Updates for release 6.3.0

Updates for release 6.3.0
This commit is contained in:
Theo Arends 2018-10-30 17:29:01 +01:00
parent 184346335d
commit 6d58580446
13 changed files with 391 additions and 287 deletions

View File

@ -34,8 +34,8 @@ See [Tasmota ESP/Arduino library version related issues](https://github.com/aren
| Feature or Sensor | minimal | basic | classic | sonoff | knx | sensors | Remarks
|--------------------------------|---------|-------|---------|--------|------|---------|--------
| ESP/Arduino lib v2.3.0 | 344k | xxxk | 485k | 491k | 510k | 516k |
| ESP/Arduino lib v2.4.2 | 363k | xxxk | 499k | 509k | 526k | 532k | No sleep
| ESP/Arduino lib v2.3.0 | 343k | 425k | 484k | 490k | 508k | 517k |
| ESP/Arduino lib v2.4.2 | 372k | 451k | 497k | 517k | 533k | 541k | No sleep
| | | | | | | |
| MY_LANGUAGE en-GB | x | x | x | x | x | x |
| MQTT_LIBRARY_TYPE PUBSUBCLIENT | x | x | x | x | x | x |
@ -173,10 +173,11 @@ Version 6.3.0 20181030
* Add command SerialSend5 to send raw serial data like "A5074100545293"
* Add command WebRefresh 1000..10000 to control web page refresh in milliseconds. Default is 2345
* Add command WeightRes 0..3 to control display of decimals for kilogram
* Add command SetOption52 to control display of optional time offset from UTC in JSON messages (#3629, #3711)
* Add command RGBWWTable to support color calibration (#3933)
* Add command Reset 4 (reset to defaults but keep wifi params) and Reset 5 (as reset 4 and also erase flash) (#4061)
* Add command SetOption35 0..255 (seconds) to delay mDNS initialization to control possible Wifi connect problems
* Add command SetOption52 0/1 to control display of optional time offset from UTC in JSON messages (#3629, #3711)
* Add command SetOption53 0/1 to toggle gui display of Hostname and IP address (#1006, #2091)
* Add authentication to HTTP web pages
* Add decimals as input to commands PowerSet, VoltageSet and CurrentSet
* Add tools/decode-config.py by Norbert Richter to decode configuration data. See file for information
@ -185,18 +186,21 @@ Version 6.3.0 20181030
* Add auto reload of main web page to some web restarts
* Add TasmotaModbus library as very basic modbus wrapper for TasmotaSerial
* Add more API callbacks and document API.md
* Add Apparent Power and Reactive Power to Energy Monitoring devices (#251)
* Add token %hostname% to command FullTopic (#3018)
* Add Wifi channel number to state message (#3664)
* Add user configurable GPIO02 and GPIO03 on H801 devices (#3692)
* Add network information to display start screen (#3704)
* Add toggle function RGBW lights (#3695, #3697)
* Add network information to display start screen (#3704)
* Add sleep to Nova Fitness SDS01X sensor (#2841, #3724, #3749)
* Add Analog input AD0 enabled to sonoff-sensors.bin (#3756, #3757)
* Add userid/password option to decode-status.py (#3796)
* Add power value below 5W to Sonoff Pow R2 and S31 (#3745)
* Add force_update to Home Assistant discovery (#3873)
* Add delay after restart before processing rule sensor data (#3811)
* Add rule triggers SWITCH1#BOOT and POWER1#BOOT (#3904, #3910)
* Add Apparent Power and Reactive Power to Energy Monitoring devices (#251)
* Add RF Receiver control to module MagicHome to be used on Arilux LC10 (#3792)
* Add userid/password option to decode-status.py (#3796)
* Add delay after restart before processing rule sensor data (#3811)
* Add force_update to Home Assistant discovery (#3873)
* Add rule triggers SWITCH1#BOOT and POWER1#BOOT (#3904, #3910)
* Add Hebrew language file (#3960)
* Add TotalStartTime to Energy JSON message (#3971)
* Add whitespace removal from RfRaw and SerialSend5 (#4020)
* Add support for two BMP/BME sensors (#4195)

View File

@ -55,10 +55,11 @@
* Add command SerialSend5 to send raw serial data like "A5074100545293"
* Add command WebRefresh 1000..10000 to control web page refresh in milliseconds. Default is 2345
* Add command WeightRes 0..3 to control display of decimals for kilogram
* Add command SetOption52 to control display of optional time offset from UTC in JSON messages (#3629, #3711)
* Add command RGBWWTable to support color calibration (#3933)
* Add command Reset 4 (reset to defaults but keep wifi params) and Reset 5 (as reset 4 and also erase flash) (#4061)
* Add command SetOption35 0..255 (seconds) to delay mDNS initialization to control possible Wifi connect problems
* Add command SetOption52 0/1 to control display of optional time offset from UTC in JSON messages (#3629, #3711)
* Add command SetOption53 0/1 to toggle gui display of Hostname and IP address (#1006, #2091)
* Add authentication to HTTP web pages
* Add decimals as input to commands PowerSet, VoltageSet and CurrentSet
* Add tools/decode-config.py by Norbert Richter to decode configuration data. See file for information
@ -67,21 +68,24 @@
* Add auto reload of main web page to some web restarts
* Add TasmotaModbus library as very basic modbus wrapper for TasmotaSerial
* Add more API callbacks and document API.md
* Add Apparent Power and Reactive Power to Energy Monitoring devices (#251)
* Add token %hostname% to command FullTopic (#3018)
* Add Wifi channel number to state message (#3664)
* Add user configurable GPIO02 and GPIO03 on H801 devices (#3692)
* Add network information to display start screen (#3704)
* Add toggle function RGBW lights (#3695, #3697)
* Add network information to display start screen (#3704)
* Add sleep to Nova Fitness SDS01X sensor (#2841, #3724, #3749)
* Add Analog input AD0 enabled to sonoff-sensors.bin (#3756, #3757)
* Add userid/password option to decode-status.py (#3796)
* Add power value below 5W to Sonoff Pow R2 and S31 (#3745)
* Add force_update to Home Assistant discovery (#3873)
* Add delay after restart before processing rule sensor data (#3811)
* Add rule triggers SWITCH1#BOOT and POWER1#BOOT (#3904, #3910)
* Add Apparent Power and Reactive Power to Energy Monitoring devices (#251)
* Add RF Receiver control to module MagicHome to be used on Arilux LC10 (#3792)
* Add userid/password option to decode-status.py (#3796)
* Add delay after restart before processing rule sensor data (#3811)
* Add force_update to Home Assistant discovery (#3873)
* Add rule triggers SWITCH1#BOOT and POWER1#BOOT (#3904, #3910)
* Add Hebrew language file (#3960)
* Add TotalStartTime to Energy JSON message (#3971)
* Add whitespace removal from RfRaw and SerialSend5 (#4020)
* Add support for two BMP/BME sensors (#4195)
*
* 6.2.1 20180905
* Fix possible ambiguity on command parameters if StateText contains numbers only (#3656)

