 1 },
{ Zbool, Cx0011, 0x0051, Z_(BinaryOutOfService), 1 },
{ Zbool, Cx0011, 0x0055, Z_(BinaryValue), 1 },
// { Zunk, Cx0011, 0x0057, (BinaryPriorityArray), 1 },
{ Zenum8, Cx0011, 0x0067, Z_(BinaryReliability), 1 },
{ Zbool, Cx0011, 0x0068, Z_(BinaryRelinquishDefault),1 },
{ Zmap8, Cx0011, 0x006F, Z_(BinaryStatusFlags), 1 },
{ Zuint32, Cx0011, 0x0100, Z_(BinaryApplicationType),1 },
{ Zstring, Cx0011, 0x0004, Z_(BinaryActiveText), 1, 0 },
{ Zstring, Cx0011, 0x001C, Z_(BinaryDescription), 1, 0 },
{ Zstring, Cx0011, 0x002E, Z_(BinaryInactiveText), 1, 0 },
{ Zuint32, Cx0011, 0x0042, Z_(BinaryMinimumOffTime), 1, 0 },
{ Zuint32, Cx0011, 0x0043, Z_(BinaryMinimumOnTime), 1, 0 },
{ Zbool, Cx0011, 0x0051, Z_(BinaryOutOfService), 1, 0 },
{ Zbool, Cx0011, 0x0055, Z_(BinaryValue), 1, 0 },
// { Zunk, Cx0011, 0x0057, (BinaryPriorityArray), 1, 0 },
{ Zenum8, Cx0011, 0x0067, Z_(BinaryReliability), 1, 0 },
{ Zbool, Cx0011, 0x0068, Z_(BinaryRelinquishDefault),1, 0 },
{ Zmap8, Cx0011, 0x006F, Z_(BinaryStatusFlags), 1, 0 },
{ Zuint32, Cx0011, 0x0100, Z_(BinaryApplicationType),1, 0 },
// Multistate Input cluster
// { Zunk, Cx0012, 0x000E, (MultiInStateText), 1 },
{ Zstring, Cx0012, 0x001C, Z_(MultiInDescription), 1 },
{ Zuint16, Cx0012, 0x004A, Z_(MultiInNumberOfStates),1 },
{ Zbool, Cx0012, 0x0051, Z_(MultiInOutOfService), 1 },
{ Zuint16, Cx0012, 0x0055, Z_(MultiInValue), 1 },
// { Zuint16, Cx0012, 0x0055, Z_(MultiInValue), 0, Z_AqaraCube },
// { Zuint16, Cx0012, 0x0055, Z_(MultiInValue), 0, Z_AqaraButton },
{ Zenum8, Cx0012, 0x0067, Z_(MultiInReliability), 1 },
{ Zmap8, Cx0012, 0x006F, Z_(MultiInStatusFlags), 1 },
{ Zuint32, Cx0012, 0x0100, Z_(MultiInApplicationType),1 },
// { Zunk, Cx0012, 0x000E, (MultiInStateText), 1, 0 },
{ Zstring, Cx0012, 0x001C, Z_(MultiInDescription), 1, 0 },
{ Zuint16, Cx0012, 0x004A, Z_(MultiInNumberOfStates),1, 0 },
{ Zbool, Cx0012, 0x0051, Z_(MultiInOutOfService), 1, 0 },
{ Zuint16, Cx0012, 0x0055, Z_(MultiInValue), 1, 0 },
// { Zuint16, Cx0012, 0x0055, Z_(MultiInValue), 0, Z_AqaraCube, 0 },
// { Zuint16, Cx0012, 0x0055, Z_(MultiInValue), 0, Z_AqaraButton, 0 },
{ Zenum8, Cx0012, 0x0067, Z_(MultiInReliability), 1, 0 },
{ Zmap8, Cx0012, 0x006F, Z_(MultiInStatusFlags), 1, 0 },
{ Zuint32, Cx0012, 0x0100, Z_(MultiInApplicationType),1, 0 },
// Multistate output
// { Zunk, Cx0013, 0x000E, (MultiOutStateText), 1 },
{ Zstring, Cx0013, 0x001C, Z_(MultiOutDescription), 1 },
{ Zuint16, Cx0013, 0x004A, Z_(MultiOutNumberOfStates),1 },
{ Zbool, Cx0013, 0x0051, Z_(MultiOutOutOfService), 1 },
{ Zuint16, Cx0013, 0x0055, Z_(MultiOutValue), 1 },
// { Zunk, Cx0013, 0x0057, (MultiOutPriorityArray),1 },
{ Zenum8, Cx0013, 0x0067, Z_(MultiOutReliability), 1 },
{ Zuint16, Cx0013, 0x0068, Z_(MultiOutRelinquishDefault),1 },
{ Zmap8, Cx0013, 0x006F, Z_(MultiOutStatusFlags), 1 },
{ Zuint32, Cx0013, 0x0100, Z_(MultiOutApplicationType),1 },
// { Zunk, Cx0013, 0x000E, (MultiOutStateText), 1, 0 },
{ Zstring, Cx0013, 0x001C, Z_(MultiOutDescription), 1, 0 },
{ Zuint16, Cx0013, 0x004A, Z_(MultiOutNumberOfStates),1, 0 },
{ Zbool, Cx0013, 0x0051, Z_(MultiOutOutOfService), 1, 0 },
{ Zuint16, Cx0013, 0x0055, Z_(MultiOutValue), 1, 0 },
// { Zunk, Cx0013, 0x0057, (MultiOutPriorityArray),1, 0 },
{ Zenum8, Cx0013, 0x0067, Z_(MultiOutReliability), 1, 0 },
{ Zuint16, Cx0013, 0x0068, Z_(MultiOutRelinquishDefault),1, 0 },
{ Zmap8, Cx0013, 0x006F, Z_(MultiOutStatusFlags), 1, 0 },
{ Zuint32, Cx0013, 0x0100, Z_(MultiOutApplicationType),1, 0 },
// Multistate Value cluster
// { Zunk, Cx0014, 0x000E, (MultiStateText), 1 },
{ Zstring, Cx0014, 0x001C, Z_(MultiDescription), 1 },
{ Zuint16, Cx0014, 0x004A, Z_(MultiNumberOfStates), 1 },
{ Zbool, Cx0014, 0x0051, Z_(MultiOutOfService), 1 },
{ Zuint16, Cx0014, 0x0055, Z_(MultiValue), 1 },
{ Zenum8, Cx0014, 0x0067, Z_(MultiReliability), 1 },
{ Zuint16, Cx0014, 0x0068, Z_(MultiRelinquishDefault),1 },
{ Zmap8, Cx0014, 0x006F, Z_(MultiStatusFlags), 1 },
{ Zuint32, Cx0014, 0x0100, Z_(MultiApplicationType), 1 },
// { Zunk, Cx0014, 0x000E, (MultiStateText), 1, 0 },
{ Zstring, Cx0014, 0x001C, Z_(MultiDescription), 1, 0 },
{ Zuint16, Cx0014, 0x004A, Z_(MultiNumberOfStates), 1, 0 },
{ Zbool, Cx0014, 0x0051, Z_(MultiOutOfService), 1, 0 },
{ Zuint16, Cx0014, 0x0055, Z_(MultiValue), 1, 0 },
{ Zenum8, Cx0014, 0x0067, Z_(MultiReliability), 1, 0 },
{ Zuint16, Cx0014, 0x0068, Z_(MultiRelinquishDefault),1, 0 },
{ Zmap8, Cx0014, 0x006F, Z_(MultiStatusFlags), 1, 0 },
{ Zuint32, Cx0014, 0x0100, Z_(MultiApplicationType), 1, 0 },
// Power Profile cluster
{ Zuint8, Cx001A, 0x0000, Z_(TotalProfileNum), 1 },
{ Zbool, Cx001A, 0x0001, Z_(MultipleScheduling), 1 },
{ Zmap8, Cx001A, 0x0002, Z_(EnergyFormatting), 1 },
{ Zbool, Cx001A, 0x0003, Z_(EnergyRemote), 1 },
{ Zmap8, Cx001A, 0x0004, Z_(ScheduleMode), 1 },
{ Zuint8, Cx001A, 0x0000, Z_(TotalProfileNum), 1, 0 },
{ Zbool, Cx001A, 0x0001, Z_(MultipleScheduling), 1, 0 },
{ Zmap8, Cx001A, 0x0002, Z_(EnergyFormatting), 1, 0 },
{ Zbool, Cx001A, 0x0003, Z_(EnergyRemote), 1, 0 },
{ Zmap8, Cx001A, 0x0004, Z_(ScheduleMode), 1, 0 },
// Poll Control cluster
{ Zuint32, Cx0020, 0x0000, Z_(CheckinInterval), 1 },
