Merge pull request #9 from arendst/development

Update
This commit is contained in:
Jason2866 2019-09-30 16:49:43 +02:00 committed by GitHub
commit 6fbb12bb6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
72 changed files with 4072 additions and 1865 deletions

View File

@ -8,11 +8,11 @@ about: Create a report to help us improve
> This BUG issue template is meant to REPORT Tasmota software BUGS ONLY>
>
> Please DO NOT OPEN AN ISSUE:
> - If your Tasmota version is not the latest from the development branch, please update your device before submitting your issue. Your problem might already be solved. The latest precompiled binaries of Tasmota can be downloaded from http://thehackbox.org/tasmota/>
> - If your issue is a flashing issue, please address it to the Tasmota Support Chat>
> - If your issue is compilation problem, please address it to the Tasmota Support Chat>
> - If your issue has been addresed before (duplicated issue), please ask in the original issue>
> - If your issue is a Wi-Fi problem or MQTT problem, please try the steps provided in the FAQ and troubleshooting wiki articles>
> - If your Tasmota version is not the latest from the development branch, please update your device before submitting your issue. Your problem might already be solved. The latest precompiled binaries of Tasmota can be downloaded from http://thehackbox.org/tasmota/
> - If your issue is a flashing issue, please address it to the [Tasmota Support Chat](https://discord.gg/Ks2Kzd4)
> - If your issue is compilation problem, please address it to the [Tasmota Support Chat](https://discord.gg/Ks2Kzd4)
> - If your issue has been addressed before (i.e., duplicated issue), please ask in the original issue
> - If your issue is a Wi-Fi problem or MQTT problem, please try the steps provided in the [FAQ](https://github.com/arendst/Sonoff-Tasmota/wiki/FAQ) and troubleshooting wiki articles
>
> Please take a few minutes to complete the requested information below. Our ability to provide assistance is greatly hampered without it. The details requested potentially affect which options to pursue. The small amount of time you spend completing the template will also help the volunteers providing the assistance to you to reduce the time required to help you.
@ -26,33 +26,35 @@ _Make sure your have performed every step and checked the applicable boxes befor
**FAILURE TO COMPLETE THE REQUESTED INFORMATION WILL RESULT IN YOUR ISSUE BEING CLOSED**
- [ ] Read the [Contributing Guide and Policy](https://github.com/arendst/Sonoff-Tasmota/blob/development/CONTRIBUTING.md) and [the Code of Conduct](https://github.com/arendst/Sonoff-Tasmota/blob/development/CODE_OF_CONDUCT.md)
- [ ] Searched the problem in issues (https://github.com/arendst/Sonoff-Tasmota/issues)
- [ ] Searched the problem in the wiki (https://github.com/arendst/Sonoff-Tasmota/wiki/Troubleshooting)
- [ ] Searched the problem in the forum (https://groups.google.com/d/forum/sonoffusers)
- [ ] Searched the problem in the chat (https://discord.gg/Ks2Kzd4)
- [ ] Searched the problem in [issues](https://github.com/arendst/Sonoff-Tasmota/issues)
- [ ] Searched the problem in the [wiki](https://github.com/arendst/Sonoff-Tasmota/wiki/Troubleshooting)
- [ ] Searched the problem in the [forum](https://groups.google.com/d/forum/sonoffusers)
- [ ] Searched the problem in the [chat](https://discord.gg/Ks2Kzd4)
- [ ] Device used (e.g., Sonoff Basic): _____
- [ ] Tasmota binary firmware version number used: _____
- [ ] Pre-compiled
- [ ] Self-compiled
- [ ] IDE / Compiler
- [ ] IDE / Compiler used: _____
- [ ] Flashing tools used: _____
- [ ] Provide the output of command ``Backlog Template; Module; GPIO``:
- [ ] Provide the output of command: ``Backlog Template; Module; GPIO``:
```
Configuration output here:
```
- [ ] If using rules, provide the output of command ``Backlog Rule1; Rule2; Rule3``:
- [ ] If using rules, provide the output of this command: ``Backlog Rule1; Rule2; Rule3``:
```
Rules output here:
```
- [ ] Provide the output of command ``Status 0``:
- [ ] Provide the output of this command: ``Status 0``:
```
STATUS 0 output here:
```
- [ ] Provide the output of console when you experience your issue if applicable:
- [ ] Provide the output of the Console log output when you experience your issue; if applicable:
_(Please use_ ``weblog 4`` _for more debug information)_
```
Console output here:

View File

@ -8,13 +8,13 @@ about: Users Troubleshooting Help
> This troubleshooting issue template is meant to help Tasmota users with difficult problems. It is aimed to be opened if using the wiki and the support chat could not solve the issue. The Github Issue tracker is NOT a general discussion forum!
>
> Please DO NOT OPEN AN ISSUE:
> - If you have general questions or you need help on Tasmota usage, go to the Tasmota support chat
> - If you have general questions or you need help on Tasmota usage, go to the [Tasmota Support Chat](https://discord.gg/Ks2Kzd4)
> - If your Tasmota version is not the latest from the development branch, please update your device before submitting your issue. Your problem might already be solved. The latest precompiled binaries of Tasmota can be downloaded from http://thehackbox.org/tasmota/
> - If your issue is about a new device, please use the Tasmota [Template](../wiki/Templates) feature.
> - If your issue is a flashing issue, please address it to the Tasmota Support Chat
> - If your issue is compilation problem, please address it to the Tasmota Support Chat
> - If your issue has been addresed before (duplicated issue), please ask in the original issue
> - If your issue is a Wi-Fi problem or MQTT problem, please try the steps provided in the FAQ and troubleshooting wiki articles
> - If your issue is a flashing issue, please address it to the [Tasmota Support Chat](https://discord.gg/Ks2Kzd4)
> - If your issue is compilation problem, please address it to the [Tasmota Support Chat](https://discord.gg/Ks2Kzd4)
> - If your issue has been addressed before (i.e., duplicated issue), please ask in the original issue
> - If your issue is a Wi-Fi problem or MQTT problem, please try the steps provided in the [FAQ](https://github.com/arendst/Sonoff-Tasmota/wiki/FAQ) and troubleshooting wiki articles
>
> Please take a few minutes to complete the requested information below. Our ability to provide assistance is greatly hampered without it. The details requested potentially affect which options to pursue. The small amount of time you spend completing the template will also help the volunteers providing the assistance to you to reduce the time required to help you.
@ -36,25 +36,27 @@ _Make sure these boxes are checked before submitting your issue. Thank you_
- [ ] Tasmota binary firmware version number used: _____
- [ ] Pre-compiled
- [ ] Self-compiled
- [ ] IDE / Compiler
- [ ] IDE / Compiler used: _____
- [ ] Flashing tools used: _____
- [ ] Provide the output of command ``Backlog Template; Module; GPIO``:
- [ ] Provide the output of this command: ``Backlog Template; Module; GPIO``:
```
Configuration output here:
```
- [ ] If using rules, provide the output of command ``Backlog Rule1; Rule2; Rule3``:
- [ ] If using rules, provide the output of this command: ``Backlog Rule1; Rule2; Rule3``:
```
Rules output here:
```
- [ ] Provide the output of command ``Status 0``:
- [ ] Provide the output of this command: ``Status 0``:
```
STATUS 0 output here:
```
- [ ] Provide the output of console when you experience your issue if applicable:
- [ ] Provide the output of the Console log output when you experience your issue; if applicable:
_(Please use_ ``weblog 4`` _for more debug information)_
```
Console output here:

1
.gitignore vendored
View File

@ -7,6 +7,7 @@
.piolibdeps
.clang_complete
.gcc-flags.json
.cache
sonoff/user_config_override.h
build
firmware.map

View File

@ -1,4 +1,4 @@
<img src="/tools/logo/TASMOTA_FullLogo_Vector.svg" alt="Logo" align="right" height="76"/>
<img src="https://github.com/arendst/Sonoff-Tasmota/blob/master/tools/logo/TASMOTA_FullLogo_Vector.svg" alt="Logo" align="right" height="76"/>
# RELEASE NOTES
@ -10,8 +10,13 @@ See [wiki migration path](https://github.com/arendst/Sonoff-Tasmota/wiki/Upgrade
3. Migrate to **Sonoff-Tasmota 5.14**
4. Migrate to **Sonoff-Tasmota 6.x**
## Core version 2.3.0 vs 2.4.2
This release is based on ESP8266/Arduino library core 2.3.0 (again) as some people encountered wifi related issues on core 2.4.2. For others core 2.4.2 is working just fine. Both version are available from http://thehackbox.org/tasmota/release/
## Support of TLS
TLS support for core 2.3.0 is removed.
TLS is supported on core 2.4.2 and up. To save resources when TLS is enabled mDNS needs to be disabled. In addition to TLS using fingerprints now also user supplied CA certs and AWS IoT is supported. See full documentation on https://github.com/arendst/Sonoff-Tasmota/wiki/AWS-IoT
## Core version 2.3.0 vs 2.4.2 vs 2.5.2
This release is based on ESP8266/Arduino library core 2.3.0 as some people encountered wifi related issues on core 2.4.2 and 2.5.2. For others core 2.4.2 or 2.5.2 is working just fine. All version are available from http://thehackbox.org/tasmota/release/
## Change in default initial configuration tool
Firmware binary **sonoff-classic.bin** supports **WifiManager, Wps and SmartConfig** for initial configuration. The default tool is **Wps**.
@ -92,6 +97,7 @@ Module | Description
67 SP10 | Tuya SP10 Wifi Smart Switch with Energy Monitoring
68 WAGA CHCZ02MB | WAGA life CHCZ02MB Wifi Smart Switch with Energy Monitoring
69 SYF05 | Sunyesmart SYF05 RGBWW Wifi Led Bulb
70 Sonoff L1 | Sonoff L1 light strip
## Provided Binary Downloads
The following binary downloads have been compiled with ESP8266/Arduino library core version **2.3.0**.
@ -107,6 +113,8 @@ The following binary downloads have been compiled with ESP8266/Arduino library c
Core version **2.4.2** binaries can be found at http://thehackbox.org/tasmota/release/020402/
Core version **2.5.2** binaries can be found at http://thehackbox.org/tasmota/release/020502/
## Available Features and Sensors
| Feature or Sensor | minimal | basic | classic | sonoff | knx | sensors | display | Remarks
@ -118,9 +126,12 @@ Core version **2.4.2** binaries can be found at http://thehackbox.org/tasmota/re
| USE_DOMOTICZ | - | - | x | x | x | x | - |
| USE_HOME_ASSISTANT | - | - | - | x | x | x | - |
| USE_MQTT_TLS | - | - | - | - | - | - | - |
| USE_MQTT_TLS_CA_CERT | - | - | - | - | - | - | - |
| USE_MQTT_AWS_IOT | - | - | - | - | - | - | - |
| USE_KNX | - | - | - | - | x | - | - |
| USE_WEBSERVER | x | x | x | x | x | x | x | WifiManager
| USE_EMULATION | - | x | x | x | - | x | - |
| USE_EMULATION_HUE | - | x | x | x | - | x | - |
| USE_EMULATION_WEMO | - | x | x | x | - | x | - |
| USE_DISCOVERY | - | - | x | x | x | x | x |
| WEBSERVER_ADVERTISE | - | - | x | x | x | x | x |
| MQTT_HOST_DISCOVERY | - | - | x | x | x | x | x |
@ -128,12 +139,15 @@ Core version **2.4.2** binaries can be found at http://thehackbox.org/tasmota/re
| USE_TIMERS_WEB | - | x | - | x | x | x | x |
| USE_SUNRISE | - | x | - | x | x | x | x |
| USE_RULES | - | x | - | x | x | x | x |
| USE_SCRIPT | - | - | - | - | - | - | - |
| USE_EXPRESSION | - | - | - | - | - | - | - |
| | | | | | | | |
| USE_ADC_VCC | x | x | x | x | x | - | x |
| USE_ADC_VCC | x | x | x | - | - | - | - |
| USE_COUNTER | - | - | - | x | x | x | x |
| USE_DS18B20 | - | - | - | - | - | - | - | Single sensor
| USE_DS18x20 | - | - | x | x | x | x | x | Multiple sensors
| USE_DS18x20_LEGACY | - | - | - | - | - | - | - | Multiple sensors
| USE_DHT | - | - | x | x | x | x | x |
| | | | | | | | |
| Feature or Sensor | minimal | basic | classic | sonoff | knx | sensors | display | Remarks
| USE_I2C | - | - | - | x | x | x | x |
@ -162,6 +176,10 @@ Core version **2.4.2** binaries can be found at http://thehackbox.org/tasmota/re
| USE_MGC3130 | - | - | - | - | - | - | - |
| USE_MAX44009 | - | - | - | - | - | - | - |
| USE_SCD30 | - | - | - | - | - | x | - |
| USE_SPS30 | - | - | - | - | - | - | - |
| USE_ADE7953 | - | - | - | x | x | x | x |
| USE_VL53L0X | - | - | - | - | - | - | - |
| USE_MLX90614 | - | - | - | - | - | - | - |
| | | | | | | | |
| Feature or Sensor | minimal | basic | classic | sonoff | knx | sensors | display | Remarks
| USE_SPI | - | - | - | - | - | - | x |
@ -206,81 +224,80 @@ Core version **2.4.2** binaries can be found at http://thehackbox.org/tasmota/re
| USE_DISPLAY_EPAPER_29 | - | - | - | - | - | - | x | Disabled for core 2.3.0
## Changelog
Version 6.5.0 20190319
* Remove commands SetOption14 and SetOption63 as it has been superseded by command Interlock
* Remove command SetOption35 0-255 for mDNS start-up delay (#4793)
* Remove support for MQTT_LIBRARY_TYPE, MQTT_ARDUINOMQTT and MQTT_TASMOTAMQTT (#5474)
* Change webserver content handling from single String to small Chunks increasing RAM
* Change code use of boolean to bool and byte to uint8_t
* Change code uint8_t flags to bool flags
* Change sonoff_template.h layout regarding optional module flags like ADC0
* Change sonoff_template.h module lay-out by removing non-configurable GPIOs
* Change button driver making it modular
* Change switch driver making it modular and introduce input filter (#4665, #4724)
* Change switch input detection by optimizing switch debounce (#4724)
* Change web authentication (#4865)
* Change image name BE_MINIMAL to FIRMWARE_MINIMAL and USE_xyz to FIRMWARE_xyz (#5106)
* Change GUI weblog from XML to plain text solving possible empty screens (#5154)
* Fix most compiler warnings
* Fix Display exception 28 when JSON value is NULL received
* Fix epaper driver (#4785)
* Fix HAss Sensor Discovery Software Watchdog restart (#4831, #4988)
* Fix allowable MAX_RULE_VARS to 16 (#4933)
* Fix mDNS addService (#4938, #4951)
* Fix HAss discovery of MHZ19(B) sensors (#4992)
* Fix some exceptions and watchdogs due to lack of stack space (#5215)
* Fix GUI wifi password acception starting with asteriks (*) (#5231, #5242)
* Fix command WebSend intermittent results (#5273, #5304)
* Fix additional characters in fallbacktopic, hostname and mqttclient on core 2.5.0 (#5359, #5417)
* Fix Energy TotalStartTime when commands EnergyReset0 and/or EnergyReset3 used (#5373)
* Fix DS18S20 temperature calculation (#5375)
* Fix float calculations in range from 0 to -1 (#5386)
* Fix exception on GUI Configure Logging and Configure Other (#5424)
* Add commands PowerCal, VoltageCal and CurrentCal for HLW8012, HJL01 and BL0937 based energy sensors
* Add command SerialDelimiter 128 to filter reception of only characters between ASCII 32 and 127 (#5131)
* Add command SSerialSend5 \<hexdata\> to SerialBridge
* Add command Interlock 0 / 1 / 1,2 3,4 .. to control interlock ON/OFF and add up to 8 relays in 1 to 4 interlock groups (#4910, #5014)
* Add command Template 255 to copy module configuration over to current active template and store as user template named Merged (#5371)
* Add command WifiConfig 7 to allow reset of device in AP mode without admin password (#5297)
* Add command SetOption36 to control boot loop default restoration (#4645, #5063)
* Add command SetOption37 for RGBCW color mapping (#5326)
* Add command SetOption55 0/1 and define MDNS_ENABLE to disable/enable mDNS (#4793, #4923)
* Add command SetOption62 0/1 to disable retain on Button or Switch hold messages (#5299)
* Add support for Smanergy KA10 Smart Wall Socket with Energy monitoring
* Add support for commands in sensor drivers
* Add support for MAX31855 K-Type thermocouple sensor using softSPI (#4764)
* Add support for Near Field Communication (NFC) controller PN532 using Serial (#4791, #5162)
* Add support for OBI Power Socket 2 (#4829)
* Add support for YTF IR Bridge (#4855)
* Add support for Mi LED Desk Lamp with rotary switch (#4887)
* Add support for Digoo DG-SP202 Smart Socket with Energy monitoring (#4891)
* Add support for MAX44009 Ambient Light sensor (#4907)
* Add support for inverted buttons and inverted buttons without pullup (#4914)
* Add support for Luminea ZX2820 Smart Socket with Energy monitoring (#4921)
* Add support for multiple ADS1115 I2C devices (#5083)
* Add support for online template change using command Template or GUI Configure Other (#5177)
* Add support for Korean language translations (#5344)
* Add support for sensor SCD30 (#5434)
* Add parameter CFG_HOLDER to status 1 message (#5206)
* Add SetOption32 until SetOption49 diagnostic information to Status 3 report as replacement for second property value in SetOption property name
* Add Resolution property to Status 3 report providing previous SetOption second value property
* Add property MqttCount to status 6 message representing number of Mqtt re-connections
* Add property LinkCount to state and status 11 message representing number of Wifi Link re-connections
* Add property Downtime to state and status 11 message representing the duration of wifi connection loss
* Add variable %timestamp% to rules (#4749)
* Add rule support for "==", "!=" ">=" and "<=" (#5122)
* Add rule expression enabled by define USE_EXPRESSION in my_user_config.h (#5210)
* Add Power status functionality to LED2 when configured leaving LED1 for Link status indication
* Add user configuration of HLW8012 and HJL-01/BL0937 Energy Monitoring as used in Sonoff Pow and many Tuya based devices
* Add user configuration of MCP39F501 Energy Monitoring as used in Shelly2
* Add online template configuration using both commands and Configure Template menu option in GUI
* Add (S)SerialSend3 escape sequence \x to allow hexadecimal byte value (#3560, #4947)
* Add define DS18B20_INTERNAL_PULLUP to select internal input pullup when only one DS18B20 sensor is connected eliminating external resistor (#4738)
* Add button control when no relay configured (#4682)
* Add startup delay of 4 seconds to button control (#4829)
* Add core version conditional compile options to provided PWM files (#4917)
* Add resiliency to saved Settings (#5065)
* Add MHZ19 Temperature as Domoticz Temperature selection (#5128)
* Add HAss status sensor (#5139)
* Add status message to former declined group commands (#5145)
* Add 0x to IRRemote (SetOption29) and RCSwitch (SetOption28) received hexadecimal data (#5431)
Version 6.6.0 20190707
* Remove support of TLS on core 2.3.0 and extent support on core 2.4.2 and up
* Remove MQTT uptime message every hour
* Refactor some defines to const
* Refactor webserver HTML input, button, textarea, and select name based on id
* Refactor webserver sensor data collection
* Refactor TLS based on BearSSL, warning breaking change for fingerprints validation
* Refactor management of lights, using classes and integers instead of floats
* Refactor UDP initial message handling from string to char using static memory and add debug info (#5505)
* Refactor ``IRsend`` and receive for 64-bit support (#5523)
* Refactor MQTT which might solve issue (#5755)
* Refactor ``IRSend`` by using heap when more than 199 values need to be send. May need increase of define MQTT_MAX_PACKET_SIZE too (#5950)
* Refactor double to float in rules, and replaced trigonometric functions from stdlib with smaller versions (#6005)
* Change pubsubclient MQTT_KEEPALIVE from 10 to 30 seconds for AWS IoT support
* Change gamma correction as default behavior, ie "Ledtable 1"
* Change PWM resolution from 8 to 10 bits for low brightness lights
* Change ``IRSend`` Panasonic protocol to 64-bit (#5523)
* Change ADC0 to enabled by default in my_user_config.h (#5671)
* Change define USE_EMULATION by USE_EMULATION_HUE and USE_EMULATION_WEMO (#5826)
* Change default ``PowerDelta`` from 80% to 0% on new installations (#5858, #5028, #4813, #4130, #4145, #3795, #3778, #3660, #3648)
* Fix display Bug in KNX webmenu for Physical Address
* Fix the Unescape() function and the ``SendSerial3`` behaviour
* Fix webserver multiple Javascript window.onload functionality
* Fix TasmotaSerial at 9600 bps solving DFPlayer comms (#5528)
* Fix Configure Timer Web GUI (#5568)
* Fix Shelly 2.5 I2C address priority issue when VEML6070 code is present by disabling VEML6070 for Shelly 2.5 (#5592)
* Fix use of ``SerialDelimiter`` value 128 (#5634)
* Fix Sonoff Pow R2 / S31 invalid energy increments (#5789)
* Fix core 2.5.x ISR not in IRAM exception (#5837)
* Fix Philips Hue emulation Alexa issue by using part of MAC address for LightId (#5849)
* Fix missing white channel for WS2812 (#5869)
* Fix PZem startup issue (#5875)
* Fix exception 9 when syslog is enabled and NTP is just synced (#5917)
* Fix Toggle functionality to button double press when one button and two devices are detected (#5935)
* Fix command ``Channel`` for dual dimmers (#5940)
* Fix not restoring white value on power off/power on (#5993)
* Add command ``AdcParam`` to control ADC0 Temperature and Light formula parameters
* Add command ``LedMask`` to assign which relay has access to power LED (#5602, #5612)
* Add extended LED power control using command ``LedPowerX`` where X is 1 to 4. Enabled when "LedLink(i)" is configured too (#5709)
* Add command ``Sensor20 1..255`` to change Nova Fitness SDS01 working period in minutes (#5452)
* Add command ``SetOption38 6..255`` to set IRReceive protocol detection sensitivity mimizing UNKNOWN protocols (#5853)
* Add command ``SetOption39 1..255`` to control CSE7766 (Pow R2) or HLW8032 (Blitzwolf SHP5) handling of power loads below 6W. Default setting is 128 (#5756)
* Add command ``SetOption40 0..250`` to disable button functionality if activated for over 0.1 second. Needs SetOption1 1 and SetOption13 0 (#5449)
* Add command ``SetOption63 0/1`` to disable relay state feedback scan at restart (#5594, #5663)
* Add command ``SetOption64 0/1`` to switch between "-" or "_" as sensor index separator impacting DS18X20, DHT, BMP and SHT3X sensor names (#5689)
* Add command ``SetOption65 0/1`` and more Tuya Serial based device support (#5815)
* Add command ``WebColor`` to change GUI colors on the fly
* Add support for AWS IoT with TLS 1.2 on core 2.4.2 and up. Full doc here: https://github.com/arendst/Sonoff-Tasmota/wiki/AWS-IoT
* Add support for Badger HR-E Water Meter (#5539)
* Add support for Shelly 2.5 Energy and overtemp Monitoring (#5592)
* Add support for color and colortone for Philips Hue emulation via Alexa (#5600 #4809)
* Add support for Scripts as replacement for Rules. Default disabled but can be enabled in my_user_config.h (#5689)
* Add support for up to four LEDs related to four power outputs. Enabled when "LedLink(i)" is configured too (#5709)
* Add support for Shelly 1PM Template ``{"NAME":"Shelly 1PM","GPIO":[56,0,0,0,82,134,0,0,0,0,0,21,0],"FLAG":2,"BASE":18}`` (#5716)
* Add support for SPS30 Particle sensor thanks to Gerhard Mutz (#5830)
* Add support for VL53L0x time of flight sensor. Might interfere with TSL2561 using same I2C address (#5845)
* Add support for Sonoff L1 thanks to reef-actor (#6002)
* Add rule Http#Initialized
* Add rule System#Save executed just before a planned restart
* Add rule support for single JSON value pair like {"SSerialReceived":"on"} by expanding it to {"SSerialReceived":{"Data":"on"}} allowing for trigger SSerialReceived#Data=on (#5638)
* Add define USE_COUNTER to my_user_config.h to save space in sonoff-basic.bin and sonoff-minimal.bin
* Add define USE_DHT to my_user_config.h to save space in sonoff-basic.bin
* Add defines USE_EMULATION_WEMO and USE_EMULATION_HUE to my_user_config.h to control emulation features at compile time (#5826)
* Add Toggle functionality to button double press when more devices are detected
* Add device OverTemp (>73 Celsius) detection to Energy Monitoring devices with temperature sensor powering off all outputs
* Add Tuya Dimmer 10 second heartbeat serial packet required by some Tuya dimmer secondary MCUs
* Add all temperature, humidity and pressure for global access
* Add validation check when loading settings from flash
* Add HX711 weight restore after controlled restart or after power restore just before executing command Sensor34 7 (#5367, #5786)
* Add GUI hexadecimal color options in my_user_config.h (#5586)
* Add alternative ``IRSend`` command syntax ``IRSend raw,<freq>,<header mark>,<header space>,<bit mark>,<zero space>,<one space>,<bit stream>`` (#5610)
* Add user configurable ADC0 to Module and Template configuration compatible with current FLAG options (#5671)
* Add AriLux RF control GPIO option "ALux IrSel" (159) replacing "Led4i" (59) for full LED control (#5709)
* Add LED GPIO option "LedLink" (157) and "LedLinki" (158) to select dedicated link status LED (#5709)
* Add all 5 PWM channels individually adressable with LEDs. (#5741)
* Add reset of Energy values when connection to sensor is lost for over 4 seconds (#5874, #5881)
* Add checkbox to GUI password field enabling visibility during password entry only (#5934)