View File

@ -127,6 +127,7 @@
#define D_JSON_TIME "Time"
#define D_JSON_TODAY "Today"
#define D_JSON_TOTAL "Total"
#define D_JSON_TOTAL_START_TIME "TotalStartTime"
#define D_JSON_TVOC "TVOC"
#define D_JSON_TYPE "Type"
#define D_JSON_UPTIME "Uptime"

View File

@ -281,8 +281,8 @@
#ifdef USE_I2C
#define USE_SHT // Enable SHT1X sensor (+1k4 code)
#define USE_HTU // Enable HTU21/SI7013/SI7020/SI7021 sensor (I2C address 0x40) (+1k5 code)
#define USE_BMP // Enable BMP085/BMP180/BMP280/BME280 sensor (I2C address 0x76 or 0x77) (+4k code)
// #define USE_BME680 // Enable support for BME680 sensor using Bosch BME680 library (+4k code)
#define USE_BMP // Enable BMP085/BMP180/BMP280/BME280 sensors (I2C addresses 0x76 and 0x77) (+4k1 code)
// #define USE_BME680 // Enable support for BME680 sensors using Bosch BME680 library (+4k4 code)
#define USE_BH1750 // Enable BH1750 sensor (I2C address 0x23 or 0x5C) (+0k5 code)
// #define USE_VEML6070 // Enable VEML6070 sensor (I2C addresses 0x38 and 0x39) (+1k5 code)
#define USE_VEML6070_RSET 270000 // VEML6070, Rset in Ohm used on PCB board, default 270K = 270000ohm, range for this sensor: 220K ... 1Meg
@ -397,7 +397,7 @@
\*********************************************************************************************/
//#define USE_CLASSIC // Create sonoff-classic with initial configuration tools WPS, SmartConfig and WifiManager
//#define USE_BASIC // Create sonoff-basic without sensors
//#define USE_BASIC // Create sonoff-basic with no sensors
//#define USE_SENSORS // Create sonoff-sensors with useful sensors enabled
//#define USE_KNX_NO_EMULATION // Create sonoff-knx with KNX but without Emulation
//#define USE_DISPLAYS // Create sonoff-display with display drivers enabled

View File

@ -66,7 +66,7 @@ typedef union { // Restricted by MISRA-C Rule 18.4 bu
uint32_t timers_enable : 1; // bit 0 (v6.1.1b)
uint32_t user_esp8285_enable : 1; // bit 1 (v6.1.1.14)
uint32_t time_append_timezone : 1; // bit 2 (v6.2.1.2)
uint32_t spare03 : 1;
uint32_t gui_hostname_ip : 1; // bit 3 (v6.2.1.20)
uint32_t spare04 : 1;
uint32_t spare05 : 1;
uint32_t spare06 : 1;
@ -322,8 +322,9 @@ struct SYSCFG {
uint16_t mcp230xx_int_timer; // 718
uint8_t rgbwwTable[5]; // 71A
byte free_71F[153]; // 71F
byte free_71F[149]; // 71F
uint32_t energy_kWhtotal_time; // 7B4
unsigned long weight_item; // 7B8 Weight of one item in gram * 10
byte free_7BC[2]; // 7BC

View File

@ -60,6 +60,7 @@ typedef unsigned long power_t; // Power (Relay) type
#define MQTT_TOKEN_PREFIX "%prefix%" // To be substituted by mqtt_prefix[x]
#define MQTT_TOKEN_TOPIC "%topic%" // To be substituted by mqtt_topic, mqtt_grptopic, mqtt_buttontopic, mqtt_switchtopic
#define MQTT_TOKEN_HOSTNAME "%hostname%" // To be substituted by mqtt_topic, mqtt_grptopic, mqtt_buttontopic, mqtt_switchtopic
#define MQTT_TOKEN_ID "%id%" // To be substituted by mqtt_topic, mqtt_grptopic, mqtt_buttontopic, mqtt_switchtopic
#define WIFI_HOSTNAME "%s-%04d" // Expands to <MQTT_TOPIC>-<last 4 decimal chars of MAC address>
@ -180,7 +181,7 @@ enum WeekInMonthOptions {Last, First, Second, Third, Fourth};
enum DayOfTheWeekOptions {Sun=1, Mon, Tue, Wed, Thu, Fri, Sat};
enum MonthNamesOptions {Jan=1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};
enum HemisphereOptions {North, South};
enum GetDateAndTimeOptions { DT_LOCAL, DT_UTC, DT_RESTART };
enum GetDateAndTimeOptions { DT_LOCAL, DT_UTC, DT_RESTART, DT_ENERGY };
enum LoggingLevels {LOG_LEVEL_NONE, LOG_LEVEL_ERROR, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG_MORE, LOG_LEVEL_ALL};

View File

@ -279,6 +279,7 @@ void GetTopic_P(char *stopic, byte prefix, char *topic, const char* subtopic)
}
fulltopic.replace(F(MQTT_TOKEN_PREFIX), Settings.mqtt_prefix[prefix]);
fulltopic.replace(F(MQTT_TOKEN_TOPIC), topic);
fulltopic.replace(F(MQTT_TOKEN_HOSTNAME), my_hostname);
String token_id = WiFi.macAddress();
token_id.replace(":", "");
fulltopic.replace(F(MQTT_TOKEN_ID), token_id);

View File

@ -1946,6 +1946,10 @@ String GetDateAndTime(byte time_type)
TIME_T tmpTime;
switch (time_type) {
case DT_ENERGY:
BreakTime(Settings.energy_kWhtotal_time, tmpTime);
tmpTime.year += 1970;
break;
case DT_UTC:
BreakTime(utc_time, tmpTime);
tmpTime.year += 1970;
@ -1964,7 +1968,8 @@ String GetDateAndTime(byte time_type)
snprintf_P(dt, sizeof(dt), PSTR("%04d-%02d-%02dT%02d:%02d:%02d"),
tmpTime.year, tmpTime.month, tmpTime.day_of_month, tmpTime.hour, tmpTime.minute, tmpTime.second);
if (Settings.flag3.time_append_timezone && (time_type == DT_LOCAL)) {
if (Settings.flag3.time_append_timezone && (DT_LOCAL == time_type)) {
// if (Settings.flag3.time_append_timezone && ((DT_LOCAL == time_type) || (DT_ENERGY == time_type))) {
snprintf_P(dt, sizeof(dt), PSTR("%s%+03d:%02d"), dt, time_timezone / 10, abs((time_timezone % 10) * 6)); // if timezone = +2:30 then time_timezone = 25
}
@ -2225,6 +2230,7 @@ void RtcSecond()
}
local_time += time_offset;
time_timezone = time_offset / 360; // (SECS_PER_HOUR / 10) fails as it is defined as UL
if (!Settings.energy_kWhtotal_time) { Settings.energy_kWhtotal_time = local_time; }
}
BreakTime(local_time, RtcTime);
if (!RtcTime.hour && !RtcTime.minute && !RtcTime.second && RtcTime.valid) {