{ Zuint32, Cx0020, 0x0001, Z_(LongPollInterval), 1 },
{ Zuint16, Cx0020, 0x0002, Z_(ShortPollInterval), 1 },
{ Zuint16, Cx0020, 0x0003, Z_(FastPollTimeout), 1 },
{ Zuint32, Cx0020, 0x0004, Z_(CheckinIntervalMin), 1 },
{ Zuint32, Cx0020, 0x0005, Z_(LongPollIntervalMin), 1 },
{ Zuint16, Cx0020, 0x0006, Z_(FastPollTimeoutMax), 1 },
{ Zuint32, Cx0020, 0x0000, Z_(CheckinInterval), 1, 0 },
{ Zuint32, Cx0020, 0x0001, Z_(LongPollInterval), 1, 0 },
{ Zuint16, Cx0020, 0x0002, Z_(ShortPollInterval), 1, 0 },
{ Zuint16, Cx0020, 0x0003, Z_(FastPollTimeout), 1, 0 },
{ Zuint32, Cx0020, 0x0004, Z_(CheckinIntervalMin), 1, 0 },
{ Zuint32, Cx0020, 0x0005, Z_(LongPollIntervalMin), 1, 0 },
{ Zuint16, Cx0020, 0x0006, Z_(FastPollTimeoutMax), 1, 0 },
// Shade Configuration cluster
{ Zuint16, Cx0100, 0x0000, Z_(PhysicalClosedLimit), 1 },
{ Zuint8, Cx0100, 0x0001, Z_(MotorStepSize), 1 },
{ Zmap8, Cx0100, 0x0002, Z_(Status), 1 },
{ Zuint16, Cx0100, 0x0010, Z_(ClosedLimit), 1 },
{ Zenum8, Cx0100, 0x0011, Z_(Mode), 1 },
{ Zuint16, Cx0100, 0x0000, Z_(PhysicalClosedLimit), 1, 0 },
{ Zuint8, Cx0100, 0x0001, Z_(MotorStepSize), 1, 0 },
{ Zmap8, Cx0100, 0x0002, Z_(Status), 1, 0 },
{ Zuint16, Cx0100, 0x0010, Z_(ClosedLimit), 1, 0 },
{ Zenum8, Cx0100, 0x0011, Z_(Mode), 1, 0 },
// Door Lock cluster
{ Zenum8, Cx0101, 0x0000, Z_(LockState), 1 },
{ Zenum8, Cx0101, 0x0001, Z_(LockType), 1 },
{ Zbool, Cx0101, 0x0002, Z_(ActuatorEnabled), 1 },
{ Zenum8, Cx0101, 0x0003, Z_(DoorState), 1 },
{ Zuint32, Cx0101, 0x0004, Z_(DoorOpenEvents), 1 },
{ Zuint32, Cx0101, 0x0005, Z_(DoorClosedEvents), 1 },
{ Zuint16, Cx0101, 0x0006, Z_(OpenPeriod), 1 },
{ Zenum8, Cx0101, 0x0000, Z_(LockState), 1, 0 },
{ Zenum8, Cx0101, 0x0001, Z_(LockType), 1, 0 },
{ Zbool, Cx0101, 0x0002, Z_(ActuatorEnabled), 1, 0 },
{ Zenum8, Cx0101, 0x0003, Z_(DoorState), 1, 0 },
{ Zuint32, Cx0101, 0x0004, Z_(DoorOpenEvents), 1, 0 },
{ Zuint32, Cx0101, 0x0005, Z_(DoorClosedEvents), 1, 0 },
{ Zuint16, Cx0101, 0x0006, Z_(OpenPeriod), 1, 0 },
// Aqara Lumi Vibration Sensor
{ Zuint16, Cx0101, 0x0055, Z_(AqaraVibrationMode), 1 },
{ Zuint16, Cx0101, 0x0503, Z_(AqaraVibrationsOrAngle), 1 },
{ Zuint32, Cx0101, 0x0505, Z_(AqaraVibration505), 1 },
{ Zuint48, Cx0101, 0x0508, Z_(AqaraAccelerometer), 1 },
{ Zuint16, Cx0101, 0x0055, Z_(AqaraVibrationMode), 1, 0 },
{ Zuint16, Cx0101, 0x0503, Z_(AqaraVibrationsOrAngle), 1, 0 },
{ Zuint32, Cx0101, 0x0505, Z_(AqaraVibration505), 1, 0 },
{ Zuint48, Cx0101, 0x0508, Z_(AqaraAccelerometer), 1, 0 },
// Window Covering cluster
{ Zenum8, Cx0102, 0x0000, Z_(WindowCoveringType), 1 },
{ Zuint16, Cx0102, 0x0001, Z_(PhysicalClosedLimitLift),1 },
{ Zuint16, Cx0102, 0x0002, Z_(PhysicalClosedLimitTilt),1 },
{ Zuint16, Cx0102, 0x0003, Z_(CurrentPositionLift), 1 },
{ Zuint16, Cx0102, 0x0004, Z_(CurrentPositionTilt), 1 },
{ Zuint16, Cx0102, 0x0005, Z_(NumberofActuationsLift),1 },
{ Zuint16, Cx0102, 0x0006, Z_(NumberofActuationsTilt),1 },
{ Zmap8, Cx0102, 0x0007, Z_(ConfigStatus), 1 },
{ Zuint8, Cx0102, 0x0008, Z_(CurrentPositionLiftPercentage),1 },
{ Zuint8, Cx0102, 0x0009, Z_(CurrentPositionTiltPercentage),1 },
{ Zuint16, Cx0102, 0x0010, Z_(InstalledOpenLimitLift),1 },
{ Zuint16, Cx0102, 0x0011, Z_(InstalledClosedLimitLift),1 },
{ Zuint16, Cx0102, 0x0012, Z_(InstalledOpenLimitTilt),1 },
{ Zuint16, Cx0102, 0x0013, Z_(InstalledClosedLimitTilt),1 },
{ Zuint16, Cx0102, 0x0014, Z_(VelocityLift), 1 },
{ Zuint16, Cx0102, 0x0015, Z_(AccelerationTimeLift),1 },
{ Zuint16, Cx0102, 0x0016, Z_(DecelerationTimeLift), 1 },
{ Zmap8, Cx0102, 0x0017, Z_(Mode), 1 },
{ Zoctstr, Cx0102, 0x0018, Z_(IntermediateSetpointsLift),1 },
{ Zoctstr, Cx0102, 0x0019, Z_(IntermediateSetpointsTilt),1 },
{ Zenum8, Cx0102, 0x0000, Z_(WindowCoveringType), 1, 0 },
{ Zuint16, Cx0102, 0x0001, Z_(PhysicalClosedLimitLift),1, 0 },
{ Zuint16, Cx0102, 0x0002, Z_(PhysicalClosedLimitTilt),1, 0 },
{ Zuint16, Cx0102, 0x0003, Z_(CurrentPositionLift), 1, 0 },
{ Zuint16, Cx0102, 0x0004, Z_(CurrentPositionTilt), 1, 0 },
{ Zuint16, Cx0102, 0x0005, Z_(NumberofActuationsLift),1, 0 },
{ Zuint16, Cx0102, 0x0006, Z_(NumberofActuationsTilt),1, 0 },
{ Zmap8, Cx0102, 0x0007, Z_(ConfigStatus), 1, 0 },
{ Zuint8, Cx0102, 0x0008, Z_(CurrentPositionLiftPercentage),1, 0 },
{ Zuint8, Cx0102, 0x0009, Z_(CurrentPositionTiltPercentage),1, 0 },
{ Zuint16, Cx0102, 0x0010, Z_(InstalledOpenLimitLift),1, 0 },
{ Zuint16, Cx0102, 0x0011, Z_(InstalledClosedLimitLift),1, 0 },
{ Zuint16, Cx0102, 0x0012, Z_(InstalledOpenLimitTilt),1, 0 },
{ Zuint16, Cx0102, 0x0013, Z_(InstalledClosedLimitTilt),1, 0 },
{ Zuint16, Cx0102, 0x0014, Z_(VelocityLift), 1, 0 },
{ Zuint16, Cx0102, 0x0015, Z_(AccelerationTimeLift),1, 0 },
{ Zuint16, Cx0102, 0x0016, Z_(DecelerationTimeLift), 1, 0 },
{ Zmap8, Cx0102, 0x0017, Z_(Mode), 1, 0 },
{ Zoctstr, Cx0102, 0x0018, Z_(IntermediateSetpointsLift),1, 0 },
{ Zoctstr, Cx0102, 0x0019, Z_(IntermediateSetpointsTilt),1, 0 },
// Thermostat
{ Zint16, Cx0201, 0x0000, Z_(LocalTemperature), -100 },
{ Zint16, Cx0201, 0x0001, Z_(OutdoorTemperature),-100 },
{ Zuint8, Cx0201, 0x0007, Z_(PICoolingDemand), 1 },
{ Zuint8, Cx0201, 0x0008, Z_(PIHeatingDemand), 1 },