View File

@ -10,6 +10,7 @@
[platformio]
src_dir = sonoff
build_dir = .pioenvs
build_cache_dir = .cache
; *** Uncomment one of the lines below to build/upload only one environment
;default_envs = sonoff

View File

@ -1,4 +1,17 @@
/*********************************************************************************************\
* 6.6.0.14 20190925
* Change command Tariffx to allow time entries like 23 (hours), 1320 (minutes) or 23:00. NOTE: As this is development branch previous tariffs are lost! (#6488)
* Remove support for define USE_DS18x20_LEGACY and legacy DS18x20 driver (#6486)
* Add initial support for MQTT logging using command MqttLog <loglevel> (#6498)
* Add Zigbee more support - collect endpoints and clusters, added ZigbeeDump command
* Add initial support for shutters by Stefan Bode (#288)
*
* 6.6.0.13 20190922
* Add command EnergyReset4 x,x to initialize total usage for two tarrifs
* Add command EnergyReset5 x,x to initialize total export (or production) for two tarrifs
* Add command Sensor34 8,0 and Sensor34 8,1 to disable/enable JSON message on weight change over 4 gram
* Add JSON array index support to rules evaluation allowing trigger on ENERGY#POWER[2]>0.60 from JSON ..,"Power":[0.00,0.68],.. (#6160)
*
* 6.6.0.12 20190910
* Redesign command Tariff to now default to 0 (=disabled) and allowing to set both Standard Time (ST) and Daylight Savings Time (DST) start hour
* Commands Tariff1 22,23 = Tariff1 (Off-Peak) ST,DST Tariff2 (Standard) 6,7 = Tariff2 ST,DST Tariff9 0/1 = Weekend toggle (1 = Off-Peak during weekend)

View File

@ -175,6 +175,8 @@
#define D_JSON_PV2_CURRENT "Pv2Current"
#define D_JSON_PV2_POWER "Pv2Power"
#define D_JSON_SOLAR_POWER "SolarPower"
#define D_JSON_USAGE "Usage"
#define D_JSON_EXPORT "Export"
#define D_RSLT_ENERGY "ENERGY"
#define D_RSLT_HASS_STATE "HASS_STATE"
@ -289,6 +291,7 @@
#define D_JSON_BASE "BASE"
// Commands xdrv_01_mqtt.ino
#define D_CMND_MQTTLOG "MqttLog"
#define D_CMND_MQTTHOST "MqttHost"
#define D_CMND_MQTTPORT "MqttPort"
#define D_CMND_MQTTRETRY "MqttRetry"
@ -453,6 +456,7 @@
// Commands xdrv_23_zigbee.ino
#define D_CMND_ZIGBEE_PERMITJOIN "ZigbeePermitJoin"
#define D_CMND_ZIGBEE_DUMP "ZigbeeDump"
#define D_CMND_ZIGBEEZNPSEND "ZigbeeZNPSend"
#define D_JSON_ZIGBEE_STATUS "ZigbeeStatus"
#define D_JSON_ZIGBEEZNPRECEIVED "ZigbeeZNPReceived"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Използвана енергия вчера"
#define D_ENERGY_TOTAL "Използвана енергия общо"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Датчикът DS18x20 е зает"
#define D_SENSOR_CRC_ERROR "Датчик DS18x20 - грешка CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Spotřeba Včera"
#define D_ENERGY_TOTAL "Celková spotřeba"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor DS18x20 obsazen"
#define D_SENSOR_CRC_ERROR "Sensor DS18x20 chyba CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energie gestern"
#define D_ENERGY_TOTAL "Energie insgesamt"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor beschäftigt"
#define D_SENSOR_CRC_ERROR "Sensor CRC-Fehler"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Ενέργεια χθες"
#define D_ENERGY_TOTAL "Ενέργεια συνολικά"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Ο αισθητήρας είναι απασχολημένος"
#define D_SENSOR_CRC_ERROR "Σφάλμα CRC αισθητήρα"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energy Yesterday"
#define D_ENERGY_TOTAL "Energy Total"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor busy"
#define D_SENSOR_CRC_ERROR "Sensor CRC error"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energía Ayer"
#define D_ENERGY_TOTAL "Energía Total"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor ocupado"
#define D_SENSOR_CRC_ERROR "Error CRC del Sensor"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Énergie hier"
#define D_ENERGY_TOTAL "Énergie totale"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Capteur occupé"
#define D_SENSOR_CRC_ERROR "Erreur CRC capteur"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "צריכה בעבר"
#define D_ENERGY_TOTAL "צריכה כללית"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "שרת עסוק"
#define D_SENSOR_CRC_ERROR "בחיישן CRC שגיאת"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Tegnapi energia"
#define D_ENERGY_TOTAL "Összes energia"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Szenzor foglalt"
#define D_SENSOR_CRC_ERROR "Szenzor CRC hiba"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energia Ieri"
#define D_ENERGY_TOTAL "Energia Totale"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensore occupato"
#define D_SENSOR_CRC_ERROR "Sensore errore CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "어제 전력 사용량"
#define D_ENERGY_TOTAL "총 전력 사용량"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "센서가 사용 중"
#define D_SENSOR_CRC_ERROR "센서 CRC 에러"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Verbruik gisteren"
#define D_ENERGY_TOTAL "Verbruik totaal"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor bezet"
#define D_SENSOR_CRC_ERROR "Sensor CRC fout"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energia Wczoraj"
#define D_ENERGY_TOTAL "Energia suma"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Czujnik DS18x20 zajęty"
#define D_SENSOR_CRC_ERROR "Czujnik DS18x20 błąd CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Consumo energético de ontem"
#define D_ENERGY_TOTAL "Consumo total de energia"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor ocupado"
#define D_SENSOR_CRC_ERROR "Erro sensor CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Consumo energético de ontem"
#define D_ENERGY_TOTAL "Consumo total de energial"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor ocupado"
#define D_SENSOR_CRC_ERROR "Erro Sensor CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Энергия Вчера"
#define D_ENERGY_TOTAL "Энергия Всего"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Датчик DS18x20 занят"
#define D_SENSOR_CRC_ERROR "Датчик DS18x20 - ошибка CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Spotreba včera"
#define D_ENERGY_TOTAL "Celková spotreba"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor DS18x20 obsadený"
#define D_SENSOR_CRC_ERROR "Sensor DS18x20 chyba CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energi igår"
#define D_ENERGY_TOTAL "Energi totalt"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensor upptagen"
#define D_SENSOR_CRC_ERROR "Sensor CRC-fel"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Energy Yesterday"
#define D_ENERGY_TOTAL "Energy Total"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Sensör başgül"
#define D_SENSOR_CRC_ERROR "Sensor CRC hatası"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "Енергія Вчора"
#define D_ENERGY_TOTAL "Енергія Всього"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "Датчик DS18x20 зайнятий"
#define D_SENSOR_CRC_ERROR "Датчик DS18x20 - помилка CRC"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "昨日用电量"
#define D_ENERGY_TOTAL "总用电量"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "传感器正忙"
#define D_SENSOR_CRC_ERROR "传感器 CRC 校验错误"

View File

@ -442,6 +442,11 @@
#define D_ENERGY_YESTERDAY "昨日用電量"
#define D_ENERGY_TOTAL "總用電量"
// xdrv_27_shutter.ino
#define D_OPEN "Open"
#define D_CLOSE "Close"
#define D_DOMOTICZ_SHUTTER "Shutter"
// xsns_05_ds18b20.ino
#define D_SENSOR_BUSY "傳感器正忙"
#define D_SENSOR_CRC_ERROR "傳感器 CRC 校驗錯誤"

View File

@ -313,6 +313,7 @@
#define USE_ARMTRONIX_DIMMERS // Add support for Armtronix Dimmers (+1k4 code)
#define USE_PS_16_DZ // Add support for PS-16-DZ Dimmer and Sonoff L1 (+2k code)
//#define ROTARY_V1 // Add support for MI Desk Lamp
//#define USE_SHUTTER // Add Shutter support for up to 4 shutter with different motortypes (+6k code)
// -- Counter input -------------------------------
#define USE_COUNTER // Enable inputs as counter (+0k8 code)
@ -321,11 +322,9 @@
//#define USE_ADC_VCC // Display Vcc in Power status. Disable for use as Analog input on selected devices
// -- One wire sensors ----------------------------
// WARNING: Select none for default one DS18B20 sensor or enable one of the following two options for multiple sensors
//#define USE_DS18x20_LEGACY // Optional for more than one DS18x20 sensors with dynamic scan using library OneWire (+1k5 code)
#define USE_DS18x20 // Optional for more than one DS18x20 sensors with id sort, single scan and read retry (+1k3 code)
// #define W1_PARASITE_POWER // If using USE_DS18x20 then optimize for parasite powered sensors
// #define DS18B20_INTERNAL_PULLUP // Use INPUT_PULLUP internal pullup resistors for single DS18B20
// #define W1_PARASITE_POWER // Optimize for parasite powered sensors
// #define DS18B20_INTERNAL_PULLUP // Use INPUT_PULLUP internal pullup resistor
// -- I2C sensors ---------------------------------
#define USE_I2C // I2C using library wire (+10k code, 0k2 mem, 124 iram)
@ -498,10 +497,10 @@
#define IR_RCV_MIN_UNKNOWN_SIZE 6 // Set the smallest sized "UNKNOWN" message packets we actually care about (default 6, max 255)
// -- Zigbee interface ----------------------------
//#define USE_ZIGBEE // Enable serial communication with Zigbee CC2530 flashed with ZNP
#define USE_ZIGBEE_PANID 0x1A63 // arbitrary PAN ID for Zigbee network, must be unique in the home
//#define USE_ZIGBEE // Enable serial communication with Zigbee CC2530 flashed with ZNP
#define USE_ZIGBEE_PANID 0x1A63 // arbitrary PAN ID for Zigbee network, must be unique in the home
#define USE_ZIGBEE_EXTPANID 0xCCCCCCCCCCCCCCCCL // arbitrary extended PAN ID
#define USE_ZIGBEE_CHANNEL 0x00000800 // Zigbee Channel (11)
#define USE_ZIGBEE_CHANNEL 11 // Zigbee Channel (11-26)
#define USE_ZIGBEE_PRECFGKEY_L 0x0F0D0B0907050301L // note: changing requires to re-pair all devices
#define USE_ZIGBEE_PRECFGKEY_H 0x0D0C0A0806040200L // note: changing requires to re-pair all devices
#define USE_ZIGBEE_PERMIT_JOIN false // don't allow joining by default

View File

@ -93,7 +93,7 @@ typedef union { // Restricted by MISRA-C Rule 18.4 bu
uint32_t spare27 : 1;
uint32_t spare28 : 1;
uint32_t spare29 : 1;
uint32_t spare30 : 1;
uint32_t shutter_mode : 1; // bit 30 (v6.6.0.15) - SetOption80 - Enable shutter support
uint32_t spare31 : 1;
};
} SysBitfield3;
@ -171,18 +171,18 @@ typedef union {
uint8_t spare3 : 1;
uint8_t spare4 : 1;
uint8_t spare5 : 1;
uint8_t spare6 : 1;
uint8_t hx711_json_weight_change : 1; // Sensor34 8,x - Enable JSON message on weight change
uint8_t mhz19b_abc_disable : 1; // Disable ABC (Automatic Baseline Correction for MHZ19(B) (0 = Enabled (default), 1 = Disabled with Sensor15 command)
};
} SensorCfg1;
typedef struct {
uint32_t usage1_kWhtotal;
uint32_t usage1_kWhtoday;
uint32_t usage2_kWhtotal;
uint32_t return1_kWhtotal;
uint32_t return2_kWhtotal;
uint32_t last_return_kWhtotal;
uint32_t free;
uint32_t last_usage_kWhtotal;
} EnergyUsage;
@ -227,7 +227,9 @@ struct SYSCFG {
uint8_t weblog_level; // 1AC
uint8_t mqtt_fingerprint[2][20]; // 1AD
uint8_t adc_param_type; // 1D5
uint8_t register8[18]; // 1D6 - 18 x 8-bit registers indexed by enum SettingsRegister8
uint8_t register8[16]; // 1D6 - 16 x 8-bit registers indexed by enum SettingsRegister8
uint8_t shutter_accuracy; // 1E6
uint8_t mqttlog_level; // 1E7
uint8_t sps30_inuse_hours; // 1E8
char mqtt_host[33]; // 1E9 - Keep together with below as being copied as one chunck with reset 6
uint16_t mqtt_port; // 20A - Keep together
@ -373,8 +375,17 @@ struct SYSCFG {
TuyaFnidDpidMap tuya_fnid_map[MAX_TUYA_FUNCTIONS]; // E00 32 bytes
uint16_t ina226_r_shunt[4]; // E20
uint16_t ina226_i_fs[4]; // E28
uint16_t tariff[4][2]; // E30
uint8_t free_e30[456]; // E30
uint16_t shutter_opentime[MAX_SHUTTERS]; // E40
uint16_t shutter_closetime[MAX_SHUTTERS]; // E48
int16_t shuttercoeff[5][MAX_SHUTTERS]; // E50
uint8_t shutter_invert[MAX_SHUTTERS]; // E78
uint8_t shutter_set50percent[MAX_SHUTTERS]; // E7C
uint8_t shutter_position[MAX_SHUTTERS]; // E80
uint8_t shutter_startrelay[MAX_SHUTTERS]; // E84
uint8_t free_e88[368]; // E88
uint32_t cfg_timestamp; // FF8
uint32_t cfg_crc32; // FFC
@ -425,7 +436,11 @@ struct XDRVMAILBOX {
char *command;
} XdrvMailbox;
#ifdef USE_SHUTTER
const uint8_t MAX_RULES_FLAG = 10; // Number of bits used in RulesBitfield (tricky I know...)
#else
const uint8_t MAX_RULES_FLAG = 8; // Number of bits used in RulesBitfield (tricky I know...)
#endif // USE_SHUTTER
typedef union { // Restricted by MISRA-C Rule 18.4 but so useful...
uint16_t data; // Allow bit manipulation
struct {
@ -437,8 +452,8 @@ typedef union { // Restricted by MISRA-C Rule 18.4 bu
uint16_t wifi_connected : 1;
uint16_t wifi_disconnected : 1;
uint16_t http_init : 1;
uint16_t spare08 : 1;
uint16_t spare09 : 1;
uint16_t shutter_moved : 1;
uint16_t shutter_moving : 1;
uint16_t spare10 : 1;
uint16_t spare11 : 1;
uint16_t spare12 : 1;

View File

@ -67,6 +67,7 @@ const uint8_t MAX_XNRG_DRIVERS = 32; // Max number of allowed energy driv
const uint8_t MAX_XDSP_DRIVERS = 32; // Max number of allowed display drivers
const uint8_t MAX_XDRV_DRIVERS = 96; // Max number of allowed driver drivers
const uint8_t MAX_XSNS_DRIVERS = 96; // Max number of allowed sensor drivers
const uint8_t MAX_SHUTTERS = 4; // Max number of shutters
const uint8_t MAX_RULE_MEMS = 5; // Max number of saved vars
const uint8_t MAX_RULE_SETS = 3; // Max number of rule sets of size 512 characters
const uint16_t MAX_RULE_SIZE = 512; // Max number of characters in rules
@ -113,7 +114,7 @@ const uint16_t SERIALLOG_TIMER = 600; // Seconds to disable SerialLog
const uint8_t OTA_ATTEMPTS = 5; // Number of times to try fetching the new firmware
const uint16_t INPUT_BUFFER_SIZE = 520; // Max number of characters in (serial and http) command buffer
const uint16_t FLOATSZ = 33; // Max number of characters in float result from dtostrfd
const uint16_t FLOATSZ = 16; // Max number of characters in float result from dtostrfd (max 32)
const uint16_t CMDSZ = 24; // Max number of characters in command
const uint16_t TOPSZ = 100; // Max number of characters in topic string
const uint16_t LOGSZ = 520; // Max number of characters in log
@ -252,13 +253,13 @@ enum SettingsParamIndex { P_HOLD_TIME, P_MAX_POWER_RETRY, P_ex_TUYA_DIMMER_ID, P
P_ex_ENERGY_TARIFF1, P_ex_ENERGY_TARIFF2, // SetOption47 .. SetOption48
P_MAX_PARAM8 }; // Max is PARAM8_SIZE (18) - SetOption32 until SetOption49
enum SettingsRegister8 { R8_ENERGY_TARIFF1_ST, R8_ENERGY_TARIFF2_ST, R8_ENERGY_TARIFF1_DS, R8_ENERGY_TARIFF2_DS,
enum SettingsRegister8 { R8_SPARE00, R8_SPARE01, R8_SPARE02, R8_SPARE03,
R8_SPARE04, R8_SPARE05, R8_SPARE06, R8_SPARE07,
R8_SPARE08, R8_SPARE09, R8_SPARE10, R8_SPARE11,
R8_SPARE12, R8_SPARE13, R8_SPARE14, R8_SPARE15,
R8_SPARE16, R8_SPARE17 }; // Max size is 18 (Settings.register8[])
R8_SPARE12, R8_SPARE13, R8_SPARE14, R8_SPARE15 }; // Max size is 16 (Settings.register8[])
enum DomoticzSensors {DZ_TEMP, DZ_TEMP_HUM, DZ_TEMP_HUM_BARO, DZ_POWER_ENERGY, DZ_ILLUMINANCE, DZ_COUNT, DZ_VOLTAGE, DZ_CURRENT, DZ_AIRQUALITY, DZ_P1_SMART_METER, DZ_MAX_SENSORS};
enum DomoticzSensors {DZ_TEMP, DZ_TEMP_HUM, DZ_TEMP_HUM_BARO, DZ_POWER_ENERGY, DZ_ILLUMINANCE, DZ_COUNT, DZ_VOLTAGE, DZ_CURRENT,
DZ_AIRQUALITY, DZ_P1_SMART_METER, DZ_SHUTTER, DZ_MAX_SENSORS};
enum Ws2812ClockIndex { WS_SECOND, WS_MINUTE, WS_HOUR, WS_MARKER };
enum Ws2812Color { WS_RED, WS_GREEN, WS_BLUE };
@ -282,8 +283,10 @@ enum XsnsFunctions {FUNC_SETTINGS_OVERRIDE, FUNC_PIN_STATE, FUNC_MODULE_INIT, FU
enum AddressConfigSteps { ADDR_IDLE, ADDR_RECEIVE, ADDR_SEND };
enum CommandSource { SRC_IGNORE, SRC_MQTT, SRC_RESTART, SRC_BUTTON, SRC_SWITCH, SRC_BACKLOG, SRC_SERIAL, SRC_WEBGUI, SRC_WEBCOMMAND, SRC_WEBCONSOLE, SRC_PULSETIMER,
SRC_TIMER, SRC_RULE, SRC_MAXPOWER, SRC_MAXENERGY, SRC_OVERTEMP, SRC_LIGHT, SRC_KNX, SRC_DISPLAY, SRC_WEMO, SRC_HUE, SRC_RETRY, SRC_REMOTE, SRC_MAX };
const char kCommandSource[] PROGMEM = "I|MQTT|Restart|Button|Switch|Backlog|Serial|WebGui|WebCommand|WebConsole|PulseTimer|Timer|Rule|MaxPower|MaxEnergy|Overtemp|Light|Knx|Display|Wemo|Hue|Retry|Remote";
SRC_TIMER, SRC_RULE, SRC_MAXPOWER, SRC_MAXENERGY, SRC_OVERTEMP, SRC_LIGHT, SRC_KNX, SRC_DISPLAY, SRC_WEMO, SRC_HUE, SRC_RETRY, SRC_REMOTE, SRC_SHUTTER,
SRC_MAX };
const char kCommandSource[] PROGMEM = "I|MQTT|Restart|Button|Switch|Backlog|Serial|WebGui|WebCommand|WebConsole|PulseTimer|"
"Timer|Rule|MaxPower|MaxEnergy|Overtemp|Light|Knx|Display|Wemo|Hue|Retry|Remote|Shutter";
const uint8_t kDefaultRfCode[9] PROGMEM = { 0x21, 0x16, 0x01, 0x0E, 0x03, 0x48, 0x2E, 0x1A, 0x00 };

View File

@ -138,6 +138,8 @@ uint8_t seriallog_level; // Current copy of Settings.seriallo
uint8_t syslog_level; // Current copy of Settings.syslog_level
uint8_t my_module_type; // Current copy of Settings.module or user template type
uint8_t my_adc0; // Active copy of Module ADC0
uint8_t last_source = 0; // Last command source
uint8_t shutters_present = 0; // Number of actual define shutters
//uint8_t mdns_delayed_start = 0; // mDNS delayed start
bool serial_local = false; // Handle serial locally;
bool fallback_topic_flag = false; // Use Topic or FallbackTopic
@ -745,10 +747,7 @@ bool MqttShowSensor(void)
}
}
XsnsCall(FUNC_JSON_APPEND);
#ifdef USE_SCRIPT_JSON_EXPORT
XdrvCall(FUNC_JSON_APPEND);
#endif
bool json_data_available = (strlen(mqtt_data) - json_data_start);
if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE)) != nullptr) {

View File

@ -83,6 +83,8 @@ char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, c
#undef CODE_IMAGE
#define CODE_IMAGE 3
#undef USE_DISCOVERY // Disable mDNS (+8k code or +23.5k code with core 2_5_x, +0.3k mem)
// -- Optional modules -------------------------
#define USE_SONOFF_IFAN // Add support for Sonoff iFan02 and iFan03 (+2k code)
#define USE_TUYA_MCU // Add support for Tuya Serial MCU
@ -96,7 +98,6 @@ char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, c
#define USE_COUNTER // Enable counters
#undef USE_ADC_VCC // Add Analog input on selected devices
#define USE_DS18x20 // For more than one DS18x20 sensors with id sort, single scan and read retry (+1k3 code)
//#define USE_DS18x20_LEGACY // For more than one DS18x20 sensors with dynamic scan using library OneWire (+1k5 code)
#define USE_I2C // I2C using library wire (+10k code, 0k2 mem, 124 iram)
#define USE_SHT // Add I2C emulating code for SHT1X sensor (+1k4 code)
@ -413,7 +414,7 @@ char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, c
* Mandatory define for DS18x20 if changed by above image selections
\*********************************************************************************************/
#if defined(USE_DS18x20) || defined(USE_DS18x20_LEGACY)
#if defined(USE_DS18x20)
#else
#define USE_DS18B20 // Default DS18B20 sensor needs no external library
#endif
@ -459,7 +460,6 @@ char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, c
#undef USE_COUNTER // Disable counters
#undef USE_DS18x20 // Disable DS18x20 sensor
#undef USE_DS18x20_LEGACY // Disable DS18x20 sensor
#undef USE_DS18B20 // Disable internal DS18B20 sensor
#undef USE_I2C // Disable all I2C sensors and devices
#undef USE_SPI // Disable all SPI devices
@ -544,7 +544,6 @@ char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, c
#undef USE_COUNTER // Disable counters
#undef USE_DS18x20 // Disable DS18x20 sensor
#undef USE_DS18x20_LEGACY // Disable DS18x20 sensor
#undef USE_DS18B20 // Disable internal DS18B20 sensor
#undef USE_I2C // Disable all I2C sensors and devices
#undef USE_SPI // Disable all SPI devices

View File

@ -531,7 +531,7 @@ const uint8_t kGpioNiceList[] PROGMEM = {
GPIO_DHT22, // DHT21, DHT22, AM2301, AM2302, AM2321
GPIO_SI7021, // iTead SI7021
#endif
#if defined(USE_DS18B20) || defined(USE_DS18x20) || defined(USE_DS18x20_LEGACY)
#if defined(USE_DS18B20) || defined(USE_DS18x20)
GPIO_DSB, // Single wire DS18B20 or DS18S20
#endif

View File

@ -20,6 +20,6 @@
#ifndef _SONOFF_VERSION_H_
#define _SONOFF_VERSION_H_
const uint32_t VERSION = 0x0606000C;
const uint32_t VERSION = 0x0606000E;
#endif // _SONOFF_VERSION_H_