View File

@ -119,7 +119,7 @@ const char HTTP_HEAD_STYLE[] PROGMEM =
#else
"<h3>{ha " D_MODULE "</h3>"
#endif
"<h2>{h}</h2></div>";
"<h2>{h}</h2>{j}</div>";
const char HTTP_SCRIPT_CONSOL[] PROGMEM =
"var sn=0;" // Scroll position
"var id=0;" // Get most of weblog initially
@ -453,6 +453,25 @@ void ShowPage(String &page, bool auth)
page.replace(F("{a}"), String(Settings.web_refresh));
page.replace(F("{ha"), my_module.name);
page.replace(F("{h}"), Settings.friendlyname[0]);
String info = "";
if (Settings.flag3.gui_hostname_ip) {
uint8_t more_ips = 0;
info += F("<h3>"); info += my_hostname;
if (mdns_begun) { info += F(".local"); }
info += F(" (");
if (static_cast<uint32_t>(WiFi.localIP()) != 0) {
info += WiFi.localIP().toString();
more_ips++;
}
if (static_cast<uint32_t>(WiFi.softAPIP()) != 0) {
if (more_ips) { info += F(", "); }
info += WiFi.softAPIP().toString();
}
info += F(")</h3>");
}
page.replace(F("{j}"), info);
if (HTTP_MANAGER == webserver_state) {
if (WifiConfigCounter()) {
page.replace(F("<body>"), F("<body onload='u()'>"));
@ -1241,6 +1260,7 @@ void HandleInformation()
func += F("}1" D_AP); func += String(Settings.sta_active +1);
func += F(" " D_SSID " (" D_RSSI ")}2"); func += Settings.sta_ssid[Settings.sta_active]; func += F(" ("); func += WifiGetRssiAsQuality(WiFi.RSSI()); func += F("%)");
func += F("}1" D_HOSTNAME "}2"); func += my_hostname;
if (mdns_begun) { func += F(".local"); }
if (static_cast<uint32_t>(WiFi.localIP()) != 0) {
func += F("}1" D_IP_ADDRESS "}2"); func += WiFi.localIP().toString();
func += F("}1" D_GATEWAY "}2"); func += IPAddress(Settings.ip_address[1]).toString();

View File

@ -393,6 +393,7 @@ boolean EnergyCommand()
RtcSettings.energy_kWhtotal = lnum *100;
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
energy_total = (float)(RtcSettings.energy_kWhtotal + energy_kWhtoday) / 100000;
if (!energy_total) { Settings.energy_kWhtotal_time = LocalTime(); }
break;
}
}
@ -612,8 +613,8 @@ void EnergyShow(boolean json)
}
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s%s,\"" D_JSON_POWERUSAGE "\":%s"),
mqtt_data, energy_total_chr, energy_yesterday_chr, energy_daily_chr, (show_energy_period) ? speriod : "", active_power_chr);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s%s,\"" D_JSON_POWERUSAGE "\":%s"),
mqtt_data, GetDateAndTime(DT_ENERGY).c_str(), energy_total_chr, energy_yesterday_chr, energy_daily_chr, (show_energy_period) ? speriod : "", active_power_chr);
if (!energy_type_dc) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s%s"),
mqtt_data, apparent_power_chr, reactive_power_chr, power_factor_chr, (!isnan(energy_frequency)) ? sfrequency : "");

View File

@ -33,6 +33,7 @@ boolean tuya_ignore_dim = false; // Flag to skip serial send to preve
uint8_t tuya_cmd_status = 0; // Current status of serial-read
uint8_t tuya_cmd_checksum = 0; // Checksum of tuya command
uint8_t tuya_data_len = 0; // Data lenght of command
bool tuya_wifi_state = false;
char tuya_buffer[TUYA_BUFFER_SIZE]; // Serial receive buffer
int tuya_byte_counter = 0; // Index in serial receive buffer
@ -142,12 +143,15 @@ void TuyaPacketProcess()
ExecuteCommand(scmnd, SRC_SWITCH);
}
}
else if (tuya_byte_counter == 8 && tuya_buffer[3] == 5 && tuya_buffer[5] == 1 && tuya_buffer[7] == 5 ) { // reset WiFi settings packet - to do: reset red MCU LED after WiFi is up
else if (tuya_byte_counter == 8 && tuya_buffer[3] == 5 && tuya_buffer[5] == 1 && tuya_buffer[7] == 5 ) { // reset WiFi settings packet
AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: WiFi Reset Rcvd"));
TuyaResetWifi();
}
else if (tuya_byte_counter == 7 && tuya_buffer[3] == 3 && tuya_buffer[6] == 2) { // WiFi LED has been sucessfully reset.
snprintf_P(scmnd, sizeof(scmnd), D_CMND_WIFICONFIG " 2");
ExecuteCommand(scmnd, SRC_BUTTON);
AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: WiFi LED reset ACK"));
tuya_wifi_state = true;
}
}
@ -221,6 +225,21 @@ boolean TuyaModuleSelected()
return true;
}
void TuyaResetWifiLed(){
snprintf_P(log_data, sizeof(log_data), "TYA: Reset WiFi LED");
AddLog(LOG_LEVEL_DEBUG);
TuyaSerial->write((uint8_t)0x55); // header 55AA
TuyaSerial->write((uint8_t)0xAA);
TuyaSerial->write((uint8_t)0x00); // version 00
TuyaSerial->write((uint8_t)0x03); // command 03 - set wifi state
TuyaSerial->write((uint8_t)0x00);
TuyaSerial->write((uint8_t)0x01); // following data length 0x01
TuyaSerial->write((uint8_t)0x03); // wifi state 4 (configured and connected)
TuyaSerial->write((uint8_t)0x06); // checksum:sum of all bytes in packet mod 256
TuyaSerial->flush();
}
void TuyaInit()
{
if (!Settings.param[P_TUYA_DIMMER_ID]) {
@ -245,18 +264,24 @@ void TuyaInit()
}
}
void TuyaResetWifi()
{
if (!Settings.flag.button_restrict) {
char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), D_CMND_WIFICONFIG " %d", 2);
ExecuteCommand(scmnd, SRC_BUTTON);
tuya_wifi_state = false;
}
}
boolean TuyaButtonPressed()
{
if ((PRESSED == XdrvMailbox.payload) && (NOT_PRESSED == lastbutton[XdrvMailbox.index])) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BUTTON "%d " D_LEVEL_10), XdrvMailbox.index +1);
AddLog(LOG_LEVEL_DEBUG);
TuyaResetWifi();
if (!Settings.flag.button_restrict) {
char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), D_CMND_WIFICONFIG " %d", 2);
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
return true; // Serviced here
}
@ -288,6 +313,9 @@ boolean Xdrv16(byte function)
case FUNC_BUTTON_PRESSED:
result = TuyaButtonPressed();
break;
case FUNC_EVERY_SECOND:
if(TuyaSerial && !tuya_wifi_state) { TuyaResetWifiLed(); }
break;
}
}
return result;

View File

@ -1,7 +1,7 @@
/*
xdrv_17_rcswitch.ino - RF transceiver using RcSwitch library for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