{ Zint8, Cx0201, 0x0010, Z_(LocalTemperatureCalibration), -10 },
{ Zint16, Cx0201, 0x0011, Z_(OccupiedCoolingSetpoint), -100 },
{ Zint16, Cx0201, 0x0012, Z_(OccupiedHeatingSetpoint), -100 },
{ Zint16, Cx0201, 0x0013, Z_(UnoccupiedCoolingSetpoint), -100 },
{ Zint16, Cx0201, 0x0014, Z_(UnoccupiedHeatingSetpoint), -100 },
{ Zmap8, Cx0201, 0x001A, Z_(RemoteSensing), 1 },
{ Zenum8, Cx0201, 0x001B, Z_(ControlSequenceOfOperation), 1 },
{ Zenum8, Cx0201, 0x001C, Z_(SystemMode), 1 },
{ Zint16, Cx0201, 0x0000, Z_(LocalTemperature), -100, Z_MAPPING(Z_Data_Thermo, temperature) },
{ Zint16, Cx0201, 0x0001, Z_(OutdoorTemperature),-100, 0 },
{ Zuint8, Cx0201, 0x0007, Z_(PICoolingDemand), 1, Z_MAPPING(Z_Data_Thermo, th_setpoint) },
{ Zuint8, Cx0201, 0x0008, Z_(PIHeatingDemand), 1, Z_MAPPING(Z_Data_Thermo, th_setpoint) },
{ Zint8, Cx0201, 0x0010, Z_(LocalTemperatureCalibration), -10, 0 },
{ Zint16, Cx0201, 0x0011, Z_(OccupiedCoolingSetpoint), -100, Z_MAPPING(Z_Data_Thermo, temperature_target) },
{ Zint16, Cx0201, 0x0012, Z_(OccupiedHeatingSetpoint), -100, Z_MAPPING(Z_Data_Thermo, temperature_target) },
{ Zint16, Cx0201, 0x0013, Z_(UnoccupiedCoolingSetpoint), -100, 0 },
{ Zint16, Cx0201, 0x0014, Z_(UnoccupiedHeatingSetpoint), -100, 0 },
{ Zmap8, Cx0201, 0x001A, Z_(RemoteSensing), 1, 0 },
{ Zenum8, Cx0201, 0x001B, Z_(ControlSequenceOfOperation), 1, 0 },
{ Zenum8, Cx0201, 0x001C, Z_(SystemMode), 1, 0 },
// below is Eurotronic specific
{ Zenum8, Cx0201, 0x4000, Z_(TRVMode), 1 },
{ Zuint8, Cx0201, 0x4001, Z_(SetValvePosition), 1 },
{ Zuint8, Cx0201, 0x4002, Z_(EurotronicErrors), 1 },
{ Zint16, Cx0201, 0x4003, Z_(CurrentTemperatureSetPoint), -100 },
{ Zenum8, Cx0201, 0x4000, Z_(TRVMode), 1, 0 },
{ Zuint8, Cx0201, 0x4001, Z_(SetValvePosition), 1, 0 },
{ Zuint8, Cx0201, 0x4002, Z_(EurotronicErrors), 1, 0 },
{ Zint16, Cx0201, 0x4003, Z_(CurrentTemperatureSetPoint), -100, 0 },
// Color Control cluster
{ Zuint8, Cx0300, 0x0000, Z_(Hue), 1 },
{ Zuint8, Cx0300, 0x0001, Z_(Sat), 1 },
{ Zuint16, Cx0300, 0x0002, Z_(RemainingTime), 1 },
{ Zuint16, Cx0300, 0x0003, Z_(X), 1 },
{ Zuint16, Cx0300, 0x0004, Z_(Y), 1 },
{ Zenum8, Cx0300, 0x0005, Z_(DriftCompensation), 1 },
{ Zstring, Cx0300, 0x0006, Z_(CompensationText), 1 },
{ Zuint16, Cx0300, 0x0007, Z_(CT), 1 },
{ Zenum8, Cx0300, 0x0008, Z_(ColorMode), 1 },
{ Zuint8, Cx0300, 0x0010, Z_(NumberOfPrimaries), 1 },
{ Zuint16, Cx0300, 0x0011, Z_(Primary1X), 1 },
{ Zuint16, Cx0300, 0x0012, Z_(Primary1Y), 1 },
{ Zuint8, Cx0300, 0x0013, Z_(Primary1Intensity), 1 },
{ Zuint16, Cx0300, 0x0015, Z_(Primary2X), 1 },
{ Zuint16, Cx0300, 0x0016, Z_(Primary2Y), 1 },
{ Zuint8, Cx0300, 0x0017, Z_(Primary2Intensity), 1 },
{ Zuint16, Cx0300, 0x0019, Z_(Primary3X), 1 },
{ Zuint16, Cx0300, 0x001A, Z_(Primary3Y), 1 },
{ Zuint8, Cx0300, 0x001B, Z_(Primary3Intensity), 1 },
{ Zuint16, Cx0300, 0x0030, Z_(WhitePointX), 1 },
{ Zuint16, Cx0300, 0x0031, Z_(WhitePointY), 1 },
{ Zuint16, Cx0300, 0x0032, Z_(ColorPointRX), 1 },
{ Zuint16, Cx0300, 0x0033, Z_(ColorPointRY), 1 },
{ Zuint8, Cx0300, 0x0034, Z_(ColorPointRIntensity), 1 },
{ Zuint16, Cx0300, 0x0036, Z_(ColorPointGX), 1 },
{ Zuint16, Cx0300, 0x0037, Z_(ColorPointGY), 1 },
{ Zuint8, Cx0300, 0x0038, Z_(ColorPointGIntensity), 1 },
{ Zuint16, Cx0300, 0x003A, Z_(ColorPointBX), 1 },
{ Zuint16, Cx0300, 0x003B, Z_(ColorPointBY), 1 },
{ Zuint8, Cx0300, 0x003C, Z_(ColorPointBIntensity), 1 },
{ Zuint8, Cx0300, 0x0000, Z_(Hue), 1, Z_MAPPING(Z_Data_Light, hue) },
{ Zuint8, Cx0300, 0x0001, Z_(Sat), 1, Z_MAPPING(Z_Data_Light, sat) },
{ Zuint16, Cx0300, 0x0002, Z_(RemainingTime), 1, 0 },
{ Zuint16, Cx0300, 0x0003, Z_(X), 1, Z_MAPPING(Z_Data_Light, x) },
{ Zuint16, Cx0300, 0x0004, Z_(Y), 1, Z_MAPPING(Z_Data_Light, y) },
{ Zenum8, Cx0300, 0x0005, Z_(DriftCompensation), 1, 0 },
{ Zstring, Cx0300, 0x0006, Z_(CompensationText), 1, 0 },
{ Zuint16, Cx0300, 0x0007, Z_(CT), 1, Z_MAPPING(Z_Data_Light, ct) },
{ Zenum8, Cx0300, 0x0008, Z_(ColorMode), 1, Z_MAPPING(Z_Data_Light, colormode) },
{ Zuint8, Cx0300, 0x0010, Z_(NumberOfPrimaries), 1, 0 },
{ Zuint16, Cx0300, 0x0011, Z_(Primary1X), 1, 0 },
{ Zuint16, Cx0300, 0x0012, Z_(Primary1Y), 1, 0 },
{ Zuint8, Cx0300, 0x0013, Z_(Primary1Intensity), 1, 0 },
{ Zuint16, Cx0300, 0x0015, Z_(Primary2X), 1, 0 },
{ Zuint16, Cx0300, 0x0016, Z_(Primary2Y), 1, 0 },
{ Zuint8, Cx0300, 0x0017, Z_(Primary2Intensity), 1, 0 },
{ Zuint16, Cx0300, 0x0019, Z_(Primary3X), 1, 0 },
{ Zuint16, Cx0300, 0x001A, Z_(Primary3Y), 1, 0 },
{ Zuint8, Cx0300, 0x001B, Z_(Primary3Intensity), 1, 0 },
{ Zuint16, Cx0300, 0x0030, Z_(WhitePointX), 1, 0 },
{ Zuint16, Cx0300, 0x0031, Z_(WhitePointY), 1, 0 },
{ Zuint16, Cx0300, 0x0032, Z_(ColorPointRX), 1, 0 },
{ Zuint16, Cx0300, 0x0033, Z_(ColorPointRY), 1, 0 },
{ Zuint8, Cx0300, 0x0034, Z_(ColorPointRIntensity), 1, 0 },
{ Zuint16, Cx0300, 0x0036, Z_(ColorPointGX), 1, 0 },
{ Zuint16, Cx0300, 0x0037, Z_(ColorPointGY), 1, 0 },
{ Zuint8, Cx0300, 0x0038, Z_(ColorPointGIntensity), 1, 0 },
{ Zuint16, Cx0300, 0x003A, Z_(ColorPointBX), 1, 0 },
{ Zuint16, Cx0300, 0x003B, Z_(ColorPointBY), 1, 0 },
{ Zuint8, Cx0300, 0x003C, Z_(ColorPointBIntensity), 1, 0 },