View File

@ -125,7 +125,7 @@ size_t strcspn(const char *str1, const char *str2)
}
// https://clc-wiki.net/wiki/C_standard_library:string.h:strpbrk
// Locate the rst occurrence in the string pointed to by s1 of any character from the string pointed to by s2
// Locate the first occurrence in the string pointed to by s1 of any character from the string pointed to by s2
char* strpbrk(const char *s1, const char *s2)
{
while(*s1) {
@ -1264,6 +1264,7 @@ void SetNextTimeInterval(unsigned long& timer, const unsigned long step)
#ifdef USE_I2C
const uint8_t I2C_RETRY_COUNTER = 3;
uint32_t i2c_active[4] = { 0 };
uint32_t i2c_buffer = 0;
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
@ -1457,12 +1458,35 @@ void I2cScan(char *devs, unsigned int devs_len)
}
}
void I2cSetActive(uint32_t addr, uint32_t count = 1)
{
addr &= 0x7F;
count &= 0x7F;
while (count-- && (addr < 128)) {
i2c_active[addr / 32] |= (1 << (addr % 32));
addr++;
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
}
bool I2cActive(uint32_t addr)
{
addr &= 0x7F;
if (i2c_active[addr / 32] & (1 << (addr % 32))) {
return true;
}
return false;
}
bool I2cDevice(uint8_t addr)
{
if (I2cActive(addr)) {
return false; // If already active report as not present;
}
for (uint8_t address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
if (!Wire.endTransmission() && (address == addr)) {
return true;
return true; // Report as present;
}
}
return false;
@ -1571,6 +1595,7 @@ void AddLog(uint32_t loglevel)
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
}
#endif // USE_WEBSERVER
if (!global_state.mqtt_down && (loglevel <= Settings.mqttlog_level)) { MqttPublishLogging(mxtime); }
if (!global_state.wifi_down && (loglevel <= syslog_level)) { Syslog(); }
}

View File

@ -185,6 +185,18 @@ void CommandHandler(char* topic, uint8_t* data, uint32_t data_len)
XdrvMailbox.topic = type;
XdrvMailbox.data = dataBuf;
#ifdef USE_SCRIPT_SUB_COMMAND
// allow overwrite tasmota cmds
if (!Script_SubCmd()) {
if (!DecodeCommand(kTasmotaCommands, TasmotaCommand)) {
if (!XdrvCall(FUNC_COMMAND)) {
if (!XsnsCall(FUNC_COMMAND)) {
type = nullptr; // Unknown command
}
}
}
}
#else //USE_SCRIPT_SUB_COMMAND
if (!DecodeCommand(kTasmotaCommands, TasmotaCommand)) {
if (!XdrvCall(FUNC_COMMAND)) {
if (!XsnsCall(FUNC_COMMAND)) {
@ -192,6 +204,8 @@ void CommandHandler(char* topic, uint8_t* data, uint32_t data_len)
}
}
}
#endif //USE_SCRIPT_SUB_COMMAND
}
if (type == nullptr) {

View File

@ -243,7 +243,7 @@ void GetFeatures(void)
feature_sns1 |= 0x00000010; // xsns_05_ds18b20.ino
#endif
#ifdef USE_DS18x20_LEGACY
feature_sns1 |= 0x00000020; // xsns_05_ds18x20_legacy.ino
feature_sns1 |= 0x00000020; // xsns_05_ds18x20_legacy.ino - no more supported since 6.6.0.14
#endif
#ifdef USE_DS18x20
feature_sns1 |= 0x00000040; // xsns_05_ds18x20.ino

View File

@ -120,10 +120,17 @@ String GetBuildDateAndTime(void)
return String(bdt); // 2017-03-07T11:08:02
}
String GetMinuteTime(uint32_t minutes)
{
char tm[6];
snprintf_P(tm, sizeof(tm), PSTR("%02d:%02d"), minutes / 60, minutes % 60);
return String(tm); // 03:45
}
String GetTimeZone(void)
{
char tz[7];
snprintf_P(tz, sizeof(tz), PSTR("%+03d:%02d"), Rtc.time_timezone / 60, abs(Rtc.time_timezone % 60));
return String(tz); // -03:45

View File

@ -91,8 +91,48 @@ const char HTTP_SCRIPT_COUNTER[] PROGMEM =
"}"
"wl(u);";
const char HTTP_SCRIPT_ROOT[] PROGMEM =
const char HTTP_SCRIPT_ROOT[] PROGMEM =
#ifdef USE_SCRIPT_WEB_DISPLAY
"var rfsh=1;"
"function la(p){"
"var a='';"
"if(la.arguments.length==1){"
"a=p;"
"clearTimeout(lt);"
"}"
"if(x!=null){x.abort();}" // Abort if no response within 2 seconds (happens on restart 1)
"x=new XMLHttpRequest();"
"x.onreadystatechange=function(){"
"if(x.readyState==4&&x.status==200){"
"var s=x.responseText.replace(/{t}/g,\"<table style='width:100%%'>\").replace(/{s}/g,\"<tr><th>\").replace(/{m}/g,\"</th><td>\").replace(/{e}/g,\"</td></tr>\").replace(/{c}/g,\"%%'><div style='text-align:center;font-weight:\");"
"eb('l1').innerHTML=s;"
"}"
"};"
"if (rfsh) {"
"x.open('GET','.?m=1'+a,true);" // ?m related to WebServer->hasArg("m")
"x.send();"
"lt=setTimeout(la,%d);" // Settings.web_refresh
"}"
"}"
"function seva(par,ivar){"
"la('&sv='+ivar+'_'+par);"
"}"
"function siva(par,ivar){"
"rfsh=1;"
"la('&sv='+ivar+'_'+par);"
"rfsh=0;"
"}"
"function pr(f){"
"if (f) {"
"lt=setTimeout(la,%d);"
"rfsh=1;"
"} else {"
"clearTimeout(lt);"
"rfsh=0;"
"}"
"}"
#else // USE_SCRIPT_WEB_DISPLAY
"function la(p){"
"var a='';"
"if(la.arguments.length==1){"
@ -111,12 +151,7 @@ const char HTTP_SCRIPT_ROOT[] PROGMEM =
"x.send();"
"lt=setTimeout(la,%d);" // Settings.web_refresh
"}"
#ifdef USE_SCRIPT_WEB_DISPLAY
"function seva(par,ivar){"
"la('&sv='+ivar+'_'+par);"
"}"
#endif
#endif // USE_SCRIPT_WEB_DISPLAY
#ifdef USE_JAVASCRIPT_ES6
"lb=p=>la('&d='+p);" // Dark - Bright &d related to lb(value) and WebGetArg("d", tmp, sizeof(tmp));
@ -128,7 +163,29 @@ const char HTTP_SCRIPT_ROOT[] PROGMEM =
"function lc(p){"
"la('&t='+p);" // &t related to WebGetArg("t", tmp, sizeof(tmp));
"}"
#endif
#endif // USE_JAVASCRIPT_ES6
#ifdef USE_SHUTTER
#ifdef USE_JAVASCRIPT_ES6
"ld1=p=>la('&u1='+p);"
"ld2=p=>la('&u2='+p);"
"ld3=p=>la('&u3='+p);"
"ld4=p=>la('&u4='+p);"
#else
"function ld1(p){"
"la('&u1='+p);"
"}"
"function ld2(p){"
"la('&u2='+p);"
"}"
"function ld3(p){"
"la('&u3='+p);"
"}"
"function ld4(p){"
"la('&u4='+p);"
"}"
#endif // USE_JAVASCRIPT_ES6
#endif // USE_SHUTTER
"wl(la);";
@ -344,6 +401,11 @@ const char HTTP_MSG_SLIDER1[] PROGMEM =
const char HTTP_MSG_SLIDER2[] PROGMEM =
"<div><span class='p'>" D_DARKLIGHT "</span><span class='q'>" D_BRIGHTLIGHT "</span></div>"
"<div><input type='range' min='1' max='100' value='%d' onchange='lb(value)'></div>";
#ifdef USE_SHUTTER
const char HTTP_MSG_SLIDER3[] PROGMEM =
"<div><span class='p'>" D_CLOSE "</span><span class='q'>" D_OPEN "</span></div>"
"<div><input type='range' min='0' max='100' value='%d' onchange='ld%d(value)'></div>";
#endif // USE_SHUTTER
const char HTTP_MSG_RSTRT[] PROGMEM =
"<br><div style='text-align:center;'>" D_DEVICE_WILL_RESTART "</div><br>";
@ -518,6 +580,7 @@ void ShowWebSource(uint32_t source)
void ExecuteWebCommand(char* svalue, uint32_t source)
{
ShowWebSource(source);
last_source = source;
ExecuteCommand(svalue, SRC_IGNORE);
}
@ -939,7 +1002,11 @@ void HandleRoot(void)
char stemp[5];
WSContentStart_P(S_MAIN_MENU);
#ifdef USE_SCRIPT_WEB_DISPLAY
WSContentSend_P(HTTP_SCRIPT_ROOT, Settings.web_refresh, Settings.web_refresh);
#else
WSContentSend_P(HTTP_SCRIPT_ROOT, Settings.web_refresh);
#endif
WSContentSendStyle();
WSContentSend_P(PSTR("<div id='l1' name='l1'></div>"));
@ -952,6 +1019,13 @@ void HandleRoot(void)
WSContentSend_P(HTTP_MSG_SLIDER2, Settings.light_dimmer);
}
#endif
#ifdef USE_SHUTTER
if (Settings.flag3.shutter_mode) {
for (uint32_t i = 0; i < shutters_present; i++) {
WSContentSend_P(HTTP_MSG_SLIDER3, Settings.shutter_position[i], i+1);
}
}
#endif // USE_SHUTTER
WSContentSend_P(HTTP_TABLE100);
WSContentSend_P(PSTR("<tr>"));
#ifdef USE_SONOFF_IFAN
@ -1052,6 +1126,17 @@ bool HandleRootStatusRefresh(void)
snprintf_P(svalue, sizeof(svalue), PSTR(D_CMND_COLORTEMPERATURE " %s"), tmp);
ExecuteWebCommand(svalue, SRC_WEBGUI);
}
#ifdef USE_SHUTTER
char webindex[5]; // WebGetArg name
for (uint32_t j = 1; j < 5; j++) {
snprintf_P(webindex, sizeof(webindex), PSTR("u%d"), j);
WebGetArg(webindex, tmp, sizeof(tmp)); // 0 - 100 percent
if (strlen(tmp)) {
snprintf_P(svalue, sizeof(svalue), PSTR("ShutterPosition%d %s"), j, tmp);
ExecuteWebCommand(svalue, SRC_WEBGUI);
}
}
#endif // USE_SHUTTER
WebGetArg("k", tmp, sizeof(tmp)); // 1 - 16 Pre defined RF keys
if (strlen(tmp)) {
snprintf_P(svalue, sizeof(svalue), PSTR(D_CMND_RFKEY "%s"), tmp);

View File

@ -39,7 +39,7 @@ const char kMqttCommands[] PROGMEM = "|" // No prefix
D_CMND_TLSKEY "|"
#endif
D_CMND_MQTTHOST "|" D_CMND_MQTTPORT "|" D_CMND_MQTTRETRY "|" D_CMND_STATETEXT "|" D_CMND_MQTTCLIENT "|"
D_CMND_FULLTOPIC "|" D_CMND_PREFIX "|" D_CMND_GROUPTOPIC "|" D_CMND_TOPIC "|" D_CMND_PUBLISH "|"
D_CMND_FULLTOPIC "|" D_CMND_PREFIX "|" D_CMND_GROUPTOPIC "|" D_CMND_TOPIC "|" D_CMND_PUBLISH "|" D_CMND_MQTTLOG "|"
D_CMND_BUTTONTOPIC "|" D_CMND_SWITCHTOPIC "|" D_CMND_BUTTONRETAIN "|" D_CMND_SWITCHRETAIN "|" D_CMND_POWERRETAIN "|" D_CMND_SENSORRETAIN ;
void (* const MqttCommand[])(void) PROGMEM = {
@ -53,7 +53,7 @@ void (* const MqttCommand[])(void) PROGMEM = {
&CmndTlsKey,
#endif
&CmndMqttHost, &CmndMqttPort, &CmndMqttRetry, &CmndStateText, &CmndMqttClient,
&CmndFullTopic, &CmndPrefix, &CmndGroupTopic, &CmndTopic, &CmndPublish,
&CmndFullTopic, &CmndPrefix, &CmndGroupTopic, &CmndTopic, &CmndPublish, &CmndMqttlog,
&CmndButtonTopic, &CmndSwitchTopic, &CmndButtonRetain, &CmndSwitchRetain, &CmndPowerRetain, &CmndSensorRetain };
struct MQTT {
@ -305,6 +305,35 @@ void MqttUnsubscribe(const char *topic)
MqttUnsubscribeLib(topic);
}
void MqttPublishLogging(const char *mxtime)
{
if (Settings.flag.mqtt_enabled) {
if (MqttIsConnected()) {
char saved_mqtt_data[MESSZ];
memcpy(saved_mqtt_data, mqtt_data, sizeof(saved_mqtt_data));
// ResponseTime_P(PSTR(",\"Log\":{\"%s\"}}"), log_data); // Will fail as some messages contain JSON
Response_P(PSTR("%s%s"), mxtime, log_data); // No JSON and ugly!!
char romram[33];
char stopic[TOPSZ];
snprintf_P(romram, sizeof(romram), PSTR("LOGGING"));
GetTopic_P(stopic, STAT, mqtt_topic, romram);
char *me;
if (!strcmp(Settings.mqtt_prefix[0], Settings.mqtt_prefix[1])) {
me = strstr(stopic, Settings.mqtt_prefix[0]);
if (me == stopic) {
mqtt_cmnd_publish += 3;
}
}
MqttPublishLib(stopic, false);
memcpy(mqtt_data, saved_mqtt_data, sizeof(saved_mqtt_data));
}
}
}
void MqttPublishDirect(const char* topic, bool retained)
{
char sretained[CMDSZ];
@ -724,6 +753,14 @@ void CmndMqttPassword(void)
}
#endif // USE_MQTT_AWS_IOT
void CmndMqttlog(void)
{
if ((XdrvMailbox.payload >= LOG_LEVEL_NONE) && (XdrvMailbox.payload <= LOG_LEVEL_ALL)) {
Settings.mqttlog_level = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings.mqttlog_level);
}
void CmndMqttHost(void)
{
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
@ -876,7 +913,7 @@ void CmndButtonTopic(void)
void CmndSwitchTopic(void)
{
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.switch_topic))) {
if (!XdrvMailbox.grpflg && (XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.switch_topic))) {
MakeValidMqtt(0, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data, mqtt_client)) { SetShortcutDefault(); }
switch (Shortcut()) {

View File

@ -82,8 +82,7 @@ struct ENERGY {
float start_energy = 0; // 12345.12345 kWh total previous
float daily = 0; // 123.123 kWh
float total = 0; // 12345.12345 kWh tariff 1 + 2
float total1 = 0; // 12345.12345 kWh tariff 1 - off-peak
float total = 0; // 12345.12345 kWh total energy
float export_active = NAN; // 123.123 KWh
unsigned long kWhtoday_delta = 0; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
@ -93,7 +92,7 @@ struct ENERGY {
uint8_t fifth_second = 0;
uint8_t command_code = 0;
uint8_t data_valid = 0;
uint8_t data_valid[3] = { 0, 0, 0 };
uint8_t phase_count = 1; // Number of phases active
bool voltage_common = false; // Use single voltage
@ -130,18 +129,23 @@ Ticker ticker_energy;
bool EnergyTariff1Active() // Off-Peak hours
{
uint8_t tariff1 = Settings.register8[R8_ENERGY_TARIFF1_ST];
uint8_t tariff2 = Settings.register8[R8_ENERGY_TARIFF2_ST];
if (IsDst() && (Settings.register8[R8_ENERGY_TARIFF1_DS] != Settings.register8[R8_ENERGY_TARIFF2_DS])) {
tariff1 = Settings.register8[R8_ENERGY_TARIFF1_DS];
tariff2 = Settings.register8[R8_ENERGY_TARIFF2_DS];
uint8_t dst = 0;
if (IsDst() && (Settings.tariff[0][1] != Settings.tariff[1][1])) {
dst = 1;
}
if (tariff1 != tariff2) {
return ((RtcTime.hour < tariff2) || // Tarrif1 = Off-Peak
(RtcTime.hour >= tariff1) ||
(Settings.flag3.energy_weekend && ((RtcTime.day_of_week == 1) ||
(RtcTime.day_of_week == 7)))
);
if (Settings.tariff[0][dst] != Settings.tariff[1][dst]) {
if (Settings.flag3.energy_weekend && ((RtcTime.day_of_week == 1) ||
(RtcTime.day_of_week == 7))) {
return true;
}
uint32_t minutes = MinutesPastMidnight();
if (Settings.tariff[0][dst] > Settings.tariff[1][dst]) {
// {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}}
return ((minutes >= Settings.tariff[0][dst]) || (minutes < Settings.tariff[1][dst]));
} else {
// {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}}
return ((minutes >= Settings.tariff[0][dst]) && (minutes < Settings.tariff[1][dst]));
}
} else {
return false;
}
@ -155,24 +159,28 @@ void EnergyUpdateToday(void)
Energy.kWhtoday += delta;
}
uint32_t energy_diff = Energy.kWhtoday_offset + Energy.kWhtoday - RtcSettings.energy_kWhtoday;
uint32_t return_diff = 0;
if (!isnan(Energy.export_active)) {
return_diff = (uint32_t)(Energy.export_active * 1000) - RtcSettings.energy_usage.last_return_kWhtotal;
RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy.export_active * 1000);
}
RtcSettings.energy_kWhtoday = Energy.kWhtoday_offset + Energy.kWhtoday;
Energy.daily = (float)(RtcSettings.energy_kWhtoday) / 100000;
Energy.total = (float)(RtcSettings.energy_kWhtotal + RtcSettings.energy_kWhtoday) / 100000;
if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak
RtcSettings.energy_usage.usage1_kWhtoday += energy_diff;
RtcSettings.energy_usage.return1_kWhtotal += return_diff;
Energy.total1 = (float)(RtcSettings.energy_usage.usage1_kWhtotal + RtcSettings.energy_usage.usage1_kWhtoday) / 100000;
} else {
RtcSettings.energy_usage.return2_kWhtotal += return_diff;
if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time.
uint32_t energy_diff = (uint32_t)(Energy.total * 100000) - RtcSettings.energy_usage.last_usage_kWhtotal;
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total * 100000);
uint32_t return_diff = 0;
if (!isnan(Energy.export_active)) {
return_diff = (uint32_t)(Energy.export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal;
RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy.export_active * 100000);
}
if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak
RtcSettings.energy_usage.usage1_kWhtotal += energy_diff;
RtcSettings.energy_usage.return1_kWhtotal += return_diff;
} else {
RtcSettings.energy_usage.usage2_kWhtotal += energy_diff;
RtcSettings.energy_usage.return2_kWhtotal += return_diff;
}
}
}
@ -190,6 +198,14 @@ void EnergyUpdateTotal(float value, bool kwh)
else if (value != Energy.start_energy) {
Energy.kWhtoday = (unsigned long)((value - Energy.start_energy) * multiplier);
}
if (Energy.total < (value - 0.01)){ // We subtract a little offset to avoid continuous updates
RtcSettings.energy_kWhtotal = (unsigned long)((value * multiplier) - Energy.kWhtoday_offset - Energy.kWhtoday);
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday_offset + Energy.kWhtoday) / 100000;
Settings.energy_kWhtotal_time = (!Energy.kWhtoday_offset) ? LocalTime() : Midnight();
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value"));
}
EnergyUpdateToday();
}
@ -216,10 +232,6 @@ void Energy200ms(void)
RtcSettings.energy_kWhtoday = 0;
Energy.start_energy = 0;
RtcSettings.energy_usage.usage1_kWhtotal += RtcSettings.energy_usage.usage1_kWhtoday;
Settings.energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
RtcSettings.energy_usage.usage1_kWhtoday = 0;
Energy.kWhtoday_delta = 0;
Energy.period = Energy.kWhtoday;
EnergyUpdateToday();
@ -416,18 +428,22 @@ void EnergyMqttShow(void)
}
#endif // USE_ENERGY_MARGIN_DETECTION
void EnergyOverTempCheck()
void EnergyEverySecond()
{
// Overtemp check
if (global_update) {
if (power && (global_temperature != 9999) && (global_temperature > Settings.param[P_OVER_TEMP])) { // Device overtemp, turn off relays
SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP);
}
}
if (Energy.data_valid <= ENERGY_WATCHDOG) {
Energy.data_valid++;
if (Energy.data_valid > ENERGY_WATCHDOG) {
// Reset energy registers
for (uint32_t i = 0; i < Energy.phase_count; i++) {
// Invalid data reset
uint32_t data_valid = Energy.phase_count;
for (uint32_t i = 0; i < Energy.phase_count; i++) {
if (Energy.data_valid[i] <= ENERGY_WATCHDOG) {
Energy.data_valid[i]++;
if (Energy.data_valid[i] > ENERGY_WATCHDOG) {
// Reset energy registers
Energy.voltage[i] = 0;
Energy.current[i] = 0;
Energy.active_power[i] = 0;
@ -435,13 +451,21 @@ void EnergyOverTempCheck()
if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; }
if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; }
if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; }
}
if (!isnan(Energy.export_active)) { Energy.export_active = 0; }
Energy.start_energy = 0;
XnrgCall(FUNC_ENERGY_RESET);
data_valid--;
}
}
}
if (!data_valid) {
if (!isnan(Energy.export_active)) { Energy.export_active = 0; }
Energy.start_energy = 0;
XnrgCall(FUNC_ENERGY_RESET);
}
#ifdef USE_ENERGY_MARGIN_DETECTION
EnergyMarginCheck();
#endif // USE_ENERGY_MARGIN_DETECTION
}
/*********************************************************************************************\
@ -493,60 +517,117 @@ void CmndEnergyReset(void)
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday_offset + Energy.kWhtoday) / 100000;
Settings.energy_kWhtotal_time = (!Energy.kWhtoday_offset) ? LocalTime() : Midnight();
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total * 1000);
break;
}
}
if (RtcSettings.energy_usage.usage1_kWhtoday > (Energy.kWhtoday_offset + Energy.kWhtoday)) {
RtcSettings.energy_usage.usage1_kWhtoday = Energy.kWhtoday_offset + Energy.kWhtoday;
}
if (Settings.energy_usage.usage1_kWhtoday > Settings.energy_kWhtoday) {
Settings.energy_usage.usage1_kWhtoday = Settings.energy_kWhtoday;
RtcSettings.energy_usage.usage1_kWhtoday = Settings.energy_kWhtoday;
}
if (Settings.energy_usage.usage1_kWhtotal > Settings.energy_kWhtotal) {
Settings.energy_usage.usage1_kWhtotal = Settings.energy_kWhtotal;
RtcSettings.energy_usage.usage1_kWhtotal = Settings.energy_kWhtotal;
}
char energy_total_chr[FLOATSZ];
dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr);
char energy_daily_chr[FLOATSZ];
dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr);
char energy_yesterday_chr[FLOATSZ];
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s}}"),
XdrvMailbox.command, energy_total_chr, energy_yesterday_chr, energy_daily_chr);
}
if ((XdrvMailbox.index > 3) && (XdrvMailbox.index <= 5)) {
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
int32_t position = -1;
uint32_t values[2];
while ((str != nullptr) && (position < 1)) {
uint32_t value = strtoul(str, nullptr, 10);
position++;
values[position] = value *100;
str = strtok_r(nullptr, ", ", &p);
}
switch (XdrvMailbox.index)
{
case 4:
// Reset energy_usage.usage totals
if (position > -1) {
RtcSettings.energy_usage.usage1_kWhtotal = values[0];
}
if (position > 0) {
RtcSettings.energy_usage.usage2_kWhtotal = values[1];
}
Settings.energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
Settings.energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal;
break;
case 5:
// Reset energy_usage.return totals
if (position > -1) {
RtcSettings.energy_usage.return1_kWhtotal = values[0];
}
if (position > 0) {
RtcSettings.energy_usage.return2_kWhtotal = values[1];
}
Settings.energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal;
Settings.energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal;
break;
}
}
char energy_total_chr[FLOATSZ];
dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr);
char energy_daily_chr[FLOATSZ];
dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr);
char energy_yesterday_chr[FLOATSZ];
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
char energy_usage1_chr[FLOATSZ];
dtostrfd((float)Settings.energy_usage.usage1_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_usage1_chr);
char energy_usage2_chr[FLOATSZ];
dtostrfd((float)Settings.energy_usage.usage2_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_usage2_chr);
char energy_return1_chr[FLOATSZ];
dtostrfd((float)Settings.energy_usage.return1_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_return1_chr);
char energy_return2_chr[FLOATSZ];
dtostrfd((float)Settings.energy_usage.return2_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_return2_chr);
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s,\"" D_JSON_USAGE "\":[%s,%s],\"" D_JSON_EXPORT "\":[%s,%s]}}"),
XdrvMailbox.command, energy_total_chr, energy_yesterday_chr, energy_daily_chr, energy_usage1_chr, energy_usage2_chr, energy_return1_chr, energy_return2_chr);
}
void CmndTariff(void)
{
// Tariff1 22,23 - Tariff1 start hour for Standard Time and Daylight Savings Time
// Tariff2 6,7 - Tariff2 start hour for Standard Time and Daylight Savings Time
// Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time
// Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time
// Tariffx 1320, 1380 = minutes and also 22:00, 23:00
// Tariffx 22, 23 = hours and also 22:00, 23:00
// Tariff9 0/1
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
uint32_t tariff = XdrvMailbox.index -1;
uint32_t time_type = 0;
while ((str != nullptr) && (time_type <= 2)) {
uint8_t value = strtol(str, nullptr, 10);
if ((value >= 0) && (value < 24)) {
Settings.register8[R8_ENERGY_TARIFF1_ST + (XdrvMailbox.index -1) + time_type] = value;
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30
while ((str != nullptr) && (time_type < 2)) {
char *q;
uint32_t value = strtol(str, &q, 10); // 23 or 22
Settings.tariff[tariff][time_type] = value;
if (value < 24) { // Below 24 is hours
Settings.tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes
char *minute = strtok_r(nullptr, ":", &q);
if (minute) {
value = strtol(minute, nullptr, 10); // 15 or 30
if (value > 59) {
value = 59;
}
Settings.tariff[tariff][time_type] += value;
}
}
if (Settings.tariff[tariff][time_type] > 1439) {
Settings.tariff[tariff][time_type] = 1439; // Max is 23:59
}
str = strtok_r(nullptr, ", ", &p);
time_type += 2;
time_type++;
}
}
else if (XdrvMailbox.index == 9) {
Settings.flag3.energy_weekend = XdrvMailbox.payload & 1;
}
Response_P(PSTR("{\"%s\":{\"Off-Peak\":[%d,%d],\"Standard\":[%d,%d],\"Weekend\":\"%s\"}}"),
Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\"}}"),
XdrvMailbox.command,
Settings.register8[R8_ENERGY_TARIFF1_ST], Settings.register8[R8_ENERGY_TARIFF1_DS],
Settings.register8[R8_ENERGY_TARIFF2_ST], Settings.register8[R8_ENERGY_TARIFF2_DS],
GetMinuteTime(Settings.tariff[0][0]).c_str(),GetMinuteTime(Settings.tariff[0][1]).c_str(),
GetMinuteTime(Settings.tariff[1][0]).c_str(),GetMinuteTime(Settings.tariff[1][1]).c_str(),
GetStateText(Settings.flag3.energy_weekend));
}
@ -766,11 +847,9 @@ void EnergySnsInit(void)
}
else if (RtcTime.day_of_year == Settings.energy_kWhdoy) {
Energy.kWhtoday_offset = Settings.energy_kWhtoday;
RtcSettings.energy_usage.usage1_kWhtoday = Settings.energy_usage.usage1_kWhtoday;
}
else {
Energy.kWhtoday_offset = 0;
RtcSettings.energy_usage.usage1_kWhtoday = 0;
}
Energy.kWhtoday = 0;
Energy.kWhtoday_delta = 0;
@ -890,18 +969,22 @@ void EnergyShow(bool json)
dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr);
char energy_yesterday_chr[FLOATSZ];
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
char energy_total_chr[3][FLOATSZ];
dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr[0]);
char export_active_chr[3][FLOATSZ];
dtostrfd(Energy.export_active, Settings.flag2.energy_resolution, export_active_chr[0]);
uint8_t energy_total_fields = 1;
if (Settings.register8[R8_ENERGY_TARIFF1_ST] != Settings.register8[R8_ENERGY_TARIFF2_ST]) {
dtostrfd(Energy.total1, Settings.flag2.energy_resolution, energy_total_chr[1]); // Tariff1
dtostrfd(Energy.total - Energy.total1, Settings.flag2.energy_resolution, energy_total_chr[2]); // Tariff2
if (Settings.tariff[0][0] != Settings.tariff[1][0]) {
dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_total_chr[1]); // Tariff1
dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_total_chr[2]); // Tariff2
dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100000, Settings.flag2.energy_resolution, export_active_chr[1]); // Tariff1
dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100000, Settings.flag2.energy_resolution, export_active_chr[2]); // Tariff2
energy_total_fields = 3;
}
char export_active_chr[FLOATSZ];
dtostrfd(Energy.export_active, Settings.flag2.energy_resolution, export_active_chr);
char value_chr[FLOATSZ *3];
char value_chr[FLOATSZ *3]; // Used by EnergyFormatIndex
char value2_chr[FLOATSZ *3];
char value3_chr[FLOATSZ *3];
@ -915,7 +998,8 @@ void EnergyShow(bool json)
energy_daily_chr);
if (!isnan(Energy.export_active)) {
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"), export_active_chr);
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
EnergyFormatIndex(value_chr, export_active_chr[0], json, energy_total_fields));
}
if (show_energy_period) {
@ -958,13 +1042,11 @@ void EnergyShow(bool json)
dtostrfd(Energy.total * 1000, 1, energy_total_chr[0]);
DomoticzSensorPowerEnergy((int)Energy.active_power[0], energy_total_chr[0]); // PowerUsage, EnergyToday
dtostrfd(Energy.total1 * 1000, 1, energy_total_chr[1]); // Tariff1
dtostrfd((Energy.total - Energy.total1) * 1000, 1, energy_total_chr[2]); // Tariff2
char return1_total_chr[FLOATSZ];
dtostrfd(RtcSettings.energy_usage.return1_kWhtotal, 1, return1_total_chr);
char return2_total_chr[FLOATSZ];
dtostrfd(RtcSettings.energy_usage.return2_kWhtotal, 1, return2_total_chr);
DomoticzSensorP1SmartMeter(energy_total_chr[1], energy_total_chr[2], return1_total_chr, return2_total_chr, (int)Energy.active_power[0]);
dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100, 1, energy_total_chr[1]); // Tariff1
dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100, 1, energy_total_chr[2]); // Tariff2
dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100, 1, export_active_chr[1]);
dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100, 1, export_active_chr[2]);
DomoticzSensorP1SmartMeter(energy_total_chr[1], energy_total_chr[2], export_active_chr[1], export_active_chr[2], (int)Energy.active_power[0]);
if (Energy.voltage_available) {
DomoticzSensor(DZ_VOLTAGE, voltage_chr[0]); // Voltage
@ -1016,7 +1098,7 @@ void EnergyShow(bool json)
}
WSContentSend_PD(HTTP_ENERGY_SNS2, energy_daily_chr, energy_yesterday_chr, energy_total_chr[0]);
if (!isnan(Energy.export_active)) {
WSContentSend_PD(HTTP_ENERGY_SNS3, export_active_chr);
WSContentSend_PD(HTTP_ENERGY_SNS3, export_active_chr[0]);
}
XnrgCall(FUNC_WEB_SENSOR);
@ -1066,10 +1148,7 @@ bool Xsns03(uint8_t function)
if (energy_flg) {
switch (function) {
case FUNC_EVERY_SECOND:
#ifdef USE_ENERGY_MARGIN_DETECTION
EnergyMarginCheck();
#endif // USE_ENERGY_MARGIN_DETECTION
EnergyOverTempCheck();
EnergyEverySecond();
break;
case FUNC_JSON_APPEND:
EnergyShow(true);