View File

@ -27,8 +27,8 @@
* I2C Address: 0x76 or 0x77
\*********************************************************************************************/
#define BMP_ADDR1 0x77
#define BMP_ADDR2 0x76
#define BMP_ADDR1 0x76
#define BMP_ADDR2 0x77
#define BMP180_CHIPID 0x55
#define BMP280_CHIPID 0x58
@ -37,18 +37,28 @@
#define BMP_REGISTER_CHIPID 0xD0
#define BMP_MAX_SENSORS 2
const char kBmpTypes[] PROGMEM = "BMP180|BMP280|BME280|BME680";
uint8_t bmp_address;
uint8_t bmp_addresses[] = { BMP_ADDR1, BMP_ADDR2 };
uint8_t bmp_type = 0;
uint8_t bmp_model = 0;
char bmp_name[7];
uint8_t bmp_count = 0;
uint8_t bmp_once = 1;
uint8_t bmp_valid = 0;
float bmp_temperature = 0.0;
float bmp_pressure = 0.0;
float bmp_humidity = 0.0;
struct BMPSTRUCT {
uint8_t bmp_address; // I2C bus address
char bmp_name[7]; // Sensor name - "BMPXXX"
uint8_t bmp_type = 0;
uint8_t bmp_model = 0;
uint8_t bmp_valid = 0;
#ifdef USE_BME680
uint8_t bme680_state = 0;
float bmp_gas_resistance = 0.0;
#endif // USE_BME680
float bmp_temperature = 0.0;
float bmp_pressure = 0.0;
float bmp_humidity = 0.0;
} bmp_sensors[BMP_MAX_SENSORS];
/*********************************************************************************************\
* BMP085 and BME180
@ -73,75 +83,86 @@ float bmp_humidity = 0.0;
#define BMP180_OSS 3
int16_t cal_ac1;
int16_t cal_ac2;
int16_t cal_ac3;
int16_t cal_b1;
int16_t cal_b2;
int16_t cal_mc;
int16_t cal_md;
uint16_t cal_ac4;
uint16_t cal_ac5;
uint16_t cal_ac6;
struct BMP180CALIBDATA {
int16_t cal_ac1;
int16_t cal_ac2;
int16_t cal_ac3;
int16_t cal_b1;
int16_t cal_b2;
int16_t cal_mc;
int16_t cal_md;
uint16_t cal_ac4;
uint16_t cal_ac5;
uint16_t cal_ac6;
} bmp180_cal_data[BMP_MAX_SENSORS];
boolean Bmp180Calibration()
boolean Bmp180Calibration(uint8_t bmp_idx)
{
cal_ac1 = I2cRead16(bmp_address, BMP180_AC1);
cal_ac2 = I2cRead16(bmp_address, BMP180_AC2);
cal_ac3 = I2cRead16(bmp_address, BMP180_AC3);
cal_ac4 = I2cRead16(bmp_address, BMP180_AC4);
cal_ac5 = I2cRead16(bmp_address, BMP180_AC5);
cal_ac6 = I2cRead16(bmp_address, BMP180_AC6);
cal_b1 = I2cRead16(bmp_address, BMP180_VB1);
cal_b2 = I2cRead16(bmp_address, BMP180_VB2);
cal_mc = I2cRead16(bmp_address, BMP180_MC);
cal_md = I2cRead16(bmp_address, BMP180_MD);
bmp180_cal_data[bmp_idx].cal_ac1 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC1);
bmp180_cal_data[bmp_idx].cal_ac2 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC2);
bmp180_cal_data[bmp_idx].cal_ac3 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC3);
bmp180_cal_data[bmp_idx].cal_ac4 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC4);
bmp180_cal_data[bmp_idx].cal_ac5 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC5);
bmp180_cal_data[bmp_idx].cal_ac6 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC6);
bmp180_cal_data[bmp_idx].cal_b1 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_VB1);
bmp180_cal_data[bmp_idx].cal_b2 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_VB2);
bmp180_cal_data[bmp_idx].cal_mc = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_MC);
bmp180_cal_data[bmp_idx].cal_md = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_MD);
// Check for Errors in calibration data. Value never is 0x0000 or 0xFFFF
if (!cal_ac1 | !cal_ac2 | !cal_ac3 | !cal_ac4 | !cal_ac5 | !cal_ac6 | !cal_b1 | !cal_b2 | !cal_mc | !cal_md) {
if (!bmp180_cal_data[bmp_idx].cal_ac1 |
!bmp180_cal_data[bmp_idx].cal_ac2 |
!bmp180_cal_data[bmp_idx].cal_ac3 |
!bmp180_cal_data[bmp_idx].cal_ac4 |
!bmp180_cal_data[bmp_idx].cal_ac5 |
!bmp180_cal_data[bmp_idx].cal_ac6 |
!bmp180_cal_data[bmp_idx].cal_b1 |
!bmp180_cal_data[bmp_idx].cal_b2 |
!bmp180_cal_data[bmp_idx].cal_mc |
!bmp180_cal_data[bmp_idx].cal_md) {
return false;
}
if ((cal_ac1 == (int16_t)0xFFFF) |
(cal_ac2 == (int16_t)0xFFFF) |
(cal_ac3 == (int16_t)0xFFFF) |
(cal_ac4 == 0xFFFF) |
(cal_ac5 == 0xFFFF) |
(cal_ac6 == 0xFFFF) |
(cal_b1 == (int16_t)0xFFFF) |
(cal_b2 == (int16_t)0xFFFF) |
(cal_mc == (int16_t)0xFFFF) |
(cal_md == (int16_t)0xFFFF)) {
if ((bmp180_cal_data[bmp_idx].cal_ac1 == (int16_t)0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_ac2 == (int16_t)0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_ac3 == (int16_t)0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_ac4 == 0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_ac5 == 0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_ac6 == 0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_b1 == (int16_t)0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_b2 == (int16_t)0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_mc == (int16_t)0xFFFF) |
(bmp180_cal_data[bmp_idx].cal_md == (int16_t)0xFFFF)) {
return false;
}
return true;
}
void Bmp180Read()
void Bmp180Read(uint8_t bmp_idx)
{
I2cWrite8(bmp_address, BMP180_REG_CONTROL, BMP180_TEMPERATURE);
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_CONTROL, BMP180_TEMPERATURE);
delay(5); // 5ms conversion time
int ut = I2cRead16(bmp_address, BMP180_REG_RESULT);
int32_t xt1 = (ut - (int32_t)cal_ac6) * ((int32_t)cal_ac5) >> 15;
int32_t xt2 = ((int32_t)cal_mc << 11) / (xt1 + (int32_t)cal_md);
int ut = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_RESULT);
int32_t xt1 = (ut - (int32_t)bmp180_cal_data[bmp_idx].cal_ac6) * ((int32_t)bmp180_cal_data[bmp_idx].cal_ac5) >> 15;
int32_t xt2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_mc << 11) / (xt1 + (int32_t)bmp180_cal_data[bmp_idx].cal_md);
int32_t bmp180_b5 = xt1 + xt2;
bmp_temperature = ((bmp180_b5 + 8) >> 4) / 10.0;
bmp_sensors[bmp_idx].bmp_temperature = ((bmp180_b5 + 8) >> 4) / 10.0;
I2cWrite8(bmp_address, BMP180_REG_CONTROL, BMP180_PRESSURE3); // Highest resolution
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_CONTROL, BMP180_PRESSURE3); // Highest resolution
delay(2 + (4 << BMP180_OSS)); // 26ms conversion time at ultra high resolution
uint32_t up = I2cRead24(bmp_address, BMP180_REG_RESULT);
uint32_t up = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_RESULT);
up >>= (8 - BMP180_OSS);
int32_t b6 = bmp180_b5 - 4000;