// Illuminance Measurement cluster
{ Zuint16, Cx0400, 0x0000, Z_(Illuminance), 1 }, // Illuminance (in Lux)
{ Zuint16, Cx0400, 0x0001, Z_(IlluminanceMinMeasuredValue), 1 }, //
{ Zuint16, Cx0400, 0x0002, Z_(IlluminanceMaxMeasuredValue), 1 }, //
{ Zuint16, Cx0400, 0x0003, Z_(IlluminanceTolerance), 1 }, //
{ Zenum8, Cx0400, 0x0004, Z_(IlluminanceLightSensorType), 1 }, //
{ Zunk, Cx0400, 0xFFFF, Z_(), 0 }, // Remove all other values
{ Zuint16, Cx0400, 0x0000, Z_(Illuminance), 1, 0 }, // Illuminance (in Lux)
{ Zuint16, Cx0400, 0x0001, Z_(IlluminanceMinMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0400, 0x0002, Z_(IlluminanceMaxMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0400, 0x0003, Z_(IlluminanceTolerance), 1, 0 }, //
{ Zenum8, Cx0400, 0x0004, Z_(IlluminanceLightSensorType), 1, 0 }, //
{ Zunk, Cx0400, 0xFFFF, Z_(), 0, 0 }, // Remove all other values
// Illuminance Level Sensing cluster
{ Zenum8, Cx0401, 0x0000, Z_(IlluminanceLevelStatus), 1 }, // Illuminance (in Lux)
{ Zenum8, Cx0401, 0x0001, Z_(IlluminanceLightSensorType), 1 }, // LightSensorType
{ Zuint16, Cx0401, 0x0010, Z_(IlluminanceTargetLevel), 1 }, //
{ Zunk, Cx0401, 0xFFFF, Z_(), 0 }, // Remove all other values
{ Zenum8, Cx0401, 0x0000, Z_(IlluminanceLevelStatus), 1, 0 }, // Illuminance (in Lux)
{ Zenum8, Cx0401, 0x0001, Z_(IlluminanceLightSensorType), 1, 0 }, // LightSensorType
{ Zuint16, Cx0401, 0x0010, Z_(IlluminanceTargetLevel), 1, 0 }, //
{ Zunk, Cx0401, 0xFFFF, Z_(), 0, 0 }, // Remove all other values
// Temperature Measurement cluster
{ Zint16, Cx0402, 0x0000, Z_(Temperature), -100 }, // divide by 100
{ Zint16, Cx0402, 0x0001, Z_(TemperatureMinMeasuredValue), -100 }, //
{ Zint16, Cx0402, 0x0002, Z_(TemperatureMaxMeasuredValue), -100 }, //
{ Zuint16, Cx0402, 0x0003, Z_(TemperatureTolerance), -100 }, //
{ Zunk, Cx0402, 0xFFFF, Z_(), 0 }, // Remove all other values
{ Zint16, Cx0402, 0x0000, Z_(Temperature), -100, Z_MAPPING(Z_Data_Thermo, temperature) },
{ Zint16, Cx0402, 0x0001, Z_(TemperatureMinMeasuredValue), -100, 0 }, //
{ Zint16, Cx0402, 0x0002, Z_(TemperatureMaxMeasuredValue), -100, 0 }, //
{ Zuint16, Cx0402, 0x0003, Z_(TemperatureTolerance), -100, 0 }, //
{ Zunk, Cx0402, 0xFFFF, Z_(), 0, 0 }, // Remove all other values
// Pressure Measurement cluster
{ Zint16, Cx0403, 0x0000, Z_(Pressure), 1 }, // Pressure
{ Zint16, Cx0403, 0x0001, Z_(PressureMinMeasuredValue), 1 }, //
{ Zint16, Cx0403, 0x0002, Z_(PressureMaxMeasuredValue), 1 }, //
{ Zuint16, Cx0403, 0x0003, Z_(PressureTolerance), 1 }, //
{ Zint16, Cx0403, 0x0010, Z_(PressureScaledValue), 1 }, //
{ Zint16, Cx0403, 0x0011, Z_(PressureMinScaledValue), 1 }, //
{ Zint16, Cx0403, 0x0012, Z_(PressureMaxScaledValue), 1 }, //
{ Zuint16, Cx0403, 0x0013, Z_(PressureScaledTolerance), 1 }, //
{ Zint8, Cx0403, 0x0014, Z_(PressureScale), 1 }, //
{ Zint16, Cx0403, 0xFF00, Z_(SeaPressure), 1 }, // Pressure at Sea Level, Tasmota specific
{ Zunk, Cx0403, 0xFFFF, Z_(), 0 }, // Remove all other Pressure values
{ Zint16, Cx0403, 0x0000, Z_(Pressure), 1, Z_MAPPING(Z_Data_Thermo, pressure) }, // Pressure
{ Zint16, Cx0403, 0x0001, Z_(PressureMinMeasuredValue), 1, 0 }, //
{ Zint16, Cx0403, 0x0002, Z_(PressureMaxMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0403, 0x0003, Z_(PressureTolerance), 1, 0 }, //
{ Zint16, Cx0403, 0x0010, Z_(PressureScaledValue), 1, 0 }, //
{ Zint16, Cx0403, 0x0011, Z_(PressureMinScaledValue), 1, 0 }, //
{ Zint16, Cx0403, 0x0012, Z_(PressureMaxScaledValue), 1, 0 }, //
{ Zuint16, Cx0403, 0x0013, Z_(PressureScaledTolerance), 1, 0 }, //
{ Zint8, Cx0403, 0x0014, Z_(PressureScale), 1, 0 }, //
{ Zint16, Cx0403, 0xFF00, Z_(SeaPressure), 1, Z_MAPPING(Z_Data_Thermo, pressure) }, // Pressure at Sea Level, Tasmota specific
{ Zunk, Cx0403, 0xFFFF, Z_(), 0, 0 }, // Remove all other Pressure values
// Flow Measurement cluster
{ Zuint16, Cx0404, 0x0000, Z_(FlowRate), -10 }, // Flow (in m3/h)
{ Zuint16, Cx0404, 0x0001, Z_(FlowMinMeasuredValue), 1 }, //
{ Zuint16, Cx0404, 0x0002, Z_(FlowMaxMeasuredValue), 1 }, //
{ Zuint16, Cx0404, 0x0003, Z_(FlowTolerance), 1 }, //
{ Zunk, Cx0404, 0xFFFF, Z_(), 0 }, // Remove all other values
{ Zuint16, Cx0404, 0x0000, Z_(FlowRate), -10, 0 }, // Flow (in m3/h)
{ Zuint16, Cx0404, 0x0001, Z_(FlowMinMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0404, 0x0002, Z_(FlowMaxMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0404, 0x0003, Z_(FlowTolerance), 1, 0 }, //
{ Zunk, Cx0404, 0xFFFF, Z_(), 0, 0 }, // Remove all other values
// Relative Humidity Measurement cluster
{ Zuint16, Cx0405, 0x0000, Z_(Humidity), -100 }, // Humidity
{ Zuint16, Cx0405, 0x0001, Z_(HumidityMinMeasuredValue), 1 }, //
{ Zuint16, Cx0405, 0x0002, Z_(HumidityMaxMeasuredValue), 1 }, //
{ Zuint16, Cx0405, 0x0003, Z_(HumidityTolerance), 1 }, //
{ Zunk, Cx0405, 0xFFFF, Z_(), 0 }, // Remove all other values
{ Zuint16, Cx0405, 0x0000, Z_(Humidity), -100, Z_MAPPING(Z_Data_Thermo, humidity) }, // Humidity
{ Zuint16, Cx0405, 0x0001, Z_(HumidityMinMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0405, 0x0002, Z_(HumidityMaxMeasuredValue), 1, 0 }, //