View File

@ -2281,7 +2281,7 @@ void CmndChannel(void)
light_controller.changeChannels(Light.current_color);
coldim = true;
}
ResponseCmndIdxNumber(Light.current_color[XdrvMailbox.index -1] * 100 / 255);
ResponseCmndIdxNumber(changeUIntScale(Light.current_color[XdrvMailbox.index -1],0,255,0,100));
if (coldim) {
LightPreparePower();
}

View File

@ -169,15 +169,15 @@ String sendIRJsonState(const struct decode_results &results) {
char hvalue[64];
if (UNKNOWN != results.decode_type) {
Uint64toHex(results.value, hvalue, results.bits); // Get 64bit value as hex 0x00123456
json += "\"";
json += "\"0x";
json += hvalue;
json += "\",\"" D_JSON_IR_DATALSB "\":\"";
json += "\",\"" D_JSON_IR_DATALSB "\":\"0x";
Uint64toHex(reverseBitsInBytes64(results.value), hvalue, results.bits); // Get 64bit value as hex 0x00123456, LSB
json += hvalue;
json += "\"";
} else { // UNKNOWN
Uint64toHex(results.value, hvalue, 32); // Unknown is always 32 bits
json += "\"";
json += "\"0x";
json += hvalue;
json += "\"";
}
@ -210,7 +210,7 @@ void IrReceiveCheck(void)
// if ((now - ir_lasttime > IR_TIME_AVOID_DUPLICATE) && (UNKNOWN != results.decode_type) && (results.bits > 0)) {
if (!irsend_active && (now - ir_lasttime > IR_TIME_AVOID_DUPLICATE)) {
ir_lasttime = now;
ResponseTime_P(PSTR(",\"" D_JSON_IRRECEIVED "\":%s"), sendIRJsonState(results).c_str());
Response_P(PSTR("{\"" D_JSON_IRRECEIVED "\":%s"), sendIRJsonState(results).c_str());
if (Settings.flag3.receive_raw) {
ResponseAppend_P(PSTR(",\"" D_JSON_IR_RAWDATA "\":["));
@ -438,7 +438,7 @@ uint32_t IrRemoteCmndIrSendJson(void)
char dvalue[32];
char hvalue[32];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRS: protocol %d, bits %d, data %s (%s), repeat %d"),
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRS: protocol %d, bits %d, data 0x%s (%s), repeat %d"),
protocol, bits, ulltoa(data, dvalue, 10), Uint64toHex(data, hvalue, bits), repeat);
irsend_active = true; // deactivate receive

View File

@ -42,7 +42,7 @@ const char DOMOTICZ_MESSAGE[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"
const char kDomoticzSensors[] PROGMEM =
D_DOMOTICZ_TEMP "|" D_DOMOTICZ_TEMP_HUM "|" D_DOMOTICZ_TEMP_HUM_BARO "|" D_DOMOTICZ_POWER_ENERGY "|" D_DOMOTICZ_ILLUMINANCE "|"
D_DOMOTICZ_COUNT "|" D_DOMOTICZ_VOLTAGE "|" D_DOMOTICZ_CURRENT "|" D_DOMOTICZ_AIRQUALITY "|" D_DOMOTICZ_P1_SMART_METER ;
D_DOMOTICZ_COUNT "|" D_DOMOTICZ_VOLTAGE "|" D_DOMOTICZ_CURRENT "|" D_DOMOTICZ_AIRQUALITY "|" D_DOMOTICZ_P1_SMART_METER "|" D_DOMOTICZ_SHUTTER ;
char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC;
char domoticz_out_topic[] = DOMOTICZ_OUT_TOPIC;
@ -347,8 +347,15 @@ void DomoticzSensor(uint8_t idx, char *data)
Response_P(PSTR("{\"idx\":%d,\"nvalue\":%s,\"Battery\":%d,\"RSSI\":%d}"),
Settings.domoticz_sensor_idx[idx], data, DomoticzBatteryQuality(), DomoticzRssiQuality());
} else {
uint8_t nvalue = 0;
#ifdef USE_SHUTTER
if (DZ_SHUTTER == idx) {
uint8_t position = atoi(data);
nvalue = position < 2 ? 0 : (position == 100 ? 1 : 2);
}
#endif // USE_SHUTTER
Response_P(DOMOTICZ_MESSAGE,
Settings.domoticz_sensor_idx[idx], 0, data, DomoticzBatteryQuality(), DomoticzRssiQuality());
Settings.domoticz_sensor_idx[idx], nvalue, data, DomoticzBatteryQuality(), DomoticzRssiQuality());
}
MqttPublish(domoticz_in_topic);
memcpy(mqtt_data, dmess, sizeof(dmess));

View File

@ -97,7 +97,7 @@ const char kCompareOperators[] PROGMEM = "=\0>\0<\0|\0==!=>=<=";
#ifdef USE_EXPRESSION
#include <LinkedList.h> // Import LinkedList library
const char kExpressionOperators[] PROGMEM = "+-*/%^";
const char kExpressionOperators[] PROGMEM = "+-*/%^\0";
#define EXPRESSION_OPERATOR_ADD 0
#define EXPRESSION_OPERATOR_SUBTRACT 1
#define EXPRESSION_OPERATOR_MULTIPLY 2
@ -259,8 +259,17 @@ bool RulesRuleMatch(uint8_t rule_set, String &event, String &rule)
JsonObject &root = jsonBuf.parseObject(event);
if (!root.success()) { return false; } // No valid JSON data
float value = 0;
const char* str_value = root[rule_task][rule_name];
const char* str_value;
if ((pos = rule_name.indexOf("[")) > 0) { // "CURRENT[1]"
int rule_name_idx = rule_name.substring(pos +1).toInt();
if ((rule_name_idx < 1) || (rule_name_idx > 6)) { // Allow indexes 1 to 6
rule_name_idx = 1;
}
rule_name = rule_name.substring(0, pos); // "CURRENT"
str_value = root[rule_task][rule_name][rule_name_idx -1]; // "ENERGY" and "CURRENT" and 0
} else {
str_value = root[rule_task][rule_name]; // "INA219" and "CURRENT"
}
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("RUL: Task %s, Name %s, Value |%s|, TrigCnt %d, TrigSt %d, Source %s, Json %s"),
// rule_task.c_str(), rule_name.c_str(), rule_svalue, Rules.trigger_count[rule_set], bitRead(Rules.triggers[rule_set], Rules.trigger_count[rule_set]), event.c_str(), (str_value) ? str_value : "none");
@ -271,6 +280,7 @@ bool RulesRuleMatch(uint8_t rule_set, String &event, String &rule)
Rules.event_value = str_value; // Prepare %value%
// Step 3: Compare rule (value)
float value = 0;
if (str_value) {
value = CharToFloat((char*)str_value);
int int_value = int(value);
@ -595,6 +605,10 @@ void RulesEvery50ms(void)
case 5: strncpy_P(json_event, PSTR("{\"WIFI\":{\"Connected\":1}}"), sizeof(json_event)); break;
case 6: strncpy_P(json_event, PSTR("{\"WIFI\":{\"Disconnected\":1}}"), sizeof(json_event)); break;
case 7: strncpy_P(json_event, PSTR("{\"HTTP\":{\"Initialized\":1}}"), sizeof(json_event)); break;
#ifdef USE_SHUTTER
case 8: strncpy_P(json_event, PSTR("{\"SHUTTER\":{\"Moved\":1}}"), sizeof(json_event)); break;
case 9: strncpy_P(json_event, PSTR("{\"SHUTTER\":{\"Moving\":1}}"), sizeof(json_event)); break;
#endif // USE_SHUTTER
}
if (json_event[0]) {
RulesProcessEvent(json_event);
@ -909,6 +923,10 @@ bool findNextNumber(char * &pNumber, float &value)
{
bool bSucceed = false;
String sNumber = "";
if (*pNumber == '-') {
sNumber = "-";
pNumber++;
}
while (*pNumber) {
if (isdigit(*pNumber) || (*pNumber == '.')) {
sNumber += *pNumber;
@ -986,7 +1004,7 @@ bool findNextVariableValue(char * &pVarname, float &value)
/*
* Find next object in expression and evaluate it
* An object could be:
* - A float number start with a digit, like 0.787
* - A float number start with a digit or minus, like 0.787, -3
* - A variable name, like VAR1, MEM3
* - An expression enclosed with a pair of round brackets, (.....)
* Input:
@ -1008,7 +1026,7 @@ bool findNextObjectValue(char * &pointer, float &value)
pointer++;
continue;
}
if (isdigit(*pointer)) { //This object is a number
if (isdigit(*pointer) || (*pointer) == '-') { //This object is a number
bSucceed = findNextNumber(pointer, value);
break;
} else if (isalpha(*pointer)) { //Should be a variable like VAR12, MEM1
@ -1017,7 +1035,7 @@ bool findNextObjectValue(char * &pointer, float &value)
} else if (*pointer == '(') { //It is a sub expression bracketed with ()
char * closureBracket = findClosureBracket(pointer); //Get the position of closure bracket ")"
if (closureBracket != nullptr) {
value = evaluateExpression(pointer+1, closureBracket - pointer - 2);
value = evaluateExpression(pointer+1, closureBracket - pointer - 1);
pointer = closureBracket + 1;
bSucceed = true;
}
@ -1052,10 +1070,16 @@ bool findNextOperator(char * &pointer, int8_t &op)
pointer++;
continue;
}
if (char *pch = strchr(kExpressionOperators, *pointer)) { //If it is an operator
op = (int8_t)(pch - kExpressionOperators);
pointer++;
bSucceed = true;
op = EXPRESSION_OPERATOR_ADD;
const char *pch = kExpressionOperators;
char ch;
while ((ch = pgm_read_byte(pch++)) != '\0') {
if (ch == *pointer) {
bSucceed = true;
pointer++;
break;
}
op++;
}
break;
}
@ -1163,7 +1187,7 @@ float evaluateExpression(const char * expression, unsigned int len)
for (int32_t priority = MAX_EXPRESSION_OPERATOR_PRIORITY; priority>0; priority--) {
int index = 0;
while (index < operators.size()) {
if (priority == kExpressionOperatorsPriorities[(operators.get(index))]) { //need to calculate the operator first
if (priority == pgm_read_byte(kExpressionOperatorsPriorities + operators.get(index))) { //need to calculate the operator first
//get current object value and remove the next object with current operator
va = calculateTwoValues(object_values.get(index), object_values.remove(index + 1), operators.remove(index));
//Replace the current value with the result
@ -1313,7 +1337,7 @@ bool findNextLogicObjectValue(char * &pointer, bool &value)
} else if (*pointer == '(') { //It is a sub expression bracketed with ()
char * closureBracket = findClosureBracket(pointer); //Get the position of closure bracket ")"
if (closureBracket != nullptr) {
value = evaluateLogicalExpression(pointer+1, closureBracket - pointer - 2);
value = evaluateLogicalExpression(pointer+1, closureBracket - pointer - 1);
pointer = closureBracket + 1;
bSucceed = true;
}
@ -1861,9 +1885,6 @@ bool Xdrv10(uint8_t function)
bool result = false;
switch (function) {
case FUNC_PRE_INIT:
RulesInit();
break;
case FUNC_EVERY_50_MSECOND:
RulesEvery50ms();
break;
@ -1890,6 +1911,9 @@ bool Xdrv10(uint8_t function)
result = RulesMqttData();
break;
#endif // SUPPORT_MQTT_EVENT
case FUNC_PRE_INIT:
RulesInit();
break;
}
return result;
}