int32_t x1 = ((int32_t)cal_b2 * ((b6 * b6) >> 12)) >> 11;
int32_t x2 = ((int32_t)cal_ac2 * b6) >> 11;
int32_t x1 = ((int32_t)bmp180_cal_data[bmp_idx].cal_b2 * ((b6 * b6) >> 12)) >> 11;
int32_t x2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_ac2 * b6) >> 11;
int32_t x3 = x1 + x2;
int32_t b3 = ((((int32_t)cal_ac1 * 4 + x3) << BMP180_OSS) + 2) >> 2;
int32_t b3 = ((((int32_t)bmp180_cal_data[bmp_idx].cal_ac1 * 4 + x3) << BMP180_OSS) + 2) >> 2;
x1 = ((int32_t)cal_ac3 * b6) >> 13;
x2 = ((int32_t)cal_b1 * ((b6 * b6) >> 12)) >> 16;
x1 = ((int32_t)bmp180_cal_data[bmp_idx].cal_ac3 * b6) >> 13;
x2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_b1 * ((b6 * b6) >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
uint32_t b4 = ((uint32_t)cal_ac4 * (uint32_t)(x3 + 32768)) >> 15;
uint32_t b4 = ((uint32_t)bmp180_cal_data[bmp_idx].cal_ac4 * (uint32_t)(x3 + 32768)) >> 15;
uint32_t b7 = ((uint32_t)up - b3) * (uint32_t)(50000UL >> BMP180_OSS);
int32_t p;
@ -155,7 +176,7 @@ void Bmp180Read()
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
p += ((x1 + x2 + (int32_t)3791) >> 4);
bmp_pressure = (float)p / 100.0; // convert to mbar
bmp_sensors[bmp_idx].bmp_pressure = (float)p / 100.0; // convert to mbar
}
/*********************************************************************************************\
@ -204,97 +225,96 @@ struct BME280CALIBDATA
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9;
uint8_t dig_H1;
int16_t dig_H2;
uint8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
uint8_t dig_H1;
uint8_t dig_H3;
int8_t dig_H6;
} Bme280CalibrationData;
} Bme280CalibrationData[BMP_MAX_SENSORS];
boolean Bmx280Calibrate()
boolean Bmx280Calibrate(uint8_t bmp_idx)
{
// if (I2cRead8(bmp_address, BMP_REGISTER_CHIPID) != BME280_CHIPID) return false;
Bme280CalibrationData.dig_T1 = I2cRead16LE(bmp_address, BME280_REGISTER_DIG_T1);
Bme280CalibrationData.dig_T2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_T2);
Bme280CalibrationData.dig_T3 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_T3);
Bme280CalibrationData.dig_P1 = I2cRead16LE(bmp_address, BME280_REGISTER_DIG_P1);
Bme280CalibrationData.dig_P2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P2);
Bme280CalibrationData.dig_P3 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P3);
Bme280CalibrationData.dig_P4 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P4);
Bme280CalibrationData.dig_P5 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P5);
Bme280CalibrationData.dig_P6 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P6);
Bme280CalibrationData.dig_P7 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P7);
Bme280CalibrationData.dig_P8 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P8);
Bme280CalibrationData.dig_P9 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_P9);
if (BME280_CHIPID == bmp_type) { // #1051
Bme280CalibrationData.dig_H1 = I2cRead8(bmp_address, BME280_REGISTER_DIG_H1);
Bme280CalibrationData.dig_H2 = I2cReadS16_LE(bmp_address, BME280_REGISTER_DIG_H2);
Bme280CalibrationData.dig_H3 = I2cRead8(bmp_address, BME280_REGISTER_DIG_H3);
Bme280CalibrationData.dig_H4 = (I2cRead8(bmp_address, BME280_REGISTER_DIG_H4) << 4) | (I2cRead8(bmp_address, BME280_REGISTER_DIG_H4 + 1) & 0xF);
Bme280CalibrationData.dig_H5 = (I2cRead8(bmp_address, BME280_REGISTER_DIG_H5 + 1) << 4) | (I2cRead8(bmp_address, BME280_REGISTER_DIG_H5) >> 4);
Bme280CalibrationData.dig_H6 = (int8_t)I2cRead8(bmp_address, BME280_REGISTER_DIG_H6);
I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0x00); // sleep mode since writes to config can be ignored in normal mode (Datasheet 5.4.5/6 page 27)
Bme280CalibrationData[bmp_idx].dig_T1 = I2cRead16LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T1);
Bme280CalibrationData[bmp_idx].dig_T2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T2);
Bme280CalibrationData[bmp_idx].dig_T3 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T3);
Bme280CalibrationData[bmp_idx].dig_P1 = I2cRead16LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P1);
Bme280CalibrationData[bmp_idx].dig_P2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P2);
Bme280CalibrationData[bmp_idx].dig_P3 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P3);
Bme280CalibrationData[bmp_idx].dig_P4 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P4);
Bme280CalibrationData[bmp_idx].dig_P5 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P5);
Bme280CalibrationData[bmp_idx].dig_P6 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P6);
Bme280CalibrationData[bmp_idx].dig_P7 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P7);
Bme280CalibrationData[bmp_idx].dig_P8 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P8);
Bme280CalibrationData[bmp_idx].dig_P9 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P9);
if (BME280_CHIPID == bmp_sensors[bmp_idx].bmp_type) { // #1051
Bme280CalibrationData[bmp_idx].dig_H1 = I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H1);
Bme280CalibrationData[bmp_idx].dig_H2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H2);
Bme280CalibrationData[bmp_idx].dig_H3 = I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H3);
Bme280CalibrationData[bmp_idx].dig_H4 = (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H4) << 4) | (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H4 + 1) & 0xF);
Bme280CalibrationData[bmp_idx].dig_H5 = (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H5 + 1) << 4) | (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H5) >> 4);
Bme280CalibrationData[bmp_idx].dig_H6 = (int8_t)I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H6);
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0x00); // sleep mode since writes to config can be ignored in normal mode (Datasheet 5.4.5/6 page 27)
// Set before CONTROL_meas (DS 5.4.3)
I2cWrite8(bmp_address, BME280_REGISTER_CONTROLHUMID, 0x01); // 1x oversampling
I2cWrite8(bmp_address, BME280_REGISTER_CONFIG, 0xA0); // 1sec standby between measurements (to limit self heating), IIR filter off