{ Zuint16, Cx0405, 0x0003, Z_(HumidityTolerance), 1, 0 }, //
{ Zunk, Cx0405, 0xFFFF, Z_(), 0, 0 }, // Remove all other values
// Occupancy Sensing cluster
{ Zmap8, Cx0406, 0x0000, Z_(Occupancy), 1 }, // Occupancy (map8)
{ Zenum8, Cx0406, 0x0001, Z_(OccupancySensorType), 1 }, // OccupancySensorType
{ Zunk, Cx0406, 0xFFFF, Z_(), 0 }, // Remove all other values
{ Zmap8, Cx0406, 0x0000, Z_(Occupancy), 1, 0 }, // Occupancy (map8)
{ Zenum8, Cx0406, 0x0001, Z_(OccupancySensorType), 1, 0 }, // OccupancySensorType
{ Zunk, Cx0406, 0xFFFF, Z_(), 0, 0 }, // Remove all other values
// IAS Cluster (Intruder Alarm System)
{ Zenum8, Cx0500, 0x0000, Z_(ZoneState), 1 }, // Occupancy (map8)
{ Zenum16, Cx0500, 0x0001, Z_(ZoneType), 1 }, // Occupancy (map8)
{ Zmap16, Cx0500, 0x0002, Z_(ZoneStatus), 1 }, // Occupancy (map8)
{ Zenum8, Cx0500, 0x0000, Z_(ZoneState), 1, 0 }, // Occupancy (map8)
{ Zenum16, Cx0500, 0x0001, Z_(ZoneType), 1, 0 }, // Occupancy (map8)
{ Zmap16, Cx0500, 0x0002, Z_(ZoneStatus), 1, Z_MAPPING(Z_Data_Alarm, zone_type) }, // Occupancy (map8)
// Metering (Smart Energy) cluster
{ Zuint48, Cx0702, 0x0000, Z_(CurrentSummDelivered), 1 },
{ Zuint48, Cx0702, 0x0000, Z_(CurrentSummDelivered), 1, 0 },
// Meter Identification cluster
{ Zstring, Cx0B01, 0x0000, Z_(CompanyName), 1 },
{ Zuint16, Cx0B01, 0x0001, Z_(MeterTypeID), 1 },
{ Zuint16, Cx0B01, 0x0004, Z_(DataQualityID), 1 },
{ Zstring, Cx0B01, 0x0005, Z_(CustomerName), 1 },
{ Zoctstr, Cx0B01, 0x0006, Z_(Model), 1 },
{ Zoctstr, Cx0B01, 0x0007, Z_(PartNumber), 1 },
{ Zoctstr, Cx0B01, 0x0008, Z_(ProductRevision), 1 },
{ Zoctstr, Cx0B01, 0x000A, Z_(SoftwareRevision), 1 },
{ Zstring, Cx0B01, 0x000B, Z_(UtilityName), 1 },
{ Zstring, Cx0B01, 0x000C, Z_(POD), 1 },
{ Zint24, Cx0B01, 0x000D, Z_(AvailablePower), 1 },
{ Zint24, Cx0B01, 0x000E, Z_(PowerThreshold), 1 },
{ Zstring, Cx0B01, 0x0000, Z_(CompanyName), 1, 0 },
{ Zuint16, Cx0B01, 0x0001, Z_(MeterTypeID), 1, 0 },
{ Zuint16, Cx0B01, 0x0004, Z_(DataQualityID), 1, 0 },
{ Zstring, Cx0B01, 0x0005, Z_(CustomerName), 1, 0 },
{ Zoctstr, Cx0B01, 0x0006, Z_(Model), 1, 0 },
{ Zoctstr, Cx0B01, 0x0007, Z_(PartNumber), 1, 0 },
{ Zoctstr, Cx0B01, 0x0008, Z_(ProductRevision), 1, 0 },
{ Zoctstr, Cx0B01, 0x000A, Z_(SoftwareRevision), 1, 0 },
{ Zstring, Cx0B01, 0x000B, Z_(UtilityName), 1, 0 },
{ Zstring, Cx0B01, 0x000C, Z_(POD), 1, 0 },
{ Zint24, Cx0B01, 0x000D, Z_(AvailablePower), 1, 0 },
{ Zint24, Cx0B01, 0x000E, Z_(PowerThreshold), 1, 0 },
// Electrical Measurement cluster
{ Zuint16, Cx0B04, 0x0505, Z_(RMSVoltage), 1 },
{ Zuint16, Cx0B04, 0x0508, Z_(RMSCurrent), 1 },
{ Zint16, Cx0B04, 0x050B, Z_(ActivePower), 1 },
{ Zuint16, Cx0B04, 0x0505, Z_(RMSVoltage), 1, Z_MAPPING(Z_Data_Plug, mains_voltage) },
{ Zuint16, Cx0B04, 0x0508, Z_(RMSCurrent), 1, 0 },
{ Zint16, Cx0B04, 0x050B, Z_(ActivePower), 1, Z_MAPPING(Z_Data_Plug, mains_power) },
// Diagnostics cluster
{ Zuint16, Cx0B05, 0x0000, Z_(NumberOfResets), 1 },
{ Zuint16, Cx0B05, 0x0001, Z_(PersistentMemoryWrites),1 },
{ Zuint8, Cx0B05, 0x011C, Z_(LastMessageLQI), 1 },
{ Zuint8, Cx0B05, 0x011D, Z_(LastMessageRSSI), 1 },
{ Zuint16, Cx0B05, 0x0000, Z_(NumberOfResets), 1, 0 },
{ Zuint16, Cx0B05, 0x0001, Z_(PersistentMemoryWrites),1, 0 },
{ Zuint8, Cx0B05, 0x011C, Z_(LastMessageLQI), 1, 0 },
{ Zuint8, Cx0B05, 0x011D, Z_(LastMessageRSSI), 1, 0 },
};
#pragma GCC diagnostic pop
typedef union ZCLHeaderFrameControl_t {
struct {
@ -1673,8 +1681,10 @@ void ZCLFrame::postProcessAttributes(uint16_t shortaddr, Z_attribute_list& attr_
// Look for an entry in the converter table
bool found = false;
int8_t conv_multiplier;
const char * conv_name;
Z_Data_Type map_type;
uint8_t map_offset;
uint8_t zigbee_type;
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
@ -1682,7 +1692,10 @@ void ZCLFrame::postProcessAttributes(uint16_t shortaddr, Z_attribute_list& attr_
if ((conv_cluster == cluster) &&
((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) {
conv_multiplier = pgm_read_byte(&converter->multiplier);
zigbee_type = pgm_read_byte(&converter->type);
uint8_t mapping = pgm_read_byte(&converter->mapping);
map_type = (Z_Data_Type) ((mapping & 0xF0)>>4);
map_offset = (mapping & 0x0F);
conv_name = Z_strings + pgm_read_word(&converter->name_offset);
found = true;
break;
@ -1691,42 +1704,39 @@ void ZCLFrame::postProcessAttributes(uint16_t shortaddr, Z_attribute_list& attr_
// apply multiplier if needed
float fval = attr.getFloat();
if (found) {
if (0 == conv_multiplier) { attr_list.removeAttribute(&attr); continue; } // remove attribute if multiplier is zero
if (1 != conv_multiplier) {
if (conv_multiplier > 0) { fval = fval * conv_multiplier; }
else { fval = fval / (-conv_multiplier); }
attr.setFloat(fval);
if (found && (map_type != Z_Data_Type::Z_Unknown)) {
// We apply an automatic mapping to Z_Data_XXX object
// First we find or instantiate the correct Z_Data_XXX accorfing to the endpoint
// Then store the attribute at the attribute addres (via offset) and according to size 8/16/32 bits
// we don't apply the multiplier, but instead store in Z_Data_XXX object
Z_Data & data = device.data.getByType(map_type, src_ep);