View File

@ -41,9 +41,15 @@ keywords if then else endif, or, and are better readable for beginners (others m
#define SCRIPT_DEBUG 0
#ifndef MAXVARS
#define MAXVARS 50
#define MAXNVARS 45
#endif
#ifndef MAXSVARS
#define MAXSVARS 5
#endif
#define MAXNVARS MAXVARS-MAXSVARS
#define MAXFILT 5
#define SCRIPT_SVARSIZE 20
#define SCRIPT_MAXSSIZE 48
@ -61,7 +67,9 @@ enum {SCRIPT_LOGLEVEL=1,SCRIPT_TELEPERIOD};
#ifdef USE_SCRIPT_FATFS
#include <SPI.h>
#include <SD.h>
#ifndef FAT_SCRIPT_SIZE
#define FAT_SCRIPT_SIZE 4096
#endif
#define FAT_SCRIPT_NAME "script.txt"
#if USE_LONG_FILE_NAMES==1
#warning ("FATFS long filenames not supported");
@ -214,7 +222,11 @@ void RulesTeleperiod(void) {
#include <Eeprom24C128_256.h>
#define EEPROM_ADDRESS 0x50
// strange bug, crashes with powers of 2 ??? 4096 crashes
#ifndef EEP_SCRIPT_SIZE
#define EEP_SCRIPT_SIZE 4095
#endif
static Eeprom24C128_256 eeprom(EEPROM_ADDRESS);
// eeprom.writeBytes(address, length, buffer);
#define EEP_WRITE(A,B,C) eeprom.writeBytes(A,B,(uint8_t*)C);
@ -465,7 +477,13 @@ char *script;
}
namep++;
index++;
if (index>255) {
free(glob_script_mem.script_mem);
return -5;
}
}
// variables usage info
AddLog_P2(LOG_LEVEL_INFO, PSTR("Script: nv=%d, tv=%d, vns=%d, ram=%d"), nvars, svars, index, glob_script_mem.script_mem_size);
// copy string variables
char *cp1=glob_script_mem.glob_snp;
@ -718,7 +736,7 @@ float DoMedian5(uint8_t index, float in) {
}
#ifdef USE_LIGHT
#ifdef USE_WS2812
//#ifdef USE_WS2812
uint32_t HSVToRGB(uint16_t hue, uint8_t saturation, uint8_t value) {
float r = 0, g = 0, b = 0;
struct HSV {
@ -801,7 +819,7 @@ if (hsv.S == 0) {
return rgb;
}
#endif
#endif
//#endif
// vtype => ff=nothing found, fe=constant number,fd = constant string else bit 7 => 80 = string, 0 = number
// no flash strings here for performance reasons!!!
@ -1103,7 +1121,7 @@ chknext:
fvar=cnt;
glob_script_mem.file_flags[cnt].is_open=1;
} else {
toLog("file open failed");
AddLog_P(LOG_LEVEL_INFO,PSTR("file open failed"));
}
break;
}
@ -1339,8 +1357,17 @@ chknext:
}
goto strexit;
}
if (!strncmp(vname,"hx(",3)) {
lp=GetNumericResult(lp+3,OPER_EQU,&fvar,0);
lp++;
len=0;
if (sp) {
sprintf(sp,"%08x",(uint32_t)fvar);
}
goto strexit;
}
#ifdef USE_LIGHT
#ifdef USE_WS2812
//#ifdef USE_WS2812
if (!strncmp(vname,"hsvrgb(",7)) {
lp=GetNumericResult(lp+7,OPER_EQU,&fvar,0);
if (fvar<0 || fvar>360) fvar=0;
@ -1361,7 +1388,7 @@ chknext:
len=0;
goto exit;
}
#endif
//#endif
#endif
break;
case 'i':
@ -1619,6 +1646,20 @@ chknext:
goto exit;
}
#endif
#ifdef USE_SHUTTER
if (!strncmp(vname,"sht[",4)) {
GetNumericResult(vname+4,OPER_EQU,&fvar,0);
uint8_t index=fvar;
if (index<=shutters_present) {
fvar=Settings.shutter_position[index-1];
} else {
fvar=-1;
}
len+=1;
goto exit;
}
#endif
break;
case 't':
if (!strncmp(vname,"time",4)) {
@ -1903,6 +1944,11 @@ char *GetStringResult(char *lp,uint8_t lastop,char *cp,JsonObject *jo) {
char str[SCRIPT_MAXSSIZE],str1[SCRIPT_MAXSSIZE];
while (1) {
lp=isvar(lp,&vtype,&ind,0,str1,jo);
if (vtype!=STR_RES && !(vtype&STYPE)) {
// numeric type
glob_script_mem.glob_error=1;
return lp;
}
switch (lastop) {
case OPER_EQU:
strlcpy(str,str1,sizeof(str));
@ -2015,13 +2061,13 @@ struct T_INDEX ind;
char *ForceStringVar(char *lp,char *dstr) {
float fvar;
char *slp=lp;
glob_script_mem.var_not_found=0;
glob_script_mem.glob_error=0;
lp=GetStringResult(lp,OPER_EQU,dstr,0);
if (glob_script_mem.var_not_found) {
if (glob_script_mem.glob_error) {
// mismatch
lp=GetNumericResult(slp,OPER_EQU,&fvar,0);
dtostrfd(fvar,6,dstr);
glob_script_mem.var_not_found=0;
glob_script_mem.glob_error=0;
}
return lp;
}
@ -2089,6 +2135,7 @@ void toLog(const char *str) {
AddLog(LOG_LEVEL_INFO);
}
void toLogN(const char *cp,uint8_t len) {
if (!cp) return;
char str[32];
@ -2281,12 +2328,10 @@ int16_t Run_Scripter(const char *type, int8_t tlen, char *js) {
if (section) {
// we are in section
if (*lp=='>') {
section=0;
break;
return 0;
}
if (*lp=='#') {
section=0;
break;
return 0;
}
glob_script_mem.var_not_found=0;
@ -2718,14 +2763,15 @@ int16_t Run_Scripter(const char *type, int8_t tlen, char *js) {
sindex=index;
// string result
char str[SCRIPT_MAXSSIZE];
char *slp=lp;
lp=getop(lp,&lastop);
char *slp=lp;
glob_script_mem.glob_error=0;
lp=GetStringResult(lp,OPER_EQU,str,jo);
if (!js && glob_script_mem.var_not_found) {
if (!js && glob_script_mem.glob_error) {
// mismatch
lp=GetNumericResult(slp,OPER_EQU,&fvar,0);
dtostrfd(fvar,6,str);
glob_script_mem.var_not_found=0;
glob_script_mem.glob_error=0;
}
if (!glob_script_mem.var_not_found) {
@ -2764,19 +2810,20 @@ int16_t Run_Scripter(const char *type, int8_t tlen, char *js) {
return 99;
}
// check for subroutine
if (*type=='#') {
char *ctype=(char*)type;
if (*ctype=='#') {
// check for parameter
type+=tlen;
if (*type=='(') {
ctype+=tlen;
if (*ctype=='(' && *(lp+tlen)=='(') {
float fparam;
numeric=1;
glob_script_mem.glob_error=0;
GetNumericResult((char*)type,OPER_EQU,&fparam,0);
GetNumericResult((char*)ctype,OPER_EQU,&fparam,0);
if (glob_script_mem.glob_error==1) {
// was string, not number
numeric=0;
// get the string
GetStringResult((char*)type+1,OPER_EQU,cmpstr,0);
GetStringResult((char*)ctype+1,OPER_EQU,cmpstr,0);
}
lp+=tlen;
if (*lp=='(') {
@ -2807,6 +2854,12 @@ int16_t Run_Scripter(const char *type, int8_t tlen, char *js) {
}
}
}
} else {
lp+=tlen;
if (*ctype=='(' || (*lp!=SCRIPT_EOL && *lp!='?')) {
// revert
section=0;
}
}
}
}
@ -2817,11 +2870,17 @@ int16_t Run_Scripter(const char *type, int8_t tlen, char *js) {
lp++;
} else {
lp = strchr(lp, SCRIPT_EOL);
if (!lp) break;
if (!lp) {
if (section) {
return 0;
} else {
return -1;
}
}
lp++;
}
}
return 0;
return -1;
}
uint8_t script_xsns_index = 0;
@ -3137,13 +3196,13 @@ uint8_t DownloadFile(char *file) {
WiFiClient download_Client;
if (!SD.exists(file)) {
toLog("file not found");
AddLog_P(LOG_LEVEL_INFO,PSTR("file not found"));
return 0;
}
download_file=SD.open(file,FILE_READ);
if (!download_file) {
toLog("could not open file");
AddLog_P(LOG_LEVEL_INFO,PSTR("could not open file"));
return 0;
}
@ -3306,6 +3365,386 @@ void ScriptSaveSettings(void) {
#endif
#if defined(USE_WEBSERVER) && defined(USE_EMULATION) && defined(USE_EMULATION_HUE) && defined(USE_LIGHT)
/*
"state": {
"temperature": 2674,
"lastupdated": "2017-08-04T12:13:04"
},
"config": {
"on": true,
"battery": 100,
"reachable": true,
"alert": "none",
"ledindication": false,
"usertest": false,
"pending": []
},
"name": "Hue temperature sensor 1",
"type": "ZLLTemperature",
"modelid": "SML001",
"manufacturername": "Philips",
"swversion": "6.1.0.18912",
"uniqueid": "xxx"
}
*/
#define HUE_DEV_MVNUM 5
#define HUE_DEV_NSIZE 16
struct HUE_SCRIPT {
char name[HUE_DEV_NSIZE];
uint8_t type;
uint8_t index[HUE_DEV_MVNUM];
uint8_t vindex[HUE_DEV_MVNUM];
} hue_script[32];
const char SCRIPT_HUE_LIGHTS_STATUS_JSON1[] PROGMEM =
"{\"state\":"
"{\"on\":{state},"
"{light_status}"
"\"alert\":\"none\","
"\"effect\":\"none\","
"\"reachable\":true}"
",\"type\":\"{type}\","
"\"name\":\"{j1\","
"\"modelid\":\"LCT007\","
"\"uniqueid\":\"{j2\","
"\"swversion\":\"5.50.1.19085\"}";
void Script_HueStatus(String *response, uint16_t hue_devs) {
*response+=FPSTR(SCRIPT_HUE_LIGHTS_STATUS_JSON1);
uint8_t pwr=glob_script_mem.fvars[hue_script[hue_devs].index[0]-1];
response->replace("{state}", (pwr ? "true" : "false"));
String light_status = "";
if (hue_script[hue_devs].index[1]>0) {
// bri
light_status += "\"bri\":";
uint32_t bri=glob_script_mem.fvars[hue_script[hue_devs].index[1]-1];
if (bri > 254) bri = 254;
if (bri < 1) bri = 1;
light_status += String(bri);
light_status += ",";
}
if (hue_script[hue_devs].index[2]>0) {
// hue
uint32_t hue=glob_script_mem.fvars[hue_script[hue_devs].index[2]-1];
//hue = changeUIntScale(hue, 0, 359, 0, 65535);
light_status += "\"hue\":";
light_status += String(hue);
light_status += ",";
}
if (hue_script[hue_devs].index[3]>0) {
// sat
uint32_t sat=glob_script_mem.fvars[hue_script[hue_devs].index[3]-1] ;
if (sat > 254) sat = 254;
if (sat < 1) sat = 1;
light_status += "\"sat\":";
light_status += String(sat);
light_status += ",";
}
if (hue_script[hue_devs].index[4]>0) {
// ct
uint32_t ct=glob_script_mem.fvars[hue_script[hue_devs].index[4]-1];
light_status += "\"ct\":";
light_status += String(ct);
light_status += ",";
}
response->replace("{light_status}", light_status);
response->replace("{j1",hue_script[hue_devs].name);
response->replace("{j2", GetHueDeviceId(hue_devs<<8));
if (hue_script[hue_devs].type=='E') {
response->replace("{type}","Extended color light");
} else {
response->replace("{type}","color light");
}
}
void Script_Check_Hue(String *response) {
if (!bitRead(Settings.rule_enabled, 0)) return;
uint8_t hue_script_found=Run_Scripter(">H",-2,0);
if (hue_script_found!=99) return;
char line[128];
char tmp[128];
uint8_t hue_devs=0;
uint8_t vindex=0;
char *cp;
char *lp=glob_script_mem.section_ptr+2;
while (lp) {
SCRIPT_SKIP_SPACES
while (*lp==SCRIPT_EOL) {
lp++;
}
if (!*lp || *lp=='#' || *lp=='>') {
break;
}
if (*lp!=';') {
// check this line
memcpy(line,lp,sizeof(line));
line[sizeof(line)-1]=0;
cp=line;
for (uint32_t i=0; i<sizeof(line); i++) {
if (!*cp || *cp=='\n' || *cp=='\r') {
*cp=0;
break;
}
cp++;
}
Replace_Cmd_Vars(line,tmp,sizeof(tmp));
// check for hue defintions
// NAME, TYPE , vars
cp=tmp;
cp=strchr(cp,',');
if (!cp) break;
*cp=0;
// copy name
strlcpy(hue_script[hue_devs].name,tmp,HUE_DEV_NSIZE);
cp++;
while (*cp==' ') cp++;
// get type
hue_script[hue_devs].type=*cp;
for (vindex=0;vindex<HUE_DEV_MVNUM;vindex++) {
hue_script[hue_devs].index[vindex]=0;
}
vindex=0;
while (1) {
cp=strchr(cp,',');
if (!cp) break;
// get vars, on,hue,sat,bri,ct,
cp++;
while (*cp==' ') cp++;
vindex==0xff;
if (!strncmp(cp,"on=",3)) {
cp+=3;
vindex=0;
} else if (!strncmp(cp,"bri=",4)) {
cp+=4;
vindex=1;
} else if (!strncmp(cp,"hue=",4)) {
cp+=4;
vindex=2;
} else if (!strncmp(cp,"sat=",4)) {
cp+=4;
vindex=3;
} else if (!strncmp(cp,"ct=",3)) {
cp+=3;
vindex=4;
} else {
// error
vindex==0xff;
break;
}
if (vindex!=0xff) {
struct T_INDEX ind;
uint8_t vtype;
char vname[16];
for (uint32_t cnt=0;cnt<sizeof(vname)-1;cnt++) {
if (*cp==',' || *cp==0) {
vname[cnt]=0;
break;
}
vname[cnt]=*cp++;
}
isvar(vname,&vtype,&ind,0,0,0);
if (vtype!=VAR_NV) {
// found variable as result
if (vtype==NUM_RES || (vtype&STYPE)==0) {
hue_script[hue_devs].vindex[vindex]=ind.index;
hue_script[hue_devs].index[vindex]=glob_script_mem.type[ind.index].index+1;
} else {
// break;
}
}
}
}
// append response
if (response) {
*response+=",\""+String(EncodeLightId(hue_devs+devices_present+1))+"\":";
Script_HueStatus(response,hue_devs);
}
hue_devs++;
}
if (*lp==SCRIPT_EOL) {
lp++;
} else {
lp = strchr(lp, SCRIPT_EOL);
if (!lp) break;
lp++;
}
}
#if 0
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Hue: %d"), hue_devs);
toLog(">>>>");
toLog(response->c_str());
toLog(response->c_str()+LOGSZ);
#endif
}
const char sHUE_LIGHT_RESPONSE_JSON[] PROGMEM =
"{\"success\":{\"/lights/{id/state/{cm\":{re}}";
const char sHUE_ERROR_JSON[] PROGMEM =
"[{\"error\":{\"type\":901,\"address\":\"/\",\"description\":\"Internal Error\"}}]";
// get alexa arguments
void Script_Handle_Hue(String *path) {
String response;
int code = 200;
uint16_t tmp = 0;
uint16_t hue = 0;
uint8_t sat = 0;
uint8_t bri = 254;
uint16_t ct = 0;
bool resp = false;
uint8_t device = DecodeLightId(atoi(path->c_str()));
uint8_t index = device-devices_present-1;
if (WebServer->args()) {
response = "[";
StaticJsonBuffer<400> jsonBuffer;
JsonObject &hue_json = jsonBuffer.parseObject(WebServer->arg((WebServer->args())-1));
if (hue_json.containsKey("on")) {
response += FPSTR(sHUE_LIGHT_RESPONSE_JSON);
response.replace("{id", String(EncodeLightId(device)));
response.replace("{cm", "on");
bool on = hue_json["on"];
switch(on)
{
case false : glob_script_mem.fvars[hue_script[index].index[0]-1]=0;
response.replace("{re", "false");
break;
case true : glob_script_mem.fvars[hue_script[index].index[0]-1]=1;
response.replace("{re", "true");
break;
}
glob_script_mem.type[hue_script[index].vindex[0]].bits.changed=1;
resp = true;
}
if (hue_json.containsKey("bri")) { // Brightness is a scale from 1 (the minimum the light is capable of) to 254 (the maximum). Note: a brightness of 1 is not off.
tmp = hue_json["bri"];
bri=tmp;
if (254 <= bri) { bri = 255; }
if (resp) { response += ","; }
response += FPSTR(sHUE_LIGHT_RESPONSE_JSON);
response.replace("{id", String(EncodeLightId(device)));
response.replace("{cm", "bri");
response.replace("{re", String(tmp));
glob_script_mem.fvars[hue_script[index].index[1]-1]=bri;
glob_script_mem.type[hue_script[index].vindex[1]].bits.changed=1;
resp = true;
}
if (hue_json.containsKey("hue")) { // The hue value is a wrapping value between 0 and 65535. Both 0 and 65535 are red, 25500 is green and 46920 is blue.
tmp = hue_json["hue"];
//hue = changeUIntScale(tmp, 0, 65535, 0, 359);
//tmp = changeUIntScale(hue, 0, 359, 0, 65535);
hue=tmp;
if (resp) { response += ","; }
response += FPSTR(sHUE_LIGHT_RESPONSE_JSON);
response.replace("{id", String(EncodeLightId(device)));
response.replace("{cm", "hue");
response.replace("{re", String(tmp));
glob_script_mem.fvars[hue_script[index].index[2]-1]=hue;
glob_script_mem.type[hue_script[index].vindex[2]].bits.changed=1;
resp = true;
}
if (hue_json.containsKey("sat")) { // Saturation of the light. 254 is the most saturated (colored) and 0 is the least saturated (white).
tmp = hue_json["sat"];
sat=tmp;
if (254 <= sat) { sat = 255; }
if (resp) { response += ","; }
response += FPSTR(sHUE_LIGHT_RESPONSE_JSON);
response.replace("{id", String(EncodeLightId(device)));
response.replace("{cm", "sat");
response.replace("{re", String(tmp));
glob_script_mem.fvars[hue_script[index].index[3]-1]=sat;
glob_script_mem.type[hue_script[index].vindex[3]].bits.changed=1;
resp = true;
}
if (hue_json.containsKey("ct")) { // Color temperature 153 (Cold) to 500 (Warm)
ct = hue_json["ct"];
if (resp) { response += ","; }
response += FPSTR(sHUE_LIGHT_RESPONSE_JSON);
response.replace("{id", String(EncodeLightId(device)));
response.replace("{cm", "ct");
response.replace("{re", String(ct));
glob_script_mem.fvars[hue_script[index].index[4]-1]=ct;
glob_script_mem.type[hue_script[index].vindex[4]].bits.changed=1;
resp = true;
}
response += "]";
} else {
response = FPSTR(sHUE_ERROR_JSON);
}
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_HTTP D_HUE " Result (%s)"), response.c_str());
WSSend(code, CT_JSON, response);
if (resp) {
Run_Scripter(">E",2,0);
}
}
#endif // hue interface
#ifdef USE_SCRIPT_SUB_COMMAND
bool Script_SubCmd(void) {
if (!bitRead(Settings.rule_enabled, 0)) return false;
if (tasm_cmd_activ) return false;
char command[CMDSZ];
strlcpy(command,XdrvMailbox.topic,CMDSZ);
uint32_t pl=XdrvMailbox.payload;
char pld[64];
strlcpy(pld,XdrvMailbox.data,sizeof(pld));
char cmdbuff[128];
char *cp=cmdbuff;
*cp++='#';
strcpy(cp,XdrvMailbox.topic);
uint8_t tlen=strlen(XdrvMailbox.topic);
cp+=tlen;
if (XdrvMailbox.index > 0) {
*cp++=XdrvMailbox.index|0x30;
tlen++;
}
if ((XdrvMailbox.payload>0) || (XdrvMailbox.data_len>0)) {
*cp++='(';
strncpy(cp,XdrvMailbox.data,XdrvMailbox.data_len);
cp+=XdrvMailbox.data_len;
*cp++=')';
*cp=0;
}
//toLog(cmdbuff);
uint32_t res=Run_Scripter(cmdbuff,tlen+1,0);
//AddLog_P2(LOG_LEVEL_INFO,">>%d",res);
if (res) return false;
else {
if (pl>=0) {
Response_P(S_JSON_COMMAND_NVALUE, command, pl);
} else {
Response_P(S_JSON_COMMAND_SVALUE, command, pld);
}
}
return true;
}
#endif
void execute_script(char *script) {
char *svd_sp=glob_script_mem.scriptptr;
strcat(script,"\n#");
@ -3325,6 +3764,8 @@ bool ScriptCommand(void) {
bool serviced = true;
uint8_t index = XdrvMailbox.index;
if (tasm_cmd_activ) return false;
int command_code = GetCommandCode(command, sizeof(command), XdrvMailbox.topic, kScriptCommands);
if (-1 == command_code) {
serviced = false; // Unknown command
@ -3351,15 +3792,15 @@ bool ScriptCommand(void) {
return serviced;
}
snprintf_P (mqtt_data, sizeof(mqtt_data), PSTR("{\"%s\":\"%s\",\"Free\":%d}"),command, GetStateText(bitRead(Settings.rule_enabled,0)),glob_script_mem.script_size-strlen(glob_script_mem.script_ram));
#ifdef SUPPORT_MQTT_EVENT
#ifdef SUPPORT_MQTT_EVENT
} else if (CMND_SUBSCRIBE == command_code) { //MQTT Subscribe command. Subscribe <Event>, <Topic> [, <Key>]
String result = ScriptSubscribe(XdrvMailbox.data, XdrvMailbox.data_len);
Response_P(S_JSON_COMMAND_SVALUE, command, result.c_str());
} else if (CMND_UNSUBSCRIBE == command_code) { //MQTT Un-subscribe command. UnSubscribe <Event>
String result = ScriptUnsubscribe(XdrvMailbox.data, XdrvMailbox.data_len);
Response_P(S_JSON_COMMAND_SVALUE, command, result.c_str());
#endif //SUPPORT_MQTT_EVENT
}
#endif //SUPPORT_MQTT_EVENT
}
return serviced;
}
@ -3614,24 +4055,43 @@ void Script_Check_HTML_Setvars(void) {
//toLog(cmdbuf);
execute_script(cmdbuf);
Run_Scripter(">E",2,0);
}
}
const char SCRIPT_MSG_BUTTONa[] PROGMEM =
"<button type='submit' style=\"width:%d%%\" onclick='seva(%d,\"%s\")'>%s</button>";
const char SCRIPT_MSG_BUTTONa_TBL[] PROGMEM =
"<td style=\"width:%d%%\"><button type='submit' onclick='seva(%d,\"%s\")'>%s</button></td>";
const char SCRIPT_MSG_BUTTONb[] PROGMEM =
"<img width=\"%d%%\"><\img>";
const char SCRIPT_MSG_BUT_START[] PROGMEM =
"<div>";
const char SCRIPT_MSG_BUT_START_TBL[] PROGMEM =
"<table style='width:100%%'><tr>";
const char SCRIPT_MSG_BUT_STOP[] PROGMEM =
"</div>";
const char SCRIPT_MSG_BUT_STOP_TBL[] PROGMEM =
"</tr></table>";
const char SCRIPT_MSG_SLIDER[] PROGMEM =
"<div><span class='p'>%s</span><center><b>%s</b><span class='q'>%s</span></div>"
"<div><input type='range' min='%d' max='%d' value='%d' onchange='seva(value,\"%s\")'></div>";
const char SCRIPT_MSG_BUTTON[] PROGMEM =
"<div><button type='submit' onclick='seva(%d,\"%s\")'>%s</button></div>";
const char SCRIPT_MSG_CHKBOX[] PROGMEM =
"<div><center><label><b>%s</b><input type='checkbox' %s onchange='seva(%d,\"%s\")'></label></div>";
const char SCRIPT_MSG_TEXTINP[] PROGMEM =
"<div><center><label><b>%s</b><input type='text' value='%s' style='width:200px' onchange='seva(value,\"%s\")'></label></div>";
"<div><center><label><b>%s</b><input type='text' value='%s' style='width:200px' onfocusin='pr(0)' onfocusout='pr(1)' onchange='siva(value,\"%s\")'></label></div>";
const char SCRIPT_MSG_NUMINP[] PROGMEM =
"<div><center><label><b>%s</b><input min='%s' max='%s' step='%s' value='%s' type='number' style='width:200px' onfocusin='pr(0)' onfocusout='pr(1)' onchange='siva(value,\"%s\")'></label></div>";
//<input onkeypress="if(event.key == 'Enter') {console.log('Test')}">
//<input onBlur="if (this.value == '') { var field = this; setTimeout(function() { field.focus(); }, 0); }" type="text">
void ScriptGetVarname(char *nbuf,char *sp, uint32_t blen) {
uint32_t cnt;
@ -3649,6 +4109,7 @@ void ScriptWebShow(void) {
if (web_script==99) {
char line[128];
char tmp[128];
uint8_t optflg=0;
char *lp=glob_script_mem.section_ptr+2;
while (lp) {
while (*lp==SCRIPT_EOL) {
@ -3669,10 +4130,17 @@ void ScriptWebShow(void) {
}
cp++;
}
char *lin=line;
if (*lin=='@') {
lin++;
optflg=1;
} else {
optflg=0;
}
// check for input elements
if (!strncmp(line,"sl(",3)) {
if (!strncmp(lin,"sl(",3)) {
// insert slider sl(min max var left mid right)
char *lp=line;
char *lp=lin;
float min;
lp=GetNumericResult(lp+3,OPER_EQU,&min,0);
SCRIPT_SKIP_SPACES
@ -3701,8 +4169,8 @@ void ScriptWebShow(void) {
WSContentSend_PD(SCRIPT_MSG_SLIDER,left,mid,right,(uint32_t)min,(uint32_t)max,(uint32_t)val,vname);
} else if (!strncmp(line,"ck(",3)) {
char *lp=line+3;
} else if (!strncmp(lin,"ck(",3)) {
char *lp=lin+3;
char *slp=lp;
float val;
lp=GetNumericResult(lp,OPER_EQU,&val,0);
@ -3713,7 +4181,7 @@ void ScriptWebShow(void) {
char label[SCRIPT_MAXSSIZE];
lp=GetStringResult(lp,OPER_EQU,label,0);
char *cp;
const char *cp;
uint8_t uval;
if (val>0) {
cp="checked='checked'";
@ -3722,38 +4190,64 @@ void ScriptWebShow(void) {
cp="";
uval=1;
}
WSContentSend_PD(SCRIPT_MSG_CHKBOX,label,cp,uval,vname);
WSContentSend_PD(SCRIPT_MSG_CHKBOX,label,(char*)cp,uval,vname);
} else if (!strncmp(line,"bu(",3)) {
char *lp=line+3;
char *slp=lp;
float val;
lp=GetNumericResult(lp,OPER_EQU,&val,0);
SCRIPT_SKIP_SPACES
char vname[16];
ScriptGetVarname(vname,slp,sizeof(vname));
SCRIPT_SKIP_SPACES
char ontxt[SCRIPT_MAXSSIZE];
lp=GetStringResult(lp,OPER_EQU,ontxt,0);
SCRIPT_SKIP_SPACES
char offtxt[SCRIPT_MAXSSIZE];
lp=GetStringResult(lp,OPER_EQU,offtxt,0);
char *cp;
uint8_t uval;
if (val>0) {
cp=ontxt;
uval=0;
} else {
cp=offtxt;
uval=1;
} else if (!strncmp(lin,"bu(",3)) {
char *lp=lin+3;
uint8_t bcnt=0;
char *found=lin;
while (bcnt<4) {
found=strstr(found,"bu(");
if (!found) break;
found+=3;
bcnt++;
}
WSContentSend_PD(SCRIPT_MSG_BUTTON,uval,vname,cp);
uint8_t proz=100/bcnt;
if (!optflg && bcnt>1) proz-=2;
if (optflg) WSContentSend_PD(SCRIPT_MSG_BUT_START_TBL);
else WSContentSend_PD(SCRIPT_MSG_BUT_START);
for (uint32_t cnt=0;cnt<bcnt;cnt++) {
float val;
char *slp=lp;
lp=GetNumericResult(lp,OPER_EQU,&val,0);
SCRIPT_SKIP_SPACES
} else if (!strncmp(line,"tx(",3)) {
char *lp=line+3;
char vname[16];
ScriptGetVarname(vname,slp,sizeof(vname));
SCRIPT_SKIP_SPACES
char ontxt[SCRIPT_MAXSSIZE];
lp=GetStringResult(lp,OPER_EQU,ontxt,0);
SCRIPT_SKIP_SPACES
char offtxt[SCRIPT_MAXSSIZE];
lp=GetStringResult(lp,OPER_EQU,offtxt,0);
char *cp;
uint8_t uval;
if (val>0) {
cp=ontxt;
uval=0;
} else {
cp=offtxt;
uval=1;
}
if (bcnt>1 && cnt==bcnt-1) {
if (!optflg) proz+=2;
}
if (!optflg) {
WSContentSend_PD(SCRIPT_MSG_BUTTONa,proz,uval,vname,cp);
} else {
WSContentSend_PD(SCRIPT_MSG_BUTTONa_TBL,proz,uval,vname,cp);
}
if (bcnt>1 && cnt<bcnt-1) {
if (!optflg) WSContentSend_PD(SCRIPT_MSG_BUTTONb,2);
}
lp+=4;
}
if (optflg) WSContentSend_PD(SCRIPT_MSG_BUT_STOP_TBL);
else WSContentSend_PD(SCRIPT_MSG_BUT_STOP);
} else if (!strncmp(lin,"tx(",3)) {
char *lp=lin+3;
char *slp=lp;
char str[SCRIPT_MAXSSIZE];
lp=ForceStringVar(lp,str);
@ -3766,11 +4260,38 @@ void ScriptWebShow(void) {
WSContentSend_PD(SCRIPT_MSG_TEXTINP,label,str,vname);
}
else {
Replace_Cmd_Vars(line,tmp,sizeof(tmp));
if (tmp[0]=='@') {
WSContentSend_PD(PSTR("<div>%s</div>"),&tmp[1]);
} else if (!strncmp(lin,"nm(",3)) {
char *lp=lin;
float min;
lp=GetNumericResult(lp+3,OPER_EQU,&min,0);
SCRIPT_SKIP_SPACES
float max;
lp=GetNumericResult(lp,OPER_EQU,&max,0);
SCRIPT_SKIP_SPACES
float step;
lp=GetNumericResult(lp,OPER_EQU,&step,0);
SCRIPT_SKIP_SPACES
float val;
char *slp=lp;
lp=GetNumericResult(lp,OPER_EQU,&val,0);
SCRIPT_SKIP_SPACES
char vname[16];
ScriptGetVarname(vname,slp,sizeof(vname));
char label[SCRIPT_MAXSSIZE];
lp=GetStringResult(lp,OPER_EQU,label,0);
char vstr[16],minstr[16],maxstr[16],stepstr[16];
dtostrfd(val,4,vstr);
dtostrfd(min,4,minstr);
dtostrfd(max,4,maxstr);
dtostrfd(step,4,stepstr);
WSContentSend_PD(SCRIPT_MSG_NUMINP,label,minstr,maxstr,stepstr,vstr,vname);
} else {
Replace_Cmd_Vars(lin,tmp,sizeof(tmp));
if (optflg) {
WSContentSend_PD(PSTR("<div>%s</div>"),tmp);
} else {
WSContentSend_PD(PSTR("{s}%s{e}"),tmp);
}
@ -3916,6 +4437,7 @@ bool Xdrv10(uint8_t function)
if (bitRead(Settings.rule_enabled, 0)) {
Run_Scripter(">B",2,0);
fast_script=Run_Scripter(">F",-2,0);
Script_Check_Hue(0);
}
break;
case FUNC_EVERY_100_MSECOND:
@ -3954,12 +4476,16 @@ bool Xdrv10(uint8_t function)
break;
#ifdef SUPPORT_MQTT_EVENT
case FUNC_MQTT_DATA:
result = ScriptMqttData();
if (bitRead(Settings.rule_enabled, 0)) {
result = ScriptMqttData();
}
break;
#endif //SUPPORT_MQTT_EVENT
#ifdef USE_SCRIPT_WEB_DISPLAY
case FUNC_WEB_SENSOR:
ScriptWebShow();
if (bitRead(Settings.rule_enabled, 0)) {
ScriptWebShow();
}
break;
#endif //USE_SCRIPT_WEB_DISPLAY