I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0x27); // 1x oversampling, normal mode
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROLHUMID, 0x01); // 1x oversampling
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONFIG, 0xA0); // 1sec standby between measurements (to limit self heating), IIR filter off
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0x27); // 1x oversampling, normal mode
} else {
I2cWrite8(bmp_address, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit)
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit)
}
return true;
}
void Bme280Read(void)
void Bme280Read(uint8_t bmp_idx)
{
int32_t adc_T = I2cRead24(bmp_address, BME280_REGISTER_TEMPDATA);
int32_t adc_T = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_TEMPDATA);
adc_T >>= 4;
int32_t vart1 = ((((adc_T >> 3) - ((int32_t)Bme280CalibrationData.dig_T1 << 1))) * ((int32_t)Bme280CalibrationData.dig_T2)) >> 11;
int32_t vart2 = (((((adc_T >> 4) - ((int32_t)Bme280CalibrationData.dig_T1)) * ((adc_T >> 4) - ((int32_t)Bme280CalibrationData.dig_T1))) >> 12) *
((int32_t)Bme280CalibrationData.dig_T3)) >> 14;
int32_t vart1 = ((((adc_T >> 3) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1 << 1))) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_T2)) >> 11;
int32_t vart2 = (((((adc_T >> 4) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1)) * ((adc_T >> 4) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1))) >> 12) *
((int32_t)Bme280CalibrationData[bmp_idx].dig_T3)) >> 14;
int32_t t_fine = vart1 + vart2;
float T = (t_fine * 5 + 128) >> 8;
bmp_temperature = T / 100.0;
bmp_sensors[bmp_idx].bmp_temperature = T / 100.0;
int32_t adc_P = I2cRead24(bmp_address, BME280_REGISTER_PRESSUREDATA);
int32_t adc_P = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_PRESSUREDATA);
adc_P >>= 4;
int64_t var1 = ((int64_t)t_fine) - 128000;
int64_t var2 = var1 * var1 * (int64_t)Bme280CalibrationData.dig_P6;
var2 = var2 + ((var1 * (int64_t)Bme280CalibrationData.dig_P5) << 17);
var2 = var2 + (((int64_t)Bme280CalibrationData.dig_P4) << 35);
var1 = ((var1 * var1 * (int64_t)Bme280CalibrationData.dig_P3) >> 8) + ((var1 * (int64_t)Bme280CalibrationData.dig_P2) << 12);
var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)Bme280CalibrationData.dig_P1) >> 33;
int64_t var2 = var1 * var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P6;
var2 = var2 + ((var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P5) << 17);
var2 = var2 + (((int64_t)Bme280CalibrationData[bmp_idx].dig_P4) << 35);
var1 = ((var1 * var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P3) >> 8) + ((var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P2) << 12);
var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)Bme280CalibrationData[bmp_idx].dig_P1) >> 33;
if (0 == var1) {
return; // avoid exception caused by division by zero
}
int64_t p = 1048576 - adc_P;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((int64_t)Bme280CalibrationData.dig_P9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((int64_t)Bme280CalibrationData.dig_P8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((int64_t)Bme280CalibrationData.dig_P7) << 4);
bmp_pressure = (float)p / 25600.0;
var1 = (((int64_t)Bme280CalibrationData[bmp_idx].dig_P9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((int64_t)Bme280CalibrationData[bmp_idx].dig_P8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((int64_t)Bme280CalibrationData[bmp_idx].dig_P7) << 4);
bmp_sensors[bmp_idx].bmp_pressure = (float)p / 25600.0;
if (BMP280_CHIPID == bmp_type) { return; }
if (BMP280_CHIPID == bmp_sensors[bmp_idx].bmp_type) { return; }
int32_t adc_H = I2cRead16(bmp_address, BME280_REGISTER_HUMIDDATA);
int32_t adc_H = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_HUMIDDATA);
int32_t v_x1_u32r = (t_fine - ((int32_t)76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t)Bme280CalibrationData.dig_H4) << 20) -
(((int32_t)Bme280CalibrationData.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) *
(((((((v_x1_u32r * ((int32_t)Bme280CalibrationData.dig_H6)) >> 10) *
(((v_x1_u32r * ((int32_t)Bme280CalibrationData.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) +
((int32_t)2097152)) * ((int32_t)Bme280CalibrationData.dig_H2) + 8192) >> 14));
v_x1_u32r = (((((adc_H << 14) - (((int32_t)Bme280CalibrationData[bmp_idx].dig_H4) << 20) -
(((int32_t)Bme280CalibrationData[bmp_idx].dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) *
(((((((v_x1_u32r * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H6)) >> 10) *
(((v_x1_u32r * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H3)) >> 11) + ((int32_t)32768))) >> 10) +
((int32_t)2097152)) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
((int32_t)Bme280CalibrationData.dig_H1)) >> 4));
((int32_t)Bme280CalibrationData[bmp_idx].dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
float h = (v_x1_u32r >> 12);
bmp_humidity = h / 1024.0;
bmp_sensors[bmp_idx].bmp_humidity = h / 1024.0;
}
#ifdef USE_BME680
@ -304,92 +324,89 @@ void Bme280Read(void)
#include <bme680.h>
struct bme680_dev gas_sensor;
float bmp_gas_resistance = 0.0;
uint8_t bme680_state = 0;
struct bme680_dev gas_sensor[BMP_MAX_SENSORS];
static void BmeDelayMs(uint32_t ms)
{
delay(ms);
}
boolean Bme680Init()
boolean Bme680Init(uint8_t bmp_idx)
{
gas_sensor.dev_id = bmp_address;
gas_sensor.intf = BME680_I2C_INTF;
gas_sensor.read = &I2cReadBuffer;
gas_sensor.write = &I2cWriteBuffer;
gas_sensor.delay_ms = BmeDelayMs;
gas_sensor[bmp_idx].dev_id = bmp_sensors[bmp_idx].bmp_address;
gas_sensor[bmp_idx].intf = BME680_I2C_INTF;
gas_sensor[bmp_idx].read = &I2cReadBuffer;
gas_sensor[bmp_idx].write = &I2cWriteBuffer;
gas_sensor[bmp_idx].delay_ms = BmeDelayMs;
/* amb_temp can be set to 25 prior to configuring the gas sensor
* or by performing a few temperature readings without operating the gas sensor.
*/
gas_sensor.amb_temp = 25;
gas_sensor[bmp_idx].amb_temp = 25;
int8_t rslt = BME680_OK;