uint8_t *attr_address = ((uint8_t*)&data) + sizeof(Z_Data) + map_offset;
uint32_t uval32 = attr.getUInt(); // call converter to uint only once
int32_t ival32 = attr.getInt(); // call converter to int only once
// AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Mapping type=%d offset=%d zigbee_type=%02X value=%d\n"), (uint8_t) map_type, map_offset, zigbee_type, ival32);
switch (zigbee_type) {
case Zenum8:
case Zuint8: *(uint8_t*)attr_address = uval32; break;
case Zenum16:
case Zuint16: *(uint16_t*)attr_address = uval32; break;
case Zuint32: *(uint32_t*)attr_address = uval32; break;
case Zint8: *(int8_t*)attr_address = ival32; break;
case Zint16: *(int16_t*)attr_address = ival32; break;
case Zint32: *(int32_t*)attr_address = ival32; break;
}
}
uint16_t uval16 = attr.getUInt(); // call converter to uint only once
int16_t ival16 = attr.getInt(); // call converter to int only once
Z_Data_Set & data = device.data;
// update any internal structure
switch (ccccaaaa) {
case 0x00000004: zigbee_devices.setManufId(shortaddr, attr.getStr()); break;
case 0x00000005: zigbee_devices.setModelId(shortaddr, attr.getStr()); break;
case 0x00010021: zigbee_devices.setBatteryPercent(shortaddr, uval16); break;
case 0x00060000:
case 0x00068000: device.setPower(attr.getBool()); break;
case 0x00080000: device.dimmer = uval16; break;
case 0x02010000: device.temperature = fval * 10 + 0.5f; break;
case 0x02010008: device.th_setpoint = uval16; break;
case 0x02010012: device.temperature_target = fval * 10 + 0.5f; break;
case 0x02010007: device.th_setpoint = uval16; break;
case 0x02010011: device.temperature_target = fval * 10 + 0.5f; break;
case 0x03000000: device.hue = changeUIntScale(uval16, 0, 254, 0, 360); break;
case 0x03000001: device.sat = uval16; break;
case 0x03000003: device.x = uval16; break;
case 0x03000004: device.y = uval16; break;
case 0x03000007: device.ct = uval16; break;
case 0x03000008: device.colormode = uval16; break;
case 0x04020000: device.temperature = fval * 10 + 0.5f; break;
case 0x0403FF00: device.pressure = fval + 0.5f; break; // give priority to sea level
case 0x04030000: device.pressure = fval + 0.5f; break;
case 0x04050000: device.humidity = fval + 0.5f; break;
case 0x0B040505: device.mains_voltage = uval16; break;
case 0x0B04050B: device.mains_power = ival16; break;
case 0x00068000: device.setPower(attr.getBool(), src_ep); break;
}
// Replace cluster/attribute with name

View File

@ -33,7 +33,7 @@ const char kZbCommands[] PROGMEM = D_PRFX_ZB "|" // prefix
D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|"
D_CMND_ZIGBEE_BIND "|" D_CMND_ZIGBEE_UNBIND "|" D_CMND_ZIGBEE_PING "|" D_CMND_ZIGBEE_MODELID "|"
D_CMND_ZIGBEE_LIGHT "|" D_CMND_ZIGBEE_RESTORE "|" D_CMND_ZIGBEE_BIND_STATE "|"
D_CMND_ZIGBEE_CONFIG
D_CMND_ZIGBEE_CONFIG "|" D_CMND_ZIGBEE_DATA
;
void (* const ZigbeeCommand[])(void) PROGMEM = {
@ -48,7 +48,7 @@ void (* const ZigbeeCommand[])(void) PROGMEM = {
&CmndZbForget, &CmndZbSave, &CmndZbName,
&CmndZbBind, &CmndZbUnbind, &CmndZbPing, &CmndZbModelId,
&CmndZbLight, &CmndZbRestore, &CmndZbBindState,
&CmndZbConfig,
&CmndZbConfig, CmndZbData,
};
/********************************************************************************************/
@ -56,6 +56,10 @@ void (* const ZigbeeCommand[])(void) PROGMEM = {
// Initialize internal structures
void ZigbeeInit(void)
{
// #pragma GCC diagnostic push
// #pragma GCC diagnostic ignored "-Winvalid-offsetof"
// Serial.printf(">>> offset %d %d %d\n", Z_offset(Z_Data_Light, dimmer), Z_offset(Z_Data_Light, x), Z_offset(Z_Data_Thermo, temperature));
// #pragma GCC diagnostic pop
// Check if settings in Flash are set
if (PinUsed(GPIO_ZIGBEE_RX) && PinUsed(GPIO_ZIGBEE_TX)) {
if (0 == Settings.zb_channel) {
@ -1018,7 +1022,7 @@ void CmndZbLight(void) {
int8_t bulbtype = strtol(p, nullptr, 10);
if (bulbtype > 5) { bulbtype = 5; }
if (bulbtype < -1) { bulbtype = -1; }
zigbee_devices.setHueBulbtype(shortaddr, bulbtype);
zigbee_devices.setLightProfile(shortaddr, bulbtype);
}
String dump = zigbee_devices.dumpLightState(shortaddr);
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_LIGHT "\":%s}"), dump.c_str());
@ -1203,7 +1207,7 @@ void CmndZbStatus(void) {
if (ZigbeeSerial) {
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
if (XdrvMailbox.payload > 0) {
if (XdrvMailbox.data_len > 0) {
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
}
@ -1212,6 +1216,195 @@ void CmndZbStatus(void) {
}
}
//
// Innder part of ZbData parsing
//
// {"L-02":{"Dimmer":10,"Sat":254}}
bool parseDeviceInnerData(class Z_Device & device, JsonParserObject root) {
for (auto data_elt : root) {
const char * data_type_str = data_elt.getStr();
Z_Data_Type data_type;
switch (data_type_str[0]) {
case 'P': data_type = Z_Data_Type::Z_Plug; break;
case 'L': data_type = Z_Data_Type::Z_Light; break;
case 'O': data_type = Z_Data_Type::Z_OnOff; break;
case 'T': data_type = Z_Data_Type::Z_Thermo; break;
case 'A': data_type = Z_Data_Type::Z_Alarm; break;
case '_': data_type = Z_Data_Type::Z_Device; break;
default: data_type = Z_Data_Type::Z_Unknown; break;
}
// The format should be a valid Code Lette followed by '-'