View File

@ -276,6 +276,12 @@ void HueLightStatus1(uint8_t device, String *response)
if (bri > 254) bri = 254; // Philips Hue bri is between 1 and 254
if (bri < 1) bri = 1;
#ifdef USE_SHUTTER
if (ShutterState(device)) {
bri = (float)(Settings.shutter_invert[device-1] ? 100 - Settings.shutter_position[device-1] : Settings.shutter_position[device-1]) / 100;
}
#endif
if (light_type) {
light_state.getHSB(&hue, &sat, nullptr);
@ -364,30 +370,51 @@ void HueLightStatus2(uint8_t device, String *response)
char fname[33];
strcpy(fname, Settings.friendlyname[MAX_FRIENDLYNAMES-1]);
uint32_t fname_len = strlen(fname);
if (fname_len >= 33-3) {
fname[33-3] = 0x00;
fname_len = 33-3;
}
if (fname_len > 30) { fname_len = 30; }
fname[fname_len++] = '-';
fname[fname_len++] = '0' + device - MAX_FRIENDLYNAMES;
if (device - MAX_FRIENDLYNAMES < 10) {
fname[fname_len++] = '0' + device - MAX_FRIENDLYNAMES;
} else {
fname[fname_len++] = 'A' + device - MAX_FRIENDLYNAMES - 10;
}
fname[fname_len] = 0x00;
response->replace("{j1", fname);
}
response->replace("{j2", GetHueDeviceId(device));
}
// generate a unique lightId mixing local IP address and device number
// it is limited to 16 devices.
// last 24 bits of Mac address + 4 bits of local light
uint32_t EncodeLightId(uint8_t idx)
// it is limited to 32 devices.
// last 24 bits of Mac address + 4 bits of local light + high bit for relays 16-31, relay 32 is mapped to 0
uint32_t EncodeLightId(uint8_t relay_id)
{
uint8_t mac[6];
WiFi.macAddress(mac);
uint32_t id = (mac[3] << 20) | (mac[4] << 12) | (mac[5] << 4) | (idx & 0xF);
uint32_t id = 0;
if (relay_id >= 32) { // for Relay #32, we encode as 0
relay_id = 0;
}
if (relay_id > 15) {
id = (1 << 28);
}
id |= (mac[3] << 20) | (mac[4] << 12) | (mac[5] << 4) | (relay_id & 0xF);
return id;
}
uint32_t DecodeLightId(uint32_t id) {
return id & 0xF;
// get hue_id and decode the relay_id
// 4 LSB decode to 1-15, if bit 28 is set, it encodes 16-31, if 0 then 32
uint32_t DecodeLightId(uint32_t hue_id) {
uint8_t relay_id = hue_id & 0xF;
if (hue_id & (1 << 28)) { // check if bit 25 is set, if so we have
relay_id += 16;
}
if (0 == relay_id) { // special value 0 is actually relay #32
relay_id = 32;
}
return relay_id;
}
static const char * FIRST_GEN_UA[] = { // list of User-Agents signature
@ -476,12 +503,22 @@ void HueLights(String *path)
response += ",\"";
}
}
#ifdef USE_SCRIPT
Script_Check_Hue(&response);
#endif
response += "}";
}
else if (path->endsWith("/state")) { // Got ID/state
path->remove(0,8); // Remove /lights/
path->remove(path->indexOf("/state")); // Remove /state
device = DecodeLightId(atoi(path->c_str()));
#ifdef USE_SCRIPT
if (device>devices_present) {
return Script_Handle_Hue(path);
}
#endif
if ((device < 1) || (device > maxhue)) {
device = 1;
}
@ -498,19 +535,32 @@ void HueLights(String *path)
response.replace("{id", String(EncodeLightId(device)));
response.replace("{cm", "on");
on = hue_json["on"];
switch(on)
{
case false : ExecuteCommandPower(device, POWER_OFF, SRC_HUE);
response.replace("{re", "false");
break;
case true : ExecuteCommandPower(device, POWER_ON, SRC_HUE);
response.replace("{re", "true");
break;
default : response.replace("{re", (power & (1 << (device-1))) ? "true" : "false");
break;
#ifdef USE_SHUTTER
if (ShutterState(device)) {
if (!change) {
on = hue_json["on"];
bri = on ? 1.0f : 0.0f; // when bri is not part of this request then calculate it
change = true;
}
response.replace("{re", on ? "true" : "false");
} else {
#endif
on = hue_json["on"];
switch(on)
{
case false : ExecuteCommandPower(device, POWER_OFF, SRC_HUE);
response.replace("{re", "false");
break;
case true : ExecuteCommandPower(device, POWER_ON, SRC_HUE);
response.replace("{re", "true");
break;
default : response.replace("{re", (power & (1 << (device-1))) ? "true" : "false");
break;
}
resp = true;
#ifdef USE_SHUTTER
}
resp = true;
#endif // USE_SHUTTER
}
if (light_type && (local_light_subtype >= LST_SINGLE)) {
@ -616,6 +666,12 @@ void HueLights(String *path)
resp = true;
}
if (change) {
#ifdef USE_SHUTTER
if (ShutterState(device)) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Settings.shutter_invert: %d"), Settings.shutter_invert[device-1]);
ShutterSetPosition(device, bri * 100.0f );
} else
#endif
if (light_type && (local_light_subtype > LST_NONE)) { // not relay
if (!Settings.flag3.pwm_multi_channels) {
if (g_gotct) {
@ -649,6 +705,14 @@ void HueLights(String *path)
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "/lights path=%s", path->c_str());
path->remove(0,8); // Remove /lights/
device = DecodeLightId(atoi(path->c_str()));
#ifdef USE_SCRIPT
if (device>devices_present) {
Script_HueStatus(&response,device-devices_present-1);
goto exit;
}
#endif
if ((device < 1) || (device > maxhue)) {
device = 1;
}
@ -660,6 +724,7 @@ void HueLights(String *path)
response = "{}";
code = 406;
}
exit:
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_HTTP D_HUE " Result (%s)"), response.c_str());
WSSend(code, CT_JSON, response);
}

View File

@ -75,7 +75,7 @@ public:
XdrvRulesProcess();
}
static ZCLFrame parseRawFrame(SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid) { // parse a raw frame and build the ZCL frame object
static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid) { // parse a raw frame and build the ZCL frame object
uint32_t i = offset;
ZCLHeaderFrameControl_t frame_control;
uint16_t manuf_code = 0;
@ -133,6 +133,16 @@ private:
SBuffer _payload;
};
char Hex36Char(uint8_t value) {
// convert an integer from 0 to 46, to a single digit 0-9A-Z
if (value < 10) {
return '0' + value;
} else if (value < 46) {
return 'A' + value - 10;
} else {
return '?'; // out of range
}
}
// Zigbee ZCL converters
@ -374,17 +384,17 @@ uint32_t parseSingleAttribute(JsonObject& json, char *attrid_str, class SBuffer
void ZCLFrame::parseRawAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
uint32_t attrid = _cluster_id << 16; // set high 16 bits with cluster id
while (len + offset - i >= 3) {
attrid = (attrid & 0xFFFF0000) | _payload.get16(i); // get lower 16 bits
while (len - i >= 3) {
uint16_t attrid = _payload.get16(i);
i += 2;
char shortaddr[12];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%08X"), attrid);
char shortaddr[16];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("%c_%04X_%04X"),
Hex36Char(_cmd_id), _cluster_id, attrid);
// exception for Xiaomi lumi.weather - specific field to be treated as octet and not char
if (0x0000FF01 == attrid) {
if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) {
if (0x42 == _payload.get8(i)) {
_payload.set8(i, 0x41); // change type from 0x42 to 0x41
}
@ -394,14 +404,13 @@ void ZCLFrame::parseRawAttributes(JsonObject& json, uint8_t offset) {
}
// Parse non-normalized attributes
// The key is 24 bits, high 16 bits is cluserid, low 8 bits is command id
// The key is "s_" followed by 16 bits clusterId, "_" followed by 8 bits command id
void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
uint32_t attrid = _cluster_id << 8 | _cmd_id;
char attrid_str[12];
snprintf_P(attrid_str, sizeof(attrid_str), PSTR("0x%06X"), attrid); // 24 bits
snprintf_P(attrid_str, sizeof(attrid_str), PSTR("s_%04X_%02X"), _cluster_id, _cmd_id);
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
@ -409,211 +418,333 @@ void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
json[attrid_str] = hex_char;
}
#define ZCL_MODELID "0x00000005" // Cluster 0x0000, attribute 0x05
#define ZCL_TEMPERATURE "0x04020000" // Cluster 0x0402, attribute 0x00
#define ZCL_PRESSURE "0x04030000" // Cluster 0x0403, attribute 0x00
#define ZCL_PRESSURE_SCALED "0x04030010" // Cluster 0x0403, attribute 0x10
#define ZCL_PRESSURE_SCALE "0x04030014" // Cluster 0x0403, attribute 0x14
#define ZCL_HUMIDITY "0x04050000" // Cluster 0x0403, attribute 0x00
#define ZCL_LUMI_WEATHER "0x0000FF01" // Cluster 0x0000, attribute 0xFF01 - proprietary
// return value:
// 0 = keep initial value
// 1 = remove initial value
typedef int32_t (*Z_AttrConverter)(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param);
typedef struct Z_AttributeConverter {
const char * filter;
const char * name;
Z_AttrConverter func;
void * param;
} Z_AttributeConverter;
#define ZCL_OO_OFF "0x000600" // Cluster 0x0006, cmd 0x00 - On/Off - Off
#define ZCL_OO_ON "0x000601" // Cluster 0x0006, cmd 0x01 - On/Off - On
#define ZCL_COLORTEMP_MOVE "0x03000A" // Cluster 0x0300, cmd 0x0A, Move to Color Temp
#define ZCL_LC_MOVE "0x000800" // Cluster 0x0008, cmd 0x00, Level Control Move to Level
#define ZCL_LC_MOVE_1 "0x000801" // Cluster 0x0008, cmd 0x01, Level Control Move
#define ZCL_LC_STEP "0x000802" // Cluster 0x0008, cmd 0x02, Level Control Step
#define ZCL_LC_STOP "0x000803" // Cluster 0x0008, cmd 0x03, Level Control Stop
#define ZCL_LC_MOVE_WOO "0x000804" // Cluster 0x0008, cmd 0x04, Level Control Move to Level, with On/Off
#define ZCL_LC_MOVE_1_WOO "0x000805" // Cluster 0x0008, cmd 0x05, Level Control Move, with On/Off
#define ZCL_LC_STEP_WOO "0x000806" // Cluster 0x0008, cmd 0x05, Level Control Step, with On/Off
#define ZCL_LC_STOP_WOO "0x000807" // Cluster 0x0008, cmd 0x07, Level Control Stop
const float Z_100 PROGMEM = 100.0f;
const float Z_10 PROGMEM = 10.0f;
void ZCLFrame::postProcessAttributes(JsonObject& json) {
const __FlashStringHelper *key;
// list of post-processing directives
const Z_AttributeConverter Z_PostProcess[] = {
{ "A_0000_0005", D_JSON_MODEL D_JSON_ID, &Z_Copy, nullptr }, // ModelID
// ModelID ZCL 3.2
key = F(ZCL_MODELID);
if (json.containsKey(key)) {
json[F(D_JSON_MODEL D_JSON_ID)] = json[key];
json.remove(key);
}
{ "A_0400_0000", D_JSON_ILLUMINANCE, &Z_Copy, nullptr }, // Illuminance (in Lux)
{ "A_0400_0004", "LightSensorType", &Z_Copy, nullptr }, // LightSensorType
{ "A_0400_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
// Temperature ZCL 4.4
key = F(ZCL_TEMPERATURE);
if (json.containsKey(key)) {
// parse temperature
int32_t temperature = json[key];
json.remove(key);
json[F(D_JSON_TEMPERATURE)] = temperature / 100.0f;
}
{ "A_0401_0000", "LevelStatus", &Z_Copy, nullptr }, // Illuminance (in Lux)
{ "A_0401_0001", "LightSensorType", &Z_Copy, nullptr }, // LightSensorType
{ "A_0401_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
// Pressure ZCL 4.5
key = F(ZCL_PRESSURE);
if (json.containsKey(key)) {
json[F(D_JSON_PRESSURE)] = json[key];
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
json.remove(key);
}
json.remove(F(ZCL_PRESSURE_SCALE));
json.remove(F(ZCL_PRESSURE_SCALED));
{ "A_0402_0000", D_JSON_TEMPERATURE, &Z_ConvFloatDivider, (void*) &Z_100 }, // Temperature
{ "A_0402_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
// Humidity ZCL 4.7
key = F(ZCL_HUMIDITY);
if (json.containsKey(key)) {
// parse temperature
uint32_t humidity = json[key];
json.remove(key);
json[F(D_JSON_HUMIDITY)] = humidity / 100.0f;
}
{ "A_0403_0000", D_JSON_PRESSURE_UNIT, &Z_Const_Keep, (void*) D_UNIT_PRESSURE}, // Pressure Unit
{ "A_0403_0000", D_JSON_PRESSURE, &Z_Copy, nullptr }, // Pressure
{ "A_0403_????", nullptr, &Z_Remove, nullptr }, // Remove all other Pressure values
// Osram Mini Switch
key = F(ZCL_OO_OFF);
if (json.containsKey(key)) {
json.remove(key);
json[F(D_CMND_POWER)] = F("Off");
}
key = F(ZCL_OO_ON);
if (json.containsKey(key)) {
json.remove(key);
json[F(D_CMND_POWER)] = F("On");
}
key = F(ZCL_COLORTEMP_MOVE);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint16_t color_temp = buf2.get16(0);
uint16_t transition_time = buf2.get16(2);
json.remove(key);
json[F("ColorTemp")] = color_temp;
json[F("TransitionTime")] = transition_time / 10.0f;
}
key = F(ZCL_LC_MOVE_WOO);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint8_t level = buf2.get8(0);
uint16_t transition_time = buf2.get16(1);
json.remove(key);
json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
json[F("TransitionTime")] = transition_time / 10.0f;
if (0 == level) {
json[F(D_CMND_POWER)] = F("Off");
} else {
json[F(D_CMND_POWER)] = F("On");
}
}
key = F(ZCL_LC_MOVE);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint8_t level = buf2.get8(0);
uint16_t transition_time = buf2.get16(1);
json.remove(key);
json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
json[F("TransitionTime")] = transition_time / 10.0f;
}
key = F(ZCL_LC_MOVE_1);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint8_t move_mode = buf2.get8(0);
uint8_t move_rate = buf2.get8(1);
json.remove(key);
json[F("Move")] = move_mode ? F("Down") : F("Up");
json[F("Rate")] = move_rate;
}
key = F(ZCL_LC_MOVE_1_WOO);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint8_t move_mode = buf2.get8(0);
uint8_t move_rate = buf2.get8(1);
json.remove(key);
json[F("Move")] = move_mode ? F("Down") : F("Up");
json[F("Rate")] = move_rate;
if (0 == move_mode) {
json[F(D_CMND_POWER)] = F("On");
}
}
key = F(ZCL_LC_STEP);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint8_t step_mode = buf2.get8(0);
uint8_t step_size = buf2.get8(1);
uint16_t transition_time = buf2.get16(2);
json.remove(key);
json[F("Step")] = step_mode ? F("Down") : F("Up");
json[F("StepSize")] = step_size;
json[F("TransitionTime")] = transition_time / 10.0f;
}
key = F(ZCL_LC_STEP_WOO);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint8_t step_mode = buf2.get8(0);
uint8_t step_size = buf2.get8(1);
uint16_t transition_time = buf2.get16(2);
json.remove(key);
json[F("Step")] = step_mode ? F("Down") : F("Up");
json[F("StepSize")] = step_size;
json[F("TransitionTime")] = transition_time / 10.0f;
if (0 == step_mode) {
json[F(D_CMND_POWER)] = F("On");
}
}
key = F(ZCL_LC_STOP);
if (json.containsKey(key)) {
json.remove(key);
json[F("Stop")] = 1;
}
key = F(ZCL_LC_STOP_WOO);
if (json.containsKey(key)) {
json.remove(key);
json[F("Stop")] = 1;
}
{ "A_0404_0000", D_JSON_FLOWRATE, &Z_ConvFloatDivider, (void*) &Z_10 }, // Flow (in m3/h)
{ "A_0404_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
// Lumi.weather proprietary field
key = F(ZCL_LUMI_WEATHER);
if (json.containsKey(key)) {
String hex = json[key];
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
DynamicJsonBuffer jsonBuffer;
JsonObject& json_lumi = jsonBuffer.createObject();
uint32_t i = 0;
uint32_t len = buf2.len();
char shortaddr[8];
{ "A_0405_0000", D_JSON_HUMIDITY, &Z_ConvFloatDivider, (void*) &Z_100 }, // Humidity
{ "A_0405_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
while (len - i >= 2) {
uint8_t attrid = buf2.get8(i++);
{ "A_0406_0000", "Occupancy", &Z_Copy, nullptr }, // Occupancy (map8)
{ "A_0406_0001", "OccupancySensorType", &Z_Copy, nullptr }, // OccupancySensorType
{ "A_0406_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%02X"), attrid);
i += parseSingleAttribute(json_lumi, shortaddr, buf2, i, len);
}
// parse output
if (json_lumi.containsKey("0x64")) { // Temperature
int32_t temperature = json_lumi["0x64"];
json[F(D_JSON_TEMPERATURE)] = temperature / 100.0f;
}
if (json_lumi.containsKey("0x65")) { // Humidity
uint32_t humidity = json_lumi["0x65"];
json[F(D_JSON_HUMIDITY)] = humidity / 100.0f;
}
if (json_lumi.containsKey("0x66")) { // Pressure
int32_t pressure = json_lumi["0x66"];
json[F(D_JSON_PRESSURE)] = pressure / 100.0f;
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
}
if (json_lumi.containsKey("0x01")) { // Battery Voltage
uint32_t voltage = json_lumi["0x01"];
json[F(D_JSON_VOLTAGE)] = voltage / 1000.0f;
json[F("Battery")] = toPercentageCR2032(voltage);
}
json.remove(key);
}
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ "A_0000_FF01", nullptr, &Z_AqaraSensor, nullptr }, // Occupancy (map8)
// // 0x0b04 Electrical Measurement
// { "A_0B04_0100", "DCVoltage", &Z_Copy, nullptr }, // Occupancy (map8)
// { "A_0B04_0001", "OccupancySensorType", &Z_Copy, nullptr }, // OccupancySensorType
// { "A_0B04_????", "", &Z_Remove, nullptr }, // Remove all other values
};
// ======================================================================
// Remove attribute
int32_t Z_Remove(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
return 1; // remove original key
}
// Copy value as-is
int32_t Z_Copy(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
json[new_name] = value;
return 1; // remove original key
}
// Copy value as-is
int32_t Z_Const_Keep(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
json[new_name] = (char*)param;
return 0; // keep original key
}
// Convert int to float with divider
int32_t Z_ConvFloatDivider(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
float f_value = value;
float *divider = (float*) param;
json[new_name] = f_value / *divider;
return 1; // remove original key
}
int32_t Z_AqaraSensor(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint32_t i = 0;
uint32_t len = buf2.len();
char shortaddr[8];
char tmp[] = "tmp"; // for obscure reasons, it must be converted from const char* to char*, otherwise ArduinoJson gets confused
JsonVariant sub_value;
while (len - i >= 2) {
uint8_t attrid = buf2.get8(i++);
i += parseSingleAttribute(json, tmp, buf2, i, len);
float val = json[tmp];
json.remove(tmp);
if (0x64 == attrid) {
json[F(D_JSON_TEMPERATURE)] = val / 100.0f;
} else if (0x65 == attrid) {
json[F(D_JSON_HUMIDITY)] = val / 100.0f;
} else if (0x66 == attrid) {
json[F(D_JSON_PRESSURE)] = val / 100.0f;
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
} else if (0x01 == attrid) {
json[F(D_JSON_VOLTAGE)] = val / 1000.0f;
json[F("Battery")] = toPercentageCR2032(val);
}
}
return 1; // remove original key
}
// ======================================================================
#define ZCL_MODELID "A_0000_0005" // Cmd 0x0A - Cluster 0x0000, attribute 0x05
#define ZCL_TEMPERATURE "A_0402_0000" // Cmd 0x0A - Cluster 0x0402, attribute 0x00
#define ZCL_PRESSURE "A_0403_0000" // Cmd 0x0A - Cluster 0x0403, attribute 0x00
#define ZCL_PRESSURE_SCALED "A_0403_0010" // Cmd 0x0A - Cluster 0x0403, attribute 0x10
#define ZCL_PRESSURE_SCALE "A_0403_0014" // Cmd 0x0A - Cluster 0x0403, attribute 0x14
#define ZCL_HUMIDITY "A_0405_0000" // Cmd 0x0A - Cluster 0x0403, attribute 0x00
#define ZCL_LUMI_WEATHER "A_0000_FF01" // Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
// Cluster Specific commands
#define ZCL_OO_OFF "s_0006_00" // Cluster 0x0006, cmd 0x00 - On/Off - Off
#define ZCL_OO_ON "s_0006_01" // Cluster 0x0006, cmd 0x01 - On/Off - On
#define ZCL_COLORTEMP_MOVE "s_0300_0A" // Cluster 0x0300, cmd 0x0A, Move to Color Temp
#define ZCL_LC_MOVE "s_0008_00" // Cluster 0x0008, cmd 0x00, Level Control Move to Level
#define ZCL_LC_MOVE_1 "s_0008_01" // Cluster 0x0008, cmd 0x01, Level Control Move
#define ZCL_LC_STEP "s_0008_02" // Cluster 0x0008, cmd 0x02, Level Control Step
#define ZCL_LC_STOP "s_0008_03" // Cluster 0x0008, cmd 0x03, Level Control Stop
#define ZCL_LC_MOVE_WOO "s_0008_04" // Cluster 0x0008, cmd 0x04, Level Control Move to Level, with On/Off
#define ZCL_LC_MOVE_1_WOO "s_0008_05" // Cluster 0x0008, cmd 0x05, Level Control Move, with On/Off
#define ZCL_LC_STEP_WOO "s_0008_06" // Cluster 0x0008, cmd 0x05, Level Control Step, with On/Off
#define ZCL_LC_STOP_WOO "s_0008_07" // Cluster 0x0008, cmd 0x07, Level Control Stop
// inspired from https://github.com/torvalds/linux/blob/master/lib/glob.c
bool mini_glob_match(char const *pat, char const *str) {
for (;;) {
unsigned char c = *str++;
unsigned char d = *pat++;
switch (d) {
case '?': /* Wildcard: anything but nul */
if (c == '\0')
return false;
break;
case '\\':
d = *pat++;
/*FALLTHROUGH*/
default: /* Literal character */
if (c == d) {
if (d == '\0')
return true;
break;
}
return false; /* No point continuing */
}
}
}
void ZCLFrame::postProcessAttributes(JsonObject& json) {
// iterate on json elements
for (auto kv : json) {
String key = kv.key;
JsonVariant& value = kv.value;
// Iterate on filter
for (uint32_t i = 0; i < sizeof(Z_PostProcess) / sizeof(Z_PostProcess[0]); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
if (mini_glob_match(converter->filter, key.c_str())) {
int32_t drop = (*converter->func)(json, key.c_str(), value, converter->name, converter->param);
if (drop) {
json.remove(key);
}
}
}
}
}
//void ZCLFrame::postProcessAttributes2(JsonObject& json) {
// void postProcessAttributes2(JsonObject& json) {
// const __FlashStringHelper *key;
//
// // Osram Mini Switch
// key = F(ZCL_OO_OFF);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F(D_CMND_POWER)] = F("Off");
// }
// key = F(ZCL_OO_ON);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F(D_CMND_POWER)] = F("On");
// }
// key = F(ZCL_COLORTEMP_MOVE);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint16_t color_temp = buf2.get16(0);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("ColorTemp")] = color_temp;
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_MOVE_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t level = buf2.get8(0);
// uint16_t transition_time = buf2.get16(1);
// json.remove(key);
// json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
// json[F("TransitionTime")] = transition_time / 10.0f;
// if (0 == level) {
// json[F(D_CMND_POWER)] = F("Off");
// } else {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_MOVE);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t level = buf2.get8(0);
// uint16_t transition_time = buf2.get16(1);
// json.remove(key);
// json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_MOVE_1);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t move_mode = buf2.get8(0);
// uint8_t move_rate = buf2.get8(1);
// json.remove(key);
// json[F("Move")] = move_mode ? F("Down") : F("Up");
// json[F("Rate")] = move_rate;
// }
// key = F(ZCL_LC_MOVE_1_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t move_mode = buf2.get8(0);
// uint8_t move_rate = buf2.get8(1);
// json.remove(key);
// json[F("Move")] = move_mode ? F("Down") : F("Up");
// json[F("Rate")] = move_rate;
// if (0 == move_mode) {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_STEP);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t step_mode = buf2.get8(0);
// uint8_t step_size = buf2.get8(1);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("Step")] = step_mode ? F("Down") : F("Up");
// json[F("StepSize")] = step_size;
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_STEP_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t step_mode = buf2.get8(0);
// uint8_t step_size = buf2.get8(1);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("Step")] = step_mode ? F("Down") : F("Up");
// json[F("StepSize")] = step_size;
// json[F("TransitionTime")] = transition_time / 10.0f;
// if (0 == step_mode) {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_STOP);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F("Stop")] = 1;
// }
// key = F(ZCL_LC_STOP_WOO);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F("Stop")] = 1;
// }
//
// // Lumi.weather proprietary field
// key = F(ZCL_LUMI_WEATHER);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// DynamicJsonBuffer jsonBuffer;
// JsonObject& json_lumi = jsonBuffer.createObject();
// uint32_t i = 0;
// uint32_t len = buf2.len();
// char shortaddr[8];
//
// while (len - i >= 2) {
// uint8_t attrid = buf2.get8(i++);
//
// snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%02X"), attrid);
//
// //json[shortaddr] = parseSingleAttribute(json_lumi, buf2, i, len, nullptr, 0);
// }
// // parse output
// if (json_lumi.containsKey("0x64")) { // Temperature
// int32_t temperature = json_lumi["0x64"];
// json[F(D_JSON_TEMPERATURE)] = temperature / 100.0f;
// }
// if (json_lumi.containsKey("0x65")) { // Humidity
// uint32_t humidity = json_lumi["0x65"];
// json[F(D_JSON_HUMIDITY)] = humidity / 100.0f;
// }
// if (json_lumi.containsKey("0x66")) { // Pressure
// int32_t pressure = json_lumi["0x66"];
// json[F(D_JSON_PRESSURE)] = pressure / 100.0f;
// json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
// }
// if (json_lumi.containsKey("0x01")) { // Battery Voltage
// uint32_t voltage = json_lumi["0x01"];
// json[F(D_JSON_VOLTAGE)] = voltage / 1000.0f;
// json[F("Battery")] = toPercentageCR2032(voltage);
// }
// json.remove(key);
// }
//
// }
#endif // USE_ZIGBEE