rslt = bme680_init(&gas_sensor);
rslt = bme680_init(&gas_sensor[bmp_idx]);
if (rslt != BME680_OK) { return false; }
/* Set the temperature, pressure and humidity settings */
gas_sensor.tph_sett.os_hum = BME680_OS_2X;
gas_sensor.tph_sett.os_pres = BME680_OS_4X;
gas_sensor.tph_sett.os_temp = BME680_OS_8X;
gas_sensor.tph_sett.filter = BME680_FILTER_SIZE_3;
gas_sensor[bmp_idx].tph_sett.os_hum = BME680_OS_2X;
gas_sensor[bmp_idx].tph_sett.os_pres = BME680_OS_4X;
gas_sensor[bmp_idx].tph_sett.os_temp = BME680_OS_8X;
gas_sensor[bmp_idx].tph_sett.filter = BME680_FILTER_SIZE_3;
/* Set the remaining gas sensor settings and link the heating profile */
gas_sensor.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
gas_sensor[bmp_idx].gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
/* Create a ramp heat waveform in 3 steps */
gas_sensor.gas_sett.heatr_temp = 320; /* degree Celsius */
gas_sensor.gas_sett.heatr_dur = 150; /* milliseconds */
gas_sensor[bmp_idx].gas_sett.heatr_temp = 320; /* degree Celsius */
gas_sensor[bmp_idx].gas_sett.heatr_dur = 150; /* milliseconds */
/* Select the power mode */
/* Must be set before writing the sensor configuration */
gas_sensor.power_mode = BME680_FORCED_MODE;
gas_sensor[bmp_idx].power_mode = BME680_FORCED_MODE;
/* Set the required sensor settings needed */
uint8_t set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | BME680_GAS_SENSOR_SEL;
/* Set the desired sensor configuration */
rslt = bme680_set_sensor_settings(set_required_settings,&gas_sensor);
rslt = bme680_set_sensor_settings(set_required_settings,&gas_sensor[bmp_idx]);
if (rslt != BME680_OK) { return false; }
bme680_state = 0;
bmp_sensors[bmp_idx].bme680_state = 0;
return true;
}
void Bme680Read()
void Bme680Read(uint8_t bmp_idx)
{
int8_t rslt = BME680_OK;
if (BME680_CHIPID == bmp_type) {
if (0 == bme680_state) {
if (BME680_CHIPID == bmp_sensors[bmp_idx].bmp_type) {
if (0 == bmp_sensors[bmp_idx].bme680_state) {
/* Trigger the next measurement if you would like to read data out continuously */
rslt = bme680_set_sensor_mode(&gas_sensor);
rslt = bme680_set_sensor_mode(&gas_sensor[bmp_idx]);
if (rslt != BME680_OK) { return; }
/* Get the total measurement duration so as to sleep or wait till the
* measurement is complete */
// uint16_t meas_period;
// bme680_get_profile_dur(&meas_period, &gas_sensor);
// bme680_get_profile_dur(&meas_period, &gas_sensor[bmp_idx]);
// delay(meas_period); /* Delay till the measurement is ready */ // 183 mSec - we'll wait a second
bme680_state = 1;
bmp_sensors[bmp_idx].bme680_state = 1;
} else {
bme680_state = 0;
bmp_sensors[bmp_idx].bme680_state = 0;
struct bme680_field_data data;
rslt = bme680_get_sensor_data(&data, &gas_sensor);
rslt = bme680_get_sensor_data(&data, &gas_sensor[bmp_idx]);
if (rslt != BME680_OK) { return; }
bmp_temperature = data.temperature / 100.0;
bmp_humidity = data.humidity / 1000.0;
bmp_pressure = data.pressure / 100.0;
bmp_sensors[bmp_idx].bmp_temperature = data.temperature / 100.0;
bmp_sensors[bmp_idx].bmp_humidity = data.humidity / 1000.0;
bmp_sensors[bmp_idx].bmp_pressure = data.pressure / 100.0;
/* Avoid using measurements from an unstable heating setup */
if (data.status & BME680_GASM_VALID_MSK) {
bmp_gas_resistance = data.gas_resistance / 1000.0;
bmp_sensors[bmp_idx].bmp_gas_resistance = data.gas_resistance / 1000.0;
} else {
bmp_gas_resistance = 0;
bmp_sensors[bmp_idx].bmp_gas_resistance = 0;
}
}
}
@ -402,65 +419,66 @@ void Bme680Read()
void BmpDetect()
{
if (bmp_type) { return; }
if (bmp_count) return;
for (byte i = 0; i < sizeof(bmp_addresses); i++) {
bmp_address = bmp_addresses[i];
bmp_type = I2cRead8(bmp_address, BMP_REGISTER_CHIPID);
for (byte i = 0; i < BMP_MAX_SENSORS; i++) {
uint8_t bmp_type = I2cRead8(bmp_addresses[i], BMP_REGISTER_CHIPID);
if (bmp_type) {
break;
}
}
if (bmp_type) {
bmp_model = 0;
boolean success = false;
switch (bmp_type) {
case BMP180_CHIPID:
success = Bmp180Calibration();
break;
case BME280_CHIPID:
bmp_model++; // 2
case BMP280_CHIPID:
bmp_model++; // 1
success = Bmx280Calibrate();
break;
bmp_sensors[bmp_count].bmp_address = bmp_addresses[i];
bmp_sensors[bmp_count].bmp_type = bmp_type;
bmp_sensors[bmp_count].bmp_model = 0;
boolean success = false;
switch (bmp_type) {
case BMP180_CHIPID:
success = Bmp180Calibration(bmp_count);
break;
case BME280_CHIPID:
bmp_sensors[bmp_count].bmp_model++; // 2
case BMP280_CHIPID:
bmp_sensors[bmp_count].bmp_model++; // 1
success = Bmx280Calibrate(bmp_count);
break;
#ifdef USE_BME680
case BME680_CHIPID:
bmp_model = 3; // 3
success = Bme680Init();
break;
case BME680_CHIPID:
bmp_sensors[bmp_count].bmp_model = 3; // 3
success = Bme680Init(bmp_count);
break;
#endif // USE_BME680
}
if (success) {
GetTextIndexed(bmp_name, sizeof(bmp_name), bmp_model, kBmpTypes);
snprintf_P(log_data, sizeof(log_data), S_LOG_I2C_FOUND_AT, bmp_name, bmp_address);
AddLog(LOG_LEVEL_DEBUG);
}
else {
bmp_type = 0;
}
if (success) {
GetTextIndexed(bmp_sensors[bmp_count].bmp_name, sizeof(bmp_sensors[bmp_count].bmp_name), bmp_sensors[bmp_count].bmp_model, kBmpTypes);
snprintf_P(log_data, sizeof(log_data), S_LOG_I2C_FOUND_AT, bmp_sensors[bmp_count].bmp_name, bmp_sensors[bmp_count].bmp_address);
AddLog(LOG_LEVEL_DEBUG);
bmp_count++;
}
}
}
}
void BmpRead()
{
switch (bmp_type) {
case BMP180_CHIPID:
Bmp180Read();
break;
case BMP280_CHIPID:
case BME280_CHIPID:
Bme280Read();
break;
for (byte bmp_idx = 0; bmp_idx < bmp_count; bmp_idx++) {
switch (bmp_sensors[bmp_idx].bmp_type) {
case BMP180_CHIPID:
Bmp180Read(bmp_idx);
break;
case BMP280_CHIPID:
case BME280_CHIPID:
Bme280Read(bmp_idx);
break;
#ifdef USE_BME680
case BME680_CHIPID:
Bme680Read();
break;
case BME680_CHIPID:
Bme680Read(bmp_idx);
break;
#endif // USE_BME680
}
if (bmp_sensors[bmp_idx].bmp_temperature != 0.0) {
bmp_sensors[bmp_idx].bmp_temperature = ConvertTemp(bmp_sensors[bmp_idx].bmp_temperature);
}
}
if (bmp_temperature != 0.0) { bmp_temperature = ConvertTemp(bmp_temperature); }
SetGlobalValues(bmp_temperature, bmp_humidity);