if (data_type == Z_Data_Type::Z_Unknown) {
Response_P(PSTR("{\"%s\":\"%s \"%s\"\"}"), XdrvMailbox.command, PSTR("Invalid Parameters"), data_type_str);
return false;
}
JsonParserObject data_values = data_elt.getValue().getObject();
if (!data_values) { return false; }
// Decode the endpoint number
uint8_t endpoint = strtoul(&data_type_str[1], nullptr, 16); // hex base 16
JsonParserToken val;
switch (data_type) {
case Z_Data_Type::Z_Plug:
{
Z_Data_Plug & plug = device.data.get<Z_Data_Plug>(endpoint);
if (val = data_values[PSTR("RMSVoltage")]) { plug.setMainsVoltage(val.getUInt()); }
if (val = data_values[PSTR("ActivePower")]) { plug.setMainsPower(val.getInt()); }
}
break;
case Z_Data_Type::Z_Light:
{
Z_Data_Light & light = device.data.get<Z_Data_Light>(endpoint);
if (val = data_values[PSTR("Light")]) { light.setConfig(val.getUInt()); }
if (val = data_values[PSTR("Dimmer")]) { light.setDimmer(val.getUInt()); }
if (val = data_values[PSTR("Colormode")]) { light.setColorMode(val.getUInt()); }
if (val = data_values[PSTR("CT")]) { light.setCT(val.getUInt()); }
if (val = data_values[PSTR("Sat")]) { light.setSat(val.getUInt()); }
if (val = data_values[PSTR("Hue")]) { light.setHue(val.getUInt()); }
if (val = data_values[PSTR("X")]) { light.setX(val.getUInt()); }
if (val = data_values[PSTR("Y")]) { light.setY(val.getUInt()); }
}
break;
case Z_Data_Type::Z_OnOff:
{
Z_Data_OnOff & onoff = device.data.get<Z_Data_OnOff>(endpoint);
if (val = data_values[PSTR("Power")]) { onoff.setPower(val.getUInt() ? true : false); }
}
break;
case Z_Data_Type::Z_Thermo:
{
Z_Data_Thermo & thermo = device.data.get<Z_Data_Thermo>(endpoint);
if (val = data_values[PSTR("Temperature")]) { thermo.setTemperature(val.getInt()); }
if (val = data_values[PSTR("Pressure")]) { thermo.setPressure(val.getUInt()); }
if (val = data_values[PSTR("Humidity")]) { thermo.setHumidity(val.getUInt()); }
if (val = data_values[PSTR("ThSetpoint")]) { thermo.setThSetpoint(val.getUInt()); }
if (val = data_values[PSTR("TempTarget")]) { thermo.setTempTarget(val.getInt()); }
}
break;
case Z_Data_Type::Z_Alarm:
{
Z_Data_Alarm & alarm = device.data.get<Z_Data_Alarm>(endpoint);
if (val = data_values[PSTR("ZoneType")]) { alarm.setZoneType(val.getUInt()); }
}
break;
case Z_Data_Type::Z_Device:
{
if (val = data_values[PSTR(D_CMND_ZIGBEE_LINKQUALITY)]) { device.lqi = val.getUInt(); }
if (val = data_values[PSTR("BatteryPercentage")]) { device.batterypercent = val.getUInt(); }
if (val = data_values[PSTR("LastSeen")]) { device.last_seen = val.getUInt(); }
}
break;
}
}
return true;
}
//
// Command `ZbData`
//
void CmndZbData(void) {
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
RemoveAllSpaces(XdrvMailbox.data);
if (XdrvMailbox.data[0] == '{') {
// JSON input, enter saved data into memory -- essentially for debugging
JsonParser parser(XdrvMailbox.data);
JsonParserObject root = parser.getRootObject();
if (!root) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; }
// Skip `ZbData` if present
JsonParserToken zbdata = root.getObject().findStartsWith(PSTR("ZbData"));
if (zbdata) {
root = zbdata;
}
for (auto device_name : root) {
uint16_t shortaddr = zigbee_devices.parseDeviceParam(device_name.getStr());
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
Z_Device & device = zigbee_devices.getShortAddr(shortaddr);
JsonParserObject inner_data = device_name.getValue().getObject();
if (inner_data) {
if (!parseDeviceInnerData(device, inner_data)) {
return;
}
}
}
ResponseCmndDone();
} else {
// non-JSON, export current data
// ZbData 0x1234
// ZbData Device_Name
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
const Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
Z_attribute_list attr_data;
{ // scope to force object deallocation
Z_attribute_list device_attr;
device.toAttributes(device_attr);
attr_data.addAttribute(F("_00")).setStrRaw(device_attr.toString(true).c_str());
}
// Iterate on data objects
for (auto & data_elt : device.data) {
Z_attribute_list inner_attr;
char key[4];
snprintf_P(key, sizeof(key), "?%02X", data_elt.getEndpoint());
// The key is in the form "L-01", where 'L' is the type and '01' the endpoint in hex format
// 'L' = Light
// 'P' = Power
//
switch (data_elt.getType()) {
case Z_Data_Type::Z_Plug:
{
key[0] = 'P';
Z_Data_Plug::toAttributes(inner_attr, (Z_Data_Plug&) data_elt);
}
break;
case Z_Data_Type::Z_Light:
{
key[0] = 'L';
Z_Data_Light::toAttributes(inner_attr, (Z_Data_Light&) data_elt);
}
break;
case Z_Data_Type::Z_OnOff:
{
key[0] = 'O';
Z_Data_OnOff::toAttributes(inner_attr, (Z_Data_OnOff&) data_elt);
}
break;
case Z_Data_Type::Z_Thermo:
{
key[0] = 'T';
Z_Data_Thermo::toAttributes(inner_attr, (Z_Data_Thermo&) data_elt);
}
break;
case Z_Data_Type::Z_Alarm:
{
key[0] = 'A';
Z_Data_Alarm::toAttributes(inner_attr, (Z_Data_Alarm&) data_elt);
}
break;
}
if (key[0] != '?') {
attr_data.addAttribute(key).setStrRaw(inner_attr.toString(true).c_str());
}
}
char hex[8];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
Response_P(PSTR("{\"%s\":{\"%s\":%s}}"), XdrvMailbox.command, hex, attr_data.toString(true).c_str());
}
}
//
// Command `ZbConfig`