View File

@ -0,0 +1,169 @@
/*
xdrv_23_zigbee.ino - zigbee support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#include <vector>
#include <map>
typedef struct Z_Device {
uint16_t shortaddr;
uint64_t longaddr; // 0x00 means unspecified
std::vector<uint8_t> endpoints;
std::vector<uint32_t> clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
std::vector<uint32_t> clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
} Z_Device;
std::map<uint16_t, Z_Device> zigbee_devices = {};
template < typename T>
bool findInVector(const std::vector<T> & vecOfElements, const T & element) {
// Find given element in vector
auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element);
if (it != vecOfElements.end()) {
return true;
} else {
return false;
}
}
// insert an entry when it is known it is missing
void Z_InsertShortAddrEntry(uint16_t shortaddr, uint64_t longaddr) {
Z_Device device = { shortaddr, longaddr,
std::vector<uint8_t>(),
std::vector<uint32_t>(),
std::vector<uint32_t>() };
zigbee_devices[shortaddr] = device;
}
void Z_AddDeviceLongAddr(uint16_t shortaddr, uint64_t longaddr) {
// is the short address already recorded?
if (0 == zigbee_devices.count(shortaddr)) {
// No, add an entry
Z_InsertShortAddrEntry(shortaddr, longaddr);
} else {
// Yes, update the longaddr if necessary
Z_Device &device = zigbee_devices[shortaddr];
uint64_t prev_longaddr = device.longaddr;
if (prev_longaddr != longaddr) {
// new device, i.e. collision
device.longaddr = longaddr;
device.endpoints.clear();
device.clusters_in.clear();
device.clusters_out.clear();
}
}
}
void Z_AddDeviceEndpoint(uint16_t shortaddr, uint8_t endpoint) {
if (0 == zigbee_devices.count(shortaddr)) {
// No entry
Z_InsertShortAddrEntry(shortaddr, 0);
}
Z_Device &device = zigbee_devices[shortaddr];
if (!findInVector(device.endpoints, endpoint)) {
device.endpoints.push_back(endpoint);
}
}
void Z_AddDeviceCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) {
if (0 == zigbee_devices.count(shortaddr)) {
// No entry
Z_InsertShortAddrEntry(shortaddr, 0);
}
Z_Device &device = zigbee_devices[shortaddr];
if (!findInVector(device.endpoints, endpoint)) {
device.endpoints.push_back(endpoint);
}
uint32_t ep_cluster = (endpoint << 16) | cluster;
if (!out) {
if (!findInVector(device.clusters_in, ep_cluster)) {
device.clusters_in.push_back(ep_cluster);
}
} else { // out
if (!findInVector(device.clusters_out, ep_cluster)) {
device.clusters_out.push_back(ep_cluster);
}
}
}
String Z_DumpDevices(void) {
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
JsonObject& devices = json.createNestedObject(F("ZigbeeDevices"));
for (std::map<uint16_t, Z_Device>::iterator it = zigbee_devices.begin(); it != zigbee_devices.end(); ++it) {
uint16_t shortaddr = it->first;
Z_Device& device = it->second;
char hex[20];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
JsonObject& dev = devices.createNestedObject(hex);
dev[F("ShortAddr")] = hex;
Uint64toHex(device.longaddr, hex, 64);
dev[F("IEEEAddr")] = hex;
JsonArray& dev_endpoints = dev.createNestedArray(F("Endpoints"));
for (std::vector<uint8_t>::iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) {
uint8_t endpoint = *ite;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
dev_endpoints.add(hex);
}
JsonObject& dev_clusters_in = dev.createNestedObject(F("Clusters_in"));
for (std::vector<uint32_t>::iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t endpoint = (*itc >> 16) & 0xFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
if (!dev_clusters_in.containsKey(hex)) {
dev_clusters_in.createNestedArray(hex);
}
JsonArray &cluster_arr = dev_clusters_in[hex];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
cluster_arr.add(hex);
}
JsonObject& dev_clusters_out = dev.createNestedObject(F("Clusters_out"));
for (std::vector<uint32_t>::iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t endpoint = (*itc >> 16) & 0xFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
if (!dev_clusters_out.containsKey(hex)) {
dev_clusters_out.createNestedArray(hex);
}
JsonArray &cluster_arr = dev_clusters_out[hex];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
cluster_arr.add(hex);
}
}
String payload = "";
payload.reserve(200);
json.printTo(payload);
return payload;
}
#endif // USE_ZIGBEE