SetGlobalValues(bmp_sensors[0].bmp_temperature, bmp_sensors[0].bmp_humidity);
}
void BmpEverySecond()
@ -477,72 +495,91 @@ void BmpEverySecond()
void BmpShow(boolean json)
{
if (bmp_type) {
float bmp_sealevel = 0.0;
char temperature[10];
char pressure[10];
char sea_pressure[10];
char humidity[10];
for (byte bmp_idx = 0; bmp_idx < bmp_count; bmp_idx++) {
if (bmp_sensors[bmp_idx].bmp_type) {
float bmp_sealevel = 0.0;
char temperature[10];
char pressure[10];
char sea_pressure[10];
char humidity[10];
char name[10];
if (bmp_pressure != 0.0) {
bmp_sealevel = (bmp_pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0), 5.255)) - 21.6;
}
dtostrfd(bmp_temperature, Settings.flag2.temperature_resolution, temperature);
dtostrfd(bmp_pressure, Settings.flag2.pressure_resolution, pressure);
dtostrfd(bmp_sealevel, Settings.flag2.pressure_resolution, sea_pressure);
dtostrfd(bmp_humidity, Settings.flag2.humidity_resolution, humidity);
#ifdef USE_BME680
char gas_resistance[10];
dtostrfd(bmp_gas_resistance, 2, gas_resistance);
#endif // USE_BME680
if (json) {
char json_humidity[40];
snprintf_P(json_humidity, sizeof(json_humidity), PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
char json_sealevel[40];
snprintf_P(json_sealevel, sizeof(json_sealevel), PSTR(",\"" D_JSON_PRESSUREATSEALEVEL "\":%s"), sea_pressure);
#ifdef USE_BME680
char json_gas[40];
snprintf_P(json_gas, sizeof(json_gas), PSTR(",\"" D_JSON_GAS "\":%s"), gas_resistance);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s%s}"),
mqtt_data, bmp_name, temperature, (bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : "", (bmp_model >= 3) ? json_gas : "");
#else
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s}"),
mqtt_data, bmp_name, temperature, (bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : "");
#endif // USE_BME680
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzTempHumPressureSensor(temperature, humidity, pressure);
#ifdef USE_BME680
if (bmp_model >= 3) { DomoticzSensor(DZ_AIRQUALITY, (uint32_t)bmp_gas_resistance); }
#endif // USE_BME680
if (bmp_sensors[bmp_idx].bmp_pressure != 0.0) {
bmp_sealevel = (bmp_sensors[bmp_idx].bmp_pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0), 5.255)) - 21.6;
}
#endif // USE_DOMOTICZ
snprintf(name, sizeof(name), bmp_sensors[bmp_idx].bmp_name);
if (bmp_count > 1) {
snprintf_P(name, sizeof(name), PSTR("%s-%02X"), name, bmp_sensors[bmp_idx].bmp_address); // BMXXXX-XX
}
dtostrfd(bmp_sensors[bmp_idx].bmp_temperature, Settings.flag2.temperature_resolution, temperature);
dtostrfd(bmp_sensors[bmp_idx].bmp_pressure, Settings.flag2.pressure_resolution, pressure);
dtostrfd(bmp_sealevel, Settings.flag2.pressure_resolution, sea_pressure);
dtostrfd(bmp_sensors[bmp_idx].bmp_humidity, Settings.flag2.humidity_resolution, humidity);
#ifdef USE_BME680
char gas_resistance[10];
dtostrfd(bmp_sensors[bmp_idx].bmp_gas_resistance, 2, gas_resistance);
#endif // USE_BME680
if (json) {
char json_humidity[40];
snprintf_P(json_humidity, sizeof(json_humidity), PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
char json_sealevel[40];
snprintf_P(json_sealevel, sizeof(json_sealevel), PSTR(",\"" D_JSON_PRESSUREATSEALEVEL "\":%s"), sea_pressure);
#ifdef USE_BME680
char json_gas[40];
snprintf_P(json_gas, sizeof(json_gas), PSTR(",\"" D_JSON_GAS "\":%s"), gas_resistance);
snprintf_P(mqtt_data,
sizeof(mqtt_data),
PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s%s}"),
mqtt_data,
name,
temperature,
(bmp_sensors[bmp_idx].bmp_model >= 2) ? json_humidity : "",
pressure,
(Settings.altitude != 0) ? json_sealevel : "",
(bmp_sensors[bmp_idx].bmp_model >= 3) ? json_gas : ""
);
#else
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s}"),
mqtt_data, name, temperature, (bmp_sensors[bmp_idx].bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : "");
#endif // USE_BME680
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == bmp_idx)) { // We want the same first sensor to report to Domoticz in case a read is missed
DomoticzTempHumPressureSensor(temperature, humidity, pressure);
#ifdef USE_BME680
if (bmp_sensors[bmp_idx].bmp_model >= 3) { DomoticzSensor(DZ_AIRQUALITY, (uint32_t)bmp_sensors[bmp_idx].bmp_gas_resistance); }
#endif // USE_BME680
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (0 == tele_period) {
KnxSensor(KNX_TEMPERATURE, bmp_temperature);
KnxSensor(KNX_HUMIDITY, bmp_humidity);
}
if (0 == tele_period) {
KnxSensor(KNX_TEMPERATURE, bmp_sensors[bmp_idx].bmp_temperature);
KnxSensor(KNX_HUMIDITY, bmp_sensors[bmp_idx].bmp_humidity);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, bmp_name, temperature, TempUnit());
if (bmp_model >= 2) {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, bmp_name, humidity);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_PRESSURE, mqtt_data, bmp_name, pressure);
if (Settings.altitude != 0) {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_SEAPRESSURE, mqtt_data, bmp_name, sea_pressure);
}
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, name, temperature, TempUnit());
if (bmp_sensors[bmp_idx].bmp_model >= 2) {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, name, humidity);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_PRESSURE, mqtt_data, name, pressure);
if (Settings.altitude != 0) {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_SEAPRESSURE, mqtt_data, name, sea_pressure);
}
#ifdef USE_BME680
if (bmp_model >= 3) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s{s}%s " D_GAS "{m}%s " D_UNIT_KILOOHM "{e}"), mqtt_data, bmp_name, gas_resistance);
}
if (bmp_sensors[bmp_idx].bmp_model >= 3) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s{s}%s " D_GAS "{m}%s " D_UNIT_KILOOHM "{e}"), mqtt_data, name, gas_resistance);
}
#endif // USE_BME680
#endif // USE_WEBSERVER
#endif // USE_WEBSERVER
}
}
}
}
@ -572,11 +609,11 @@ boolean Xsns09(byte function)
case FUNC_WEB_APPEND:
BmpShow(0);
break;
#endif // USE_WEBSERVER
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_BMP
#endif // USE_I2C
#endif // USE_BMP
#endif // USE_I2C