//
@ -1431,67 +1624,71 @@ void ZigbeeShow(bool json)
), dhm );
// Sensors
bool temperature_ok = device.validTemperature();
bool tempareture_target_ok = device.validTemperatureTarget();
bool th_setpoint_ok = device.validThSetpoint();
bool humidity_ok = device.validHumidity();
bool pressure_ok = device.validPressure();
const Z_Data_Thermo & thermo = device.data.find<Z_Data_Thermo>();
if (temperature_ok || tempareture_target_ok || th_setpoint_ok || humidity_ok || pressure_ok) {
if (&thermo != nullptr) {
WSContentSend_P(PSTR("<tr class='htr'><td colspan=\"4\">&#9478;"));
if (temperature_ok) {
if (thermo.validTemperature()) {
char buf[12];
dtostrf(device.temperature / 10.0f, 3, 1, buf);
dtostrf(thermo.getTemperature() / 100.0f, 3, 1, buf);
WSContentSend_PD(PSTR(" &#x2600;&#xFE0F; %s°C"), buf);
}
if (tempareture_target_ok) {
if (thermo.validTempTarget()) {
char buf[12];
dtostrf(device.temperature_target / 10.0f, 3, 1, buf);
dtostrf(thermo.getTempTarget() / 100.0f, 3, 1, buf);
WSContentSend_PD(PSTR(" &#127919; %s°C"), buf);
}
if (th_setpoint_ok) {
WSContentSend_PD(PSTR(" &#9881;&#65039; %d%%"), device.th_setpoint);
if (thermo.validThSetpoint()) {
WSContentSend_PD(PSTR(" &#9881;&#65039; %d%%"), thermo.getThSetpoint());
}
if (humidity_ok) {
WSContentSend_P(PSTR(" &#x1F4A7; %d%%"), device.humidity);
if (thermo.validHumidity()) {
WSContentSend_P(PSTR(" &#x1F4A7; %d%%"), (uint16_t)(thermo.getHumidity() / 100.0f + 0.5f));
}
if (pressure_ok) {
WSContentSend_P(PSTR(" &#x26C5; %d hPa"), device.pressure);
if (thermo.validPressure()) {
WSContentSend_P(PSTR(" &#x26C5; %d hPa"), thermo.getPressure());
}
WSContentSend_P(PSTR("{e}"));
}
// Light, switches and plugs
bool power_ok = device.validPower();
if (power_ok) {
uint8_t channels = device.getLightChannels();
if (0xFF == channels) { channels = 5; } // if number of channel is unknown, display all known attributes
WSContentSend_P(PSTR("<tr class='htr'><td colspan=\"4\">&#9478; %s"), device.getPower() ? PSTR(D_ON) : PSTR(D_OFF));
if (device.validDimmer() && (channels >= 1)) {
WSContentSend_P(PSTR(" &#128261; %d%%"), changeUIntScale(device.dimmer,0,254,0,100));
const Z_Data_OnOff & onoff = device.data.find<Z_Data_OnOff>();
const Z_Data_Light & light = device.data.find<Z_Data_Light>();
bool light_display = (&light != nullptr) ? light.validDimmer() : false;
const Z_Data_Plug & plug = device.data.find<Z_Data_Plug>();
if ((&onoff != nullptr) || light_display || (&plug != nullptr)) {
int8_t channels = device.getLightChannels();
if (channels < 0) { channels = 5; } // if number of channel is unknown, display all known attributes
WSContentSend_P(PSTR("<tr class='htr'><td colspan=\"4\">&#9478;"));
if (&onoff != nullptr) {
WSContentSend_P(PSTR(" %s"), device.getPower() ? PSTR(D_ON) : PSTR(D_OFF));
}
if (device.validCT() && ((channels == 2) || (channels == 5))) {
uint32_t ct_k = (((1000000 / device.ct) + 25) / 50) * 50;
WSContentSend_P(PSTR(" <span title=\"CT %d\"><small>&#9898; </small>%dK</span>"), device.ct, ct_k);
}
if (device.validHue() && device.validSat() && (channels >= 3)) {
uint8_t r,g,b;
uint8_t sat = changeUIntScale(device.sat, 0, 254, 0, 255); // scale to 0..255
LightStateClass::HsToRgb(device.hue, sat, &r, &g, &b);
WSContentSend_P(PSTR(" <i class=\"bx\" style=\"--cl:#%02X%02X%02X\"></i>#%02X%02X%02X"), r,g,b,r,g,b);
} else if (device.validX() && device.validY() && (channels >= 3)) {
uint8_t r,g,b;
LightStateClass::XyToRgb(device.x / 65535.0f, device.y / 65535.0f, &r, &g, &b);
WSContentSend_P(PSTR(" <i class=\"bx\" style=\"--cl:#%02X%02X%02X\"></i> #%02X%02X%02X"), r,g,b,r,g,b);
}
if (device.validMainsPower() || device.validMainsVoltage()) {
WSContentSend_P(PSTR(" &#9889; "));
if (device.validMainsVoltage()) {
WSContentSend_P(PSTR(" %dV"), device.mains_voltage);
if (&light != nullptr) {
if (light.validDimmer() && (channels >= 1)) {
WSContentSend_P(PSTR(" &#128261; %d%%"), changeUIntScale(light.getDimmer(),0,254,0,100));
}
if (device.validMainsPower()) {
WSContentSend_P(PSTR(" %dW"), device.mains_power);
if (light.validCT() && ((channels == 2) || (channels == 5))) {
uint32_t ct_k = (((1000000 / light.getCT()) + 25) / 50) * 50;
WSContentSend_P(PSTR(" <span title=\"CT %d\"><small>&#9898; </small>%dK</span>"), light.getCT(), ct_k);
}
if (light.validHue() && light.validSat() && (channels >= 3)) {
uint8_t r,g,b;
uint8_t sat = changeUIntScale(light.getSat(), 0, 254, 0, 255); // scale to 0..255
LightStateClass::HsToRgb(light.getHue(), sat, &r, &g, &b);
WSContentSend_P(PSTR(" <i class=\"bx\" style=\"--cl:#%02X%02X%02X\"></i>#%02X%02X%02X"), r,g,b,r,g,b);
} else if (light.validX() && light.validY() && (channels >= 3)) {
uint8_t r,g,b;
LightStateClass::XyToRgb(light.getX() / 65535.0f, light.getY() / 65535.0f, &r, &g, &b);
WSContentSend_P(PSTR(" <i class=\"bx\" style=\"--cl:#%02X%02X%02X\"></i> #%02X%02X%02X"), r,g,b,r,g,b);
}
}
if (&plug != nullptr) {
WSContentSend_P(PSTR(" &#9889; "));
if (plug.validMainsVoltage()) {
WSContentSend_P(PSTR(" %dV"), plug.getMainsVoltage());
}
if (plug.validMainsPower()) {
WSContentSend_P(PSTR(" %dW"), plug.getMainsPower());
}
}
WSContentSend_P(PSTR("{e}"));