View File

@ -0,0 +1,650 @@
/*
xdrv_23_zigbee.ino - zigbee support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// Status code used for ZigbeeStatus MQTT message
// Ex: {"ZigbeeStatus":{"Status": 3,"Message":"Configured, starting coordinator"}}
const uint8_t ZIGBEE_STATUS_OK = 0; // Zigbee started and working
const uint8_t ZIGBEE_STATUS_BOOT = 1; // CC2530 booting
const uint8_t ZIGBEE_STATUS_RESET_CONF = 2; // Resetting CC2530 configuration
const uint8_t ZIGBEE_STATUS_STARTING = 3; // Starting CC2530 as coordinator
const uint8_t ZIGBEE_STATUS_PERMITJOIN_CLOSE = 20; // Disable PermitJoin
const uint8_t ZIGBEE_STATUS_PERMITJOIN_OPEN_60 = 21; // Enable PermitJoin for 60 seconds
const uint8_t ZIGBEE_STATUS_PERMITJOIN_OPEN_XX = 22; // Enable PermitJoin until next boot
const uint8_t ZIGBEE_STATUS_DEVICE_ANNOUNCE = 30; // Device announces its address
const uint8_t ZIGBEE_STATUS_NODE_DESC = 31; // Node descriptor
const uint8_t ZIGBEE_STATUS_ACTIVE_EP = 32; // Endpoints descriptor
const uint8_t ZIGBEE_STATUS_SIMPLE_DESC = 33; // Simple Descriptor (clusters)
const uint8_t ZIGBEE_STATUS_CC_VERSION = 50; // Status: CC2530 ZNP Version
const uint8_t ZIGBEE_STATUS_CC_INFO = 51; // Status: CC2530 Device Configuration
const uint8_t ZIGBEE_STATUS_UNSUPPORTED_VERSION = 98; // Unsupported ZNP version
const uint8_t ZIGBEE_STATUS_ABORT = 99; // Fatal error, Zigbee not working
typedef int32_t (*ZB_Func)(uint8_t value);
typedef int32_t (*ZB_RecvMsgFunc)(int32_t res, class SBuffer &buf);
typedef union Zigbee_Instruction {
struct {
uint8_t i; // instruction
uint8_t d8; // 8 bits data
uint16_t d16; // 16 bits data
} i;
const void *p; // pointer
// const void *m; // for type checking only, message
// const ZB_Func f;
// const ZB_RecvMsgFunc fr;
} Zigbee_Instruction;
//
// Zigbee_Instruction z1 = { .i = {1,2,3}};
// Zigbee_Instruction z3 = { .p = nullptr };
typedef struct Zigbee_Instruction_Type {
uint8_t instr;
uint8_t data;
} Zigbee_Instruction_Type;
enum Zigbee_StateMachine_Instruction_Set {
// 2 bytes instructions
ZGB_INSTR_4_BYTES = 0,
ZGB_INSTR_NOOP = 0, // do nothing
ZGB_INSTR_LABEL, // define a label
ZGB_INSTR_GOTO, // goto label
ZGB_INSTR_ON_ERROR_GOTO, // goto label if error
ZGB_INSTR_ON_TIMEOUT_GOTO, // goto label if timeout
ZGB_INSTR_WAIT, // wait for x ms (in chunks of 100ms)
ZGB_INSTR_WAIT_FOREVER, // wait forever but state machine still active
ZGB_INSTR_STOP, // stop state machine with optional error code
// 6 bytes instructions
ZGB_INSTR_8_BYTES = 0x80,
ZGB_INSTR_CALL = 0x80, // call a function
ZGB_INSTR_LOG, // log a message, if more detailed logging required, call a function
ZGB_INSTR_MQTT_STATUS, // send MQTT status string with code
ZGB_INSTR_SEND, // send a ZNP message
ZGB_INSTR_WAIT_UNTIL, // wait until the specified message is received, ignore all others
ZGB_INSTR_WAIT_RECV, // wait for a message according to the filter
ZGB_ON_RECV_UNEXPECTED, // function to handle unexpected messages, or nullptr
// 10 bytes instructions
ZGB_INSTR_12_BYTES = 0xF0,
ZGB_INSTR_WAIT_RECV_CALL, // wait for a filtered message and call function upon receive
};
#define ZI_NOOP() { .i = { ZGB_INSTR_NOOP, 0x00, 0x0000} },
#define ZI_LABEL(x) { .i = { ZGB_INSTR_LABEL, (x), 0x0000} },
#define ZI_GOTO(x) { .i = { ZGB_INSTR_GOTO, (x), 0x0000} },
#define ZI_ON_ERROR_GOTO(x) { .i = { ZGB_INSTR_ON_ERROR_GOTO, (x), 0x0000} },
#define ZI_ON_TIMEOUT_GOTO(x) { .i = { ZGB_INSTR_ON_TIMEOUT_GOTO, (x), 0x0000} },
#define ZI_WAIT(x) { .i = { ZGB_INSTR_WAIT, 0x00, (x)} },
#define ZI_WAIT_FOREVER() { .i = { ZGB_INSTR_WAIT_FOREVER, 0x00, 0x0000} },
#define ZI_STOP(x) { .i = { ZGB_INSTR_STOP, (x), 0x0000} },
#define ZI_CALL(f, x) { .i = { ZGB_INSTR_CALL, (x), 0x0000} }, { .p = (const void*)(f) },
#define ZI_LOG(x, m) { .i = { ZGB_INSTR_LOG, (x), 0x0000 } }, { .p = ((const void*)(m)) },
#define ZI_MQTT_STATUS(x, m) { .i = { ZGB_INSTR_MQTT_STATUS, (x), 0x0000 } }, { .p = ((const void*)(m)) },
#define ZI_ON_RECV_UNEXPECTED(f) { .i = { ZGB_ON_RECV_UNEXPECTED, 0x00, 0x0000} }, { .p = (const void*)(f) },
#define ZI_SEND(m) { .i = { ZGB_INSTR_SEND, sizeof(m), 0x0000} }, { .p = (const void*)(m) },
#define ZI_WAIT_RECV(x, m) { .i = { ZGB_INSTR_WAIT_RECV, sizeof(m), (x)} }, { .p = (const void*)(m) },
#define ZI_WAIT_UNTIL(x, m) { .i = { ZGB_INSTR_WAIT_UNTIL, sizeof(m), (x)} }, { .p = (const void*)(m) },
#define ZI_WAIT_RECV_FUNC(x, m, f) { .i = { ZGB_INSTR_WAIT_RECV_CALL, sizeof(m), (x)} }, { .p = (const void*)(m) }, { .p = (const void*)(f) },
// Labels used in the State Machine -- internal only
const uint8_t ZIGBEE_LABEL_START = 10; // Start ZNP
const uint8_t ZIGBEE_LABEL_READY = 20; // goto label 20 for main loop
const uint8_t ZIGBEE_LABEL_MAIN_LOOP = 21; // main loop
const uint8_t ZIGBEE_LABEL_PERMIT_JOIN_CLOSE = 30; // disable permit join
const uint8_t ZIGBEE_LABEL_PERMIT_JOIN_OPEN_60 = 31; // enable permit join for 60 seconds
const uint8_t ZIGBEE_LABEL_PERMIT_JOIN_OPEN_XX = 32; // enable permit join for 60 seconds
// errors
const uint8_t ZIGBEE_LABEL_ABORT = 99; // goto label 99 in case of fatal error
const uint8_t ZIGBEE_LABEL_UNSUPPORTED_VERSION = 98; // Unsupported ZNP version
struct ZigbeeStatus {
bool active = true; // is Zigbee active for this device, i.e. GPIOs configured
bool state_machine = false; // the state machine is running
bool state_waiting = false; // the state machine is waiting for external event or timeout
bool state_no_timeout = false; // the current wait loop does not generate a timeout but only continues running
bool ready = false; // cc2530 initialization is complet, ready to operate
uint8_t on_error_goto = ZIGBEE_LABEL_ABORT; // on error goto label, 99 default to abort
uint8_t on_timeout_goto = ZIGBEE_LABEL_ABORT; // on timeout goto label, 99 default to abort
int16_t pc = 0; // program counter, -1 means abort
uint32_t next_timeout = 0; // millis for the next timeout
uint8_t *recv_filter = nullptr; // receive filter message
bool recv_until = false; // ignore all messages until the received frame fully matches
size_t recv_filter_len = 0;
ZB_RecvMsgFunc recv_func = nullptr; // function to call when message is expected
ZB_RecvMsgFunc recv_unexpected = nullptr; // function called when unexpected message is received
bool init_phase = true; // initialization phase, before accepting zigbee traffic
};
struct ZigbeeStatus zigbee;
SBuffer *zigbee_buffer = nullptr;
/*********************************************************************************************\
* State Machine
\*********************************************************************************************/
#define Z_B0(a) (uint8_t)( ((a) ) & 0xFF )
#define Z_B1(a) (uint8_t)( ((a) >> 8) & 0xFF )
#define Z_B2(a) (uint8_t)( ((a) >> 16) & 0xFF )
#define Z_B3(a) (uint8_t)( ((a) >> 24) & 0xFF )
#define Z_B4(a) (uint8_t)( ((a) >> 32) & 0xFF )
#define Z_B5(a) (uint8_t)( ((a) >> 40) & 0xFF )
#define Z_B6(a) (uint8_t)( ((a) >> 48) & 0xFF )
#define Z_B7(a) (uint8_t)( ((a) >> 56) & 0xFF )
// Macro to define message to send and receive
#define ZBM(n, x...) const uint8_t n[] PROGMEM = { x };
#define USE_ZIGBEE_CHANNEL_MASK (1 << (USE_ZIGBEE_CHANNEL))
// ZBS_* Zigbee Send
// ZBR_* Zigbee Recv
ZBM(ZBS_RESET, Z_AREQ | Z_SYS, SYS_RESET, 0x00 ) // 410001 SYS_RESET_REQ Hardware reset
ZBM(ZBR_RESET, Z_AREQ | Z_SYS, SYS_RESET_IND ) // 4180 SYS_RESET_REQ Hardware reset response
ZBM(ZBS_VERSION, Z_SREQ | Z_SYS, SYS_VERSION ) // 2102 Z_SYS:version
ZBM(ZBR_VERSION, Z_SRSP | Z_SYS, SYS_VERSION ) // 6102 Z_SYS:version
// Check if ZNP_HAS_CONFIGURED is set
ZBM(ZBS_ZNPHC, Z_SREQ | Z_SYS, SYS_OSAL_NV_READ, ZNP_HAS_CONFIGURED & 0xFF, ZNP_HAS_CONFIGURED >> 8, 0x00 /* offset */ ) // 2108000F00 - 6108000155
ZBM(ZBR_ZNPHC, Z_SRSP | Z_SYS, SYS_OSAL_NV_READ, Z_Success, 0x01 /* len */, 0x55) // 6108000155
// If not set, the response is 61-08-02-00 = Z_SRSP | Z_SYS, SYS_OSAL_NV_READ, Z_InvalidParameter, 0x00 /* len */
ZBM(ZBS_PAN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_PANID ) // 260483
ZBM(ZBR_PAN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_PANID, 0x02 /* len */,
Z_B0(USE_ZIGBEE_PANID), Z_B1(USE_ZIGBEE_PANID) ) // 6604008302xxxx
ZBM(ZBS_EXTPAN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_EXTENDED_PAN_ID ) // 26042D
ZBM(ZBR_EXTPAN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_EXTENDED_PAN_ID,
0x08 /* len */,
Z_B0(USE_ZIGBEE_EXTPANID), Z_B1(USE_ZIGBEE_EXTPANID), Z_B2(USE_ZIGBEE_EXTPANID), Z_B3(USE_ZIGBEE_EXTPANID),
Z_B4(USE_ZIGBEE_EXTPANID), Z_B5(USE_ZIGBEE_EXTPANID), Z_B6(USE_ZIGBEE_EXTPANID), Z_B7(USE_ZIGBEE_EXTPANID),
) // 6604002D08xxxxxxxxxxxxxxxx
ZBM(ZBS_CHANN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_CHANLIST ) // 260484
ZBM(ZBR_CHANN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_CHANLIST,
0x04 /* len */,
Z_B0(USE_ZIGBEE_CHANNEL_MASK), Z_B1(USE_ZIGBEE_CHANNEL_MASK), Z_B2(USE_ZIGBEE_CHANNEL_MASK), Z_B3(USE_ZIGBEE_CHANNEL_MASK),
) // 6604008404xxxxxxxx
ZBM(ZBS_PFGK, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_PRECFGKEY ) // 260462
ZBM(ZBR_PFGK, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_PRECFGKEY,
0x10 /* len */,
Z_B0(USE_ZIGBEE_PRECFGKEY_L), Z_B1(USE_ZIGBEE_PRECFGKEY_L), Z_B2(USE_ZIGBEE_PRECFGKEY_L), Z_B3(USE_ZIGBEE_PRECFGKEY_L),
Z_B4(USE_ZIGBEE_PRECFGKEY_L), Z_B5(USE_ZIGBEE_PRECFGKEY_L), Z_B6(USE_ZIGBEE_PRECFGKEY_L), Z_B7(USE_ZIGBEE_PRECFGKEY_L),
Z_B0(USE_ZIGBEE_PRECFGKEY_H), Z_B1(USE_ZIGBEE_PRECFGKEY_H), Z_B2(USE_ZIGBEE_PRECFGKEY_H), Z_B3(USE_ZIGBEE_PRECFGKEY_H),
Z_B4(USE_ZIGBEE_PRECFGKEY_H), Z_B5(USE_ZIGBEE_PRECFGKEY_H), Z_B6(USE_ZIGBEE_PRECFGKEY_H), Z_B7(USE_ZIGBEE_PRECFGKEY_H),
/*0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0D*/ ) // 660400621001030507090B0D0F00020406080A0C0D
ZBM(ZBS_PFGKEN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_PRECFGKEYS_ENABLE ) // 260463
ZBM(ZBR_PFGKEN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_PRECFGKEYS_ENABLE,
0x01 /* len */, 0x00 ) // 660400630100
// commands to "format" the device
// Write configuration - write success
ZBM(ZBR_W_OK, Z_SRSP | Z_SAPI, SAPI_WRITE_CONFIGURATION, Z_Success ) // 660500 - Write Configuration
ZBM(ZBR_WNV_OK, Z_SRSP | Z_SYS, SYS_OSAL_NV_WRITE, Z_Success ) // 610900 - NV Write
// Factory reset
ZBM(ZBS_FACTRES, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 /* len */, 0x02 ) // 2605030102
// Write PAN ID
ZBM(ZBS_W_PAN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_PANID, 0x02 /* len */, Z_B0(USE_ZIGBEE_PANID), Z_B1(USE_ZIGBEE_PANID) ) // 26058302xxxx
// Write EXT PAN ID
ZBM(ZBS_W_EXTPAN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_EXTENDED_PAN_ID, 0x08 /* len */,
Z_B0(USE_ZIGBEE_EXTPANID), Z_B1(USE_ZIGBEE_EXTPANID), Z_B2(USE_ZIGBEE_EXTPANID), Z_B3(USE_ZIGBEE_EXTPANID),
Z_B4(USE_ZIGBEE_EXTPANID), Z_B5(USE_ZIGBEE_EXTPANID), Z_B6(USE_ZIGBEE_EXTPANID), Z_B7(USE_ZIGBEE_EXTPANID)
) // 26052D086263151D004B1200
// Write Channel ID
ZBM(ZBS_W_CHANN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_CHANLIST, 0x04 /* len */,
Z_B0(USE_ZIGBEE_CHANNEL_MASK), Z_B1(USE_ZIGBEE_CHANNEL_MASK), Z_B2(USE_ZIGBEE_CHANNEL_MASK), Z_B3(USE_ZIGBEE_CHANNEL_MASK),
/*0x00, 0x08, 0x00, 0x00*/ ) // 26058404xxxxxxxx
// Write Logical Type = 00 = coordinator
ZBM(ZBS_W_LOGTYP, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_LOGICAL_TYPE, 0x01 /* len */, 0x00 ) // 2605870100
// Write precfgkey
ZBM(ZBS_W_PFGK, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_PRECFGKEY,
0x10 /* len */,
Z_B0(USE_ZIGBEE_PRECFGKEY_L), Z_B1(USE_ZIGBEE_PRECFGKEY_L), Z_B2(USE_ZIGBEE_PRECFGKEY_L), Z_B3(USE_ZIGBEE_PRECFGKEY_L),
Z_B4(USE_ZIGBEE_PRECFGKEY_L), Z_B5(USE_ZIGBEE_PRECFGKEY_L), Z_B6(USE_ZIGBEE_PRECFGKEY_L), Z_B7(USE_ZIGBEE_PRECFGKEY_L),
Z_B0(USE_ZIGBEE_PRECFGKEY_H), Z_B1(USE_ZIGBEE_PRECFGKEY_H), Z_B2(USE_ZIGBEE_PRECFGKEY_H), Z_B3(USE_ZIGBEE_PRECFGKEY_H),
Z_B4(USE_ZIGBEE_PRECFGKEY_H), Z_B5(USE_ZIGBEE_PRECFGKEY_H), Z_B6(USE_ZIGBEE_PRECFGKEY_H), Z_B7(USE_ZIGBEE_PRECFGKEY_H),
/*0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0D*/ ) // 2605621001030507090B0D0F00020406080A0C0D
// Write precfgkey enable
ZBM(ZBS_W_PFGKEN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_PRECFGKEYS_ENABLE, 0x01 /* len */, 0x00 ) // 2605630100
// Write Security Mode
ZBM(ZBS_WNV_SECMODE, Z_SREQ | Z_SYS, SYS_OSAL_NV_WRITE, Z_B0(CONF_TCLK_TABLE_START), Z_B1(CONF_TCLK_TABLE_START),
0x00 /* offset */, 0x20 /* len */,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x5a, 0x69, 0x67, 0x42, 0x65, 0x65, 0x41, 0x6c,
0x6c, 0x69, 0x61, 0x6e, 0x63, 0x65, 0x30, 0x39,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) // 2109010100200FFFFFFFFFFFFFFFF5A6967426565416C6C69616E636530390000000000000000
// Write Z_ZDO Direct CB
ZBM(ZBS_W_ZDODCB, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_ZDO_DIRECT_CB, 0x01 /* len */, 0x01 ) // 26058F0101
// NV Init ZNP Has Configured
ZBM(ZBS_WNV_INITZNPHC, Z_SREQ | Z_SYS, SYS_OSAL_NV_ITEM_INIT, ZNP_HAS_CONFIGURED & 0xFF, ZNP_HAS_CONFIGURED >> 8,
0x01, 0x00 /* InitLen 16 bits */, 0x01 /* len */, 0x00 ) // 2107000F01000100 - 610709
// Init succeeded
//ZBM(ZBR_WNV_INIT_OK, Z_SRSP | Z_SYS, SYS_OSAL_NV_ITEM_INIT, Z_Created ) // 610709 - NV Write
ZBM(ZBR_WNV_INIT_OK, Z_SRSP | Z_SYS, SYS_OSAL_NV_ITEM_INIT ) // 6107xx, Success if 610700 or 610709 - NV Write
// Write ZNP Has Configured
ZBM(ZBS_WNV_ZNPHC, Z_SREQ | Z_SYS, SYS_OSAL_NV_WRITE, Z_B0(ZNP_HAS_CONFIGURED), Z_B1(ZNP_HAS_CONFIGURED),
0x00 /* offset */, 0x01 /* len */, 0x55 ) // 2109000F000155 - 610900
// Z_ZDO:startupFromApp
ZBM(ZBS_STARTUPFROMAPP, Z_SREQ | Z_ZDO, ZDO_STARTUP_FROM_APP, 100, 0 /* delay */) // 25406400
ZBM(ZBR_STARTUPFROMAPP, Z_SRSP | Z_ZDO, ZDO_STARTUP_FROM_APP ) // 6540 + 01 for new network, 00 for exisitng network, 02 for error
ZBM(AREQ_STARTUPFROMAPP, Z_AREQ | Z_ZDO, ZDO_STATE_CHANGE_IND, ZDO_DEV_ZB_COORD ) // 45C009 + 08 = starting, 09 = started
// GetDeviceInfo
ZBM(ZBS_GETDEVICEINFO, Z_SREQ | Z_UTIL, Z_UTIL_GET_DEVICE_INFO ) // 2700
ZBM(ZBR_GETDEVICEINFO, Z_SRSP | Z_UTIL, Z_UTIL_GET_DEVICE_INFO, Z_Success ) // Ex= 6700.00.6263151D004B1200.0000.07.09.00
// IEEE Adr (8 bytes) = 6263151D004B1200
// Short Addr (2 bytes) = 0000
// Device Type (1 byte) = 07 (coord?)
// Device State (1 byte) = 09 (coordinator started)
// NumAssocDevices (1 byte) = 00
// Read Pan ID
//ZBM(ZBS_READ_NV_PANID, Z_SREQ | Z_SYS, SYS_OSAL_NV_READ, PANID & 0xFF, PANID >> 8, 0x00 /* offset */ ) // 2108830000
// Z_ZDO:nodeDescReq
ZBM(ZBS_ZDO_NODEDESCREQ, Z_SREQ | Z_ZDO, ZDO_NODE_DESC_REQ, 0x00, 0x00 /* dst addr */, 0x00, 0x00 /* NWKAddrOfInterest */) // 250200000000
ZBM(ZBR_ZDO_NODEDESCREQ, Z_SRSP | Z_ZDO, ZDO_NODE_DESC_REQ, Z_Success ) // 650200
// Async resp ex: 4582.0000.00.0000.00.40.8F.0000.50.A000.0100.A000.00
ZBM(AREQ_ZDO_NODEDESCRSP, Z_AREQ | Z_ZDO, ZDO_NODE_DESC_RSP) // 4582
// SrcAddr (2 bytes) 0000
// Status (1 byte) 00 Success
// NwkAddr (2 bytes) 0000
// LogicalType (1 byte) - 00 Coordinator
// APSFlags (1 byte) - 40 0=APSFlags 4=NodeFreqBands
// MACCapabilityFlags (1 byte) - 8F ALL
// ManufacturerCode (2 bytes) - 0000
// MaxBufferSize (1 byte) - 50 NPDU
// MaxTransferSize (2 bytes) - A000 = 160
// ServerMask (2 bytes) - 0100 - Primary Trust Center
// MaxOutTransferSize (2 bytes) - A000 = 160
// DescriptorCapabilities (1 byte) - 00
ZBM(AREQ_ZDO_SIMPLEDESCRSP, Z_AREQ | Z_ZDO, ZDO_SIMPLE_DESC_RSP) // 4584
ZBM(AREQ_ZDO_ACTIVEEPRSP, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP) // 4585
// Z_ZDO:activeEpReq
ZBM(ZBS_ZDO_ACTIVEEPREQ, Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ, 0x00, 0x00, 0x00, 0x00) // 250500000000
ZBM(ZBR_ZDO_ACTIVEEPREQ, Z_SRSP | Z_ZDO, ZDO_ACTIVE_EP_REQ, Z_Success) // 65050000
ZBM(ZBR_ZDO_ACTIVEEPRSP_NONE, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP, 0x00, 0x00 /* srcAddr */, Z_Success,
0x00, 0x00 /* nwkaddr */, 0x00 /* activeepcount */) // 45050000 - no Ep running
ZBM(ZBR_ZDO_ACTIVEEPRSP_OK, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP, 0x00, 0x00 /* srcAddr */, Z_Success,
0x00, 0x00 /* nwkaddr */, 0x02 /* activeepcount */, 0x0B, 0x01 /* the actual endpoints */) // 25050000 - no Ep running
// Z_AF:register profile:104, ep:01
ZBM(ZBS_AF_REGISTER01, Z_SREQ | Z_AF, AF_REGISTER, 0x01 /* endpoint */, Z_B0(Z_PROF_HA), Z_B1(Z_PROF_HA), // 24000401050000000000
0x05, 0x00 /* AppDeviceId */, 0x00 /* AppDevVer */, 0x00 /* LatencyReq */,
0x00 /* AppNumInClusters */, 0x00 /* AppNumInClusters */)
ZBM(ZBR_AF_REGISTER, Z_SRSP | Z_AF, AF_REGISTER, Z_Success) // 640000
ZBM(ZBS_AF_REGISTER0B, Z_SREQ | Z_AF, AF_REGISTER, 0x0B /* endpoint */, Z_B0(Z_PROF_HA), Z_B1(Z_PROF_HA), // 2400040B050000000000
0x05, 0x00 /* AppDeviceId */, 0x00 /* AppDevVer */, 0x00 /* LatencyReq */,
0x00 /* AppNumInClusters */, 0x00 /* AppNumInClusters */)
// Z_ZDO:mgmtPermitJoinReq
ZBM(ZBS_PERMITJOINREQ_CLOSE, Z_SREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, 0x02 /* AddrMode */, // 25360200000000
0x00, 0x00 /* DstAddr */, 0x00 /* Duration */, 0x00 /* TCSignificance */)
ZBM(ZBS_PERMITJOINREQ_OPEN_60, Z_SREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, 0x0F /* AddrMode */, // 25360FFFFC3C00
0xFC, 0xFF /* DstAddr */, 60 /* Duration */, 0x00 /* TCSignificance */)
ZBM(ZBS_PERMITJOINREQ_OPEN_XX, Z_SREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, 0x0F /* AddrMode */, // 25360FFFFCFF00
0xFC, 0xFF /* DstAddr */, 0xFF /* Duration */, 0x00 /* TCSignificance */)
ZBM(ZBR_PERMITJOINREQ, Z_SRSP | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, Z_Success) // 653600
ZBM(ZBR_PERMITJOIN_AREQ_CLOSE, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND, 0x00 /* Duration */) // 45CB00
ZBM(ZBR_PERMITJOIN_AREQ_OPEN_60, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND, 60 /* Duration */) // 45CB3C
ZBM(ZBR_PERMITJOIN_AREQ_OPEN_FF, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND, 0xFF /* Duration */) // 45CBFF
ZBM(ZBR_PERMITJOIN_AREQ_OPEN_XX, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND ) // 45CB
ZBM(ZBR_PERMITJOIN_AREQ_RSP, Z_AREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_RSP, 0x00, 0x00 /* srcAddr*/, Z_Success ) // 45B6000000
// Filters for ZCL frames
ZBM(ZBR_AF_INCOMING_MESSAGE, Z_AREQ | Z_AF, AF_INCOMING_MSG) // 4481
ZBM(ZBR_END_DEVICE_ANNCE_IND, Z_AREQ | Z_ZDO, ZDO_END_DEVICE_ANNCE_IND) // 45C1
static const Zigbee_Instruction zb_prog[] PROGMEM = {
ZI_LABEL(0)
ZI_NOOP()
ZI_ON_ERROR_GOTO(ZIGBEE_LABEL_ABORT)
ZI_ON_TIMEOUT_GOTO(ZIGBEE_LABEL_ABORT)
ZI_ON_RECV_UNEXPECTED(&Z_Recv_Default)
ZI_WAIT(15000) // wait for 15 seconds for Tasmota to stabilize
ZI_ON_ERROR_GOTO(50)
ZI_MQTT_STATUS(ZIGBEE_STATUS_BOOT, "Booting")
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: rebooting device")
ZI_SEND(ZBS_RESET) // reboot cc2530 just in case we rebooted ESP8266 but not cc2530
ZI_WAIT_RECV(5000, ZBR_RESET) // timeout 5s
ZI_WAIT(100)
ZI_LOG(LOG_LEVEL_INFO, "ZIG: checking device configuration")
ZI_SEND(ZBS_ZNPHC) // check value of ZNP Has Configured
ZI_WAIT_RECV(2000, ZBR_ZNPHC)
ZI_WAIT(100)
ZI_SEND(ZBS_VERSION) // check ZNP software version
ZI_WAIT_RECV_FUNC(2000, ZBR_VERSION, &Z_ReceiveCheckVersion) // Check version
ZI_SEND(ZBS_PAN) // check PAN ID
ZI_WAIT_RECV(1000, ZBR_PAN)
ZI_SEND(ZBS_EXTPAN) // check EXT PAN ID
ZI_WAIT_RECV(1000, ZBR_EXTPAN)
ZI_SEND(ZBS_CHANN) // check CHANNEL
ZI_WAIT_RECV(1000, ZBR_CHANN)
ZI_SEND(ZBS_PFGK) // check PFGK
ZI_WAIT_RECV(1000, ZBR_PFGK)
ZI_SEND(ZBS_PFGKEN) // check PFGKEN
ZI_WAIT_RECV(1000, ZBR_PFGKEN)
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee configuration ok")
// all is good, we can start
ZI_LABEL(ZIGBEE_LABEL_START) // START ZNP App
ZI_MQTT_STATUS(ZIGBEE_STATUS_STARTING, "Configured, starting coordinator")
//ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_ON_ERROR_GOTO(ZIGBEE_LABEL_ABORT)
// Z_ZDO:startupFromApp
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: starting zigbee coordinator")
ZI_SEND(ZBS_STARTUPFROMAPP) // start coordinator
ZI_WAIT_RECV(2000, ZBR_STARTUPFROMAPP) // wait for sync ack of command
ZI_WAIT_UNTIL(5000, AREQ_STARTUPFROMAPP) // wait for async message that coordinator started
ZI_SEND(ZBS_GETDEVICEINFO) // GetDeviceInfo
ZI_WAIT_RECV_FUNC(2000, ZBR_GETDEVICEINFO, &Z_ReceiveDeviceInfo)
//ZI_WAIT_RECV(2000, ZBR_GETDEVICEINFO) // TODO memorize info
ZI_SEND(ZBS_ZDO_NODEDESCREQ) // Z_ZDO:nodeDescReq
ZI_WAIT_RECV(1000, ZBR_ZDO_NODEDESCREQ)
ZI_WAIT_UNTIL(5000, AREQ_ZDO_NODEDESCRSP)
ZI_SEND(ZBS_ZDO_ACTIVEEPREQ) // Z_ZDO:activeEpReq
ZI_WAIT_RECV(1000, ZBR_ZDO_ACTIVEEPREQ)
ZI_WAIT_UNTIL(1000, ZBR_ZDO_ACTIVEEPRSP_NONE)
ZI_SEND(ZBS_AF_REGISTER01) // Z_AF register for endpoint 01, profile 0x0104 Home Automation
ZI_WAIT_RECV(1000, ZBR_AF_REGISTER)
ZI_SEND(ZBS_AF_REGISTER0B) // Z_AF register for endpoint 0B, profile 0x0104 Home Automation
ZI_WAIT_RECV(1000, ZBR_AF_REGISTER)
// Z_ZDO:nodeDescReq ?? Is is useful to redo it? TODO
// redo Z_ZDO:activeEpReq to check that Ep are available
ZI_SEND(ZBS_ZDO_ACTIVEEPREQ) // Z_ZDO:activeEpReq
ZI_WAIT_RECV(1000, ZBR_ZDO_ACTIVEEPREQ)
ZI_WAIT_UNTIL(1000, ZBR_ZDO_ACTIVEEPRSP_OK)
ZI_SEND(ZBS_PERMITJOINREQ_CLOSE) // Closing the Permit Join
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_CLOSE)
//ZI_SEND(ZBS_PERMITJOINREQ_OPEN_XX) // Opening Permit Join, normally through command
//ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_OPEN_FF)
ZI_LABEL(ZIGBEE_LABEL_READY)
ZI_MQTT_STATUS(ZIGBEE_STATUS_OK, "Started")
ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee device ready, listening...")
ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_LABEL(ZIGBEE_LABEL_MAIN_LOOP)
ZI_WAIT_FOREVER()
ZI_GOTO(ZIGBEE_LABEL_READY)
ZI_LABEL(ZIGBEE_LABEL_PERMIT_JOIN_CLOSE)
//ZI_MQTT_STATUS(ZIGBEE_STATUS_PERMITJOIN_CLOSE, "Disable Pairing mode")
ZI_SEND(ZBS_PERMITJOINREQ_CLOSE) // Closing the Permit Join
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_CLOSE)
ZI_GOTO(ZIGBEE_LABEL_MAIN_LOOP)
ZI_LABEL(ZIGBEE_LABEL_PERMIT_JOIN_OPEN_60)
//ZI_MQTT_STATUS(ZIGBEE_STATUS_PERMITJOIN_OPEN_60, "Enable Pairing mode for 60 seconds")
ZI_SEND(ZBS_PERMITJOINREQ_OPEN_60)
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_OPEN_60)
ZI_GOTO(ZIGBEE_LABEL_MAIN_LOOP)
ZI_LABEL(ZIGBEE_LABEL_PERMIT_JOIN_OPEN_XX)
//ZI_MQTT_STATUS(ZIGBEE_STATUS_PERMITJOIN_OPEN_XX, "Enable Pairing mode until next boot")
ZI_SEND(ZBS_PERMITJOINREQ_OPEN_XX)
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_OPEN_FF)
ZI_GOTO(ZIGBEE_LABEL_MAIN_LOOP)
ZI_LABEL(50) // reformat device
ZI_MQTT_STATUS(ZIGBEE_STATUS_RESET_CONF, "Reseting configuration")
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee bad configuration of device, doing a factory reset")
ZI_ON_ERROR_GOTO(ZIGBEE_LABEL_ABORT)
ZI_SEND(ZBS_FACTRES) // factory reset
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_RESET) // reset device
ZI_WAIT_RECV(5000, ZBR_RESET)
ZI_SEND(ZBS_W_PAN) // write PAN ID
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_EXTPAN) // write EXT PAN ID
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_CHANN) // write CHANNEL
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_LOGTYP) // write Logical Type = coordinator
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_PFGK) // write PRECFGKEY
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_PFGKEN) // write PRECFGKEY Enable
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_WNV_SECMODE) // write Security Mode
ZI_WAIT_RECV(1000, ZBR_WNV_OK)
ZI_SEND(ZBS_W_ZDODCB) // write Z_ZDO Direct CB
ZI_WAIT_RECV(1000, ZBR_W_OK)
// Now mark the device as ready, writing 0x55 in memory slot 0x0F00
ZI_SEND(ZBS_WNV_INITZNPHC) // Init NV ZNP Has Configured
ZI_WAIT_RECV_FUNC(1000, ZBR_WNV_INIT_OK, &Z_CheckNVWrite)
ZI_SEND(ZBS_WNV_ZNPHC) // Write NV ZNP Has Configured
ZI_WAIT_RECV(1000, ZBR_WNV_OK)
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee device reconfigured")
ZI_GOTO(ZIGBEE_LABEL_START)
ZI_LABEL(ZIGBEE_LABEL_UNSUPPORTED_VERSION)
ZI_MQTT_STATUS(ZIGBEE_STATUS_UNSUPPORTED_VERSION, "Only ZNP 1.2 is currently supported")
ZI_GOTO(ZIGBEE_LABEL_ABORT)
ZI_LABEL(ZIGBEE_LABEL_ABORT) // Label 99: abort
ZI_MQTT_STATUS(ZIGBEE_STATUS_ABORT, "Abort")
ZI_LOG(LOG_LEVEL_ERROR, "ZIG: Abort")
ZI_STOP(ZIGBEE_LABEL_ABORT)
};
uint8_t ZigbeeGetInstructionSize(uint8_t instr) { // in Zigbee_Instruction lines (words)
if (instr >= ZGB_INSTR_12_BYTES) {
return 3;
} else if (instr >= ZGB_INSTR_8_BYTES) {
return 2;
} else {
return 1;
}
}
void ZigbeeGotoLabel(uint8_t label) {
// look for the label scanning entire code
uint16_t goto_pc = 0xFFFF; // 0xFFFF means not found
uint8_t cur_instr = 0;
uint8_t cur_d8 = 0;
uint8_t cur_instr_len = 1; // size of current instruction in words
for (uint32_t i = 0; i < sizeof(zb_prog)/sizeof(zb_prog[0]); i += cur_instr_len) {
const Zigbee_Instruction *cur_instr_line = &zb_prog[i];
cur_instr = pgm_read_byte(&cur_instr_line->i.i);
cur_d8 = pgm_read_byte(&cur_instr_line->i.d8);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZGB GOTO: pc %d instr %d"), i, cur_instr);
if (ZGB_INSTR_LABEL == cur_instr) {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: found label %d at pc %d"), cur_d8, i);
if (label == cur_d8) {
// label found, goto to this pc
zigbee.pc = i;
zigbee.state_machine = true;
zigbee.state_waiting = false;
return;
}
}
// get instruction length
cur_instr_len = ZigbeeGetInstructionSize(cur_instr);
}
// no label found, abort
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Goto label not found, label=%d pc=%d"), label, zigbee.pc);
if (ZIGBEE_LABEL_ABORT != label) {
// if not already looking for ZIGBEE_LABEL_ABORT, goto ZIGBEE_LABEL_ABORT
ZigbeeGotoLabel(ZIGBEE_LABEL_ABORT);
} else {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Label Abort (%d) not present, aborting Zigbee"), ZIGBEE_LABEL_ABORT);
zigbee.state_machine = false;
zigbee.active = false;
}
}
void ZigbeeStateMachine_Run(void) {
uint8_t cur_instr = 0;
uint8_t cur_d8 = 0;
uint16_t cur_d16 = 0;
const void* cur_ptr1 = nullptr;
const void* cur_ptr2 = nullptr;
uint32_t now = millis();
if (zigbee.state_waiting) { // state machine is waiting for external event or timeout
// checking if timeout expired
if ((zigbee.next_timeout) && (now > zigbee.next_timeout)) { // if next_timeout == 0 then wait forever
//AddLog_P2(LOG_LEVEL_INFO, PSTR("ZIG: timeout occured pc=%d"), zigbee.pc);
if (!zigbee.state_no_timeout) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZIG: timeout, goto label %d"), zigbee.on_timeout_goto);
ZigbeeGotoLabel(zigbee.on_timeout_goto);
} else {
zigbee.state_waiting = false; // simply stop waiting
}
}
}
while ((zigbee.state_machine) && (!zigbee.state_waiting)) {
// reinit receive filters and functions (they only work for a single instruction)
zigbee.recv_filter = nullptr;
zigbee.recv_func = nullptr;
zigbee.recv_until = false;
zigbee.state_no_timeout = false; // reset the no_timeout for next instruction
if (zigbee.pc > (sizeof(zb_prog)/sizeof(zb_prog[0]))) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Invalid pc: %d, aborting"), zigbee.pc);
zigbee.pc = -1;
}
if (zigbee.pc < 0) {
zigbee.state_machine = false;
return;
}
// load current instruction details
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: Executing instruction pc=%d"), zigbee.pc);
const Zigbee_Instruction *cur_instr_line = &zb_prog[zigbee.pc];
cur_instr = pgm_read_byte(&cur_instr_line->i.i);
cur_d8 = pgm_read_byte(&cur_instr_line->i.d8);
cur_d16 = pgm_read_word(&cur_instr_line->i.d16);
if (cur_instr >= ZGB_INSTR_8_BYTES) {
cur_instr_line++;
cur_ptr1 = cur_instr_line->p;
}
if (cur_instr >= ZGB_INSTR_12_BYTES) {
cur_instr_line++;
cur_ptr2 = cur_instr_line->p;
}
zigbee.pc += ZigbeeGetInstructionSize(cur_instr); // move pc to next instruction, before any goto
switch (cur_instr) {
case ZGB_INSTR_NOOP:
case ZGB_INSTR_LABEL: // do nothing
break;
case ZGB_INSTR_GOTO:
ZigbeeGotoLabel(cur_d8);
break;
case ZGB_INSTR_ON_ERROR_GOTO:
zigbee.on_error_goto = cur_d8;
break;
case ZGB_INSTR_ON_TIMEOUT_GOTO:
zigbee.on_timeout_goto = cur_d8;
break;
case ZGB_INSTR_WAIT:
zigbee.next_timeout = now + cur_d16;
zigbee.state_waiting = true;
zigbee.state_no_timeout = true; // do not generate a timeout error when waiting is done
break;
case ZGB_INSTR_WAIT_FOREVER:
zigbee.next_timeout = 0;
zigbee.state_waiting = true;
//zigbee.state_no_timeout = true; // do not generate a timeout error when waiting is done
break;
case ZGB_INSTR_STOP:
zigbee.state_machine = false;
if (cur_d8) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Stopping (%d)"), cur_d8);
}
break;
case ZGB_INSTR_CALL:
if (cur_ptr1) {
uint32_t res;
res = (*((ZB_Func)cur_ptr1))(cur_d8);
if (res > 0) {
ZigbeeGotoLabel(res);
continue; // avoid incrementing PC after goto
} else if (res == 0) {
// do nothing
} else if (res == -1) {
// do nothing
} else {
ZigbeeGotoLabel(zigbee.on_error_goto);
continue;
}
}
break;
case ZGB_INSTR_LOG:
AddLog_P(cur_d8, (char*) cur_ptr1);
break;
case ZGB_INSTR_MQTT_STATUS:
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{\"Status\":%d,\"Message\":\"%s\"}}"),
cur_d8, (char*) cur_ptr1);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
break;
case ZGB_INSTR_SEND:
ZigbeeZNPSend((uint8_t*) cur_ptr1, cur_d8 /* len */);
break;
case ZGB_INSTR_WAIT_UNTIL:
zigbee.recv_until = true; // and reuse ZGB_INSTR_WAIT_RECV
case ZGB_INSTR_WAIT_RECV:
zigbee.recv_filter = (uint8_t *) cur_ptr1;
zigbee.recv_filter_len = cur_d8; // len
zigbee.next_timeout = now + cur_d16;
zigbee.state_waiting = true;
break;
case ZGB_ON_RECV_UNEXPECTED:
zigbee.recv_unexpected = (ZB_RecvMsgFunc) cur_ptr1;
break;
case ZGB_INSTR_WAIT_RECV_CALL:
zigbee.recv_filter = (uint8_t *) cur_ptr1;
zigbee.recv_filter_len = cur_d8; // len
zigbee.recv_func = (ZB_RecvMsgFunc) cur_ptr2;
zigbee.next_timeout = now + cur_d16;
zigbee.state_waiting = true;
break;
}
}
}
#endif // USE_ZIGBEE

View File

@ -0,0 +1,372 @@
/*
xdrv_23_zigbee.ino - zigbee support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
int32_t Z_ReceiveDeviceInfo(int32_t res, class SBuffer &buf) {
// Ex= 6700.00.6263151D004B1200.0000.07.09.02.83869991
// IEEE Adr (8 bytes) = 0x00124B001D156362
// Short Addr (2 bytes) = 0x0000
// Device Type (1 byte) = 0x07 (coord?)
// Device State (1 byte) = 0x09 (coordinator started)
// NumAssocDevices (1 byte) = 0x02
// List of devices: 0x8683, 0x9199
Z_IEEEAddress long_adr = buf.get64(3);
Z_ShortAddress short_adr = buf.get16(11);
uint8_t device_type = buf.get8(13);
uint8_t device_state = buf.get8(14);
uint8_t device_associated = buf.get8(15);
char hex[20];
Uint64toHex(long_adr, hex, 64);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"IEEEAddr\":\"%s\",\"ShortAddr\":\"0x%04X\""
",\"DeviceType\":%d,\"DeviceState\":%d"
",\"NumAssocDevices\":%d"),
ZIGBEE_STATUS_CC_INFO, hex, short_adr, device_type, device_state,
device_associated);
if (device_associated > 0) {
uint idx = 16;
ResponseAppend_P(PSTR(",\"AssocDevicesList\":["));
for (uint32_t i = 0; i < device_associated; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(idx));
idx += 2;
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEnd(); // append '}'
ResponseJsonEnd(); // append '}'
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
return res;
}
int32_t Z_CheckNVWrite(int32_t res, class SBuffer &buf) {
// Check the status after NV Init "ZNP Has Configured"
// Good response should be 610700 or 610709 (Success or Created)
// We only filter the response on 6107 and check the code in this function
uint8_t status = buf.get8(2);
if ((0x00 == status) || (0x09 == status)) {
return 0; // Ok, continue
} else {
return -2; // Error
}
}
int32_t Z_ReceiveCheckVersion(int32_t res, class SBuffer &buf) {
// check that the version is supported
// typical version for ZNP 1.2
// 61020200-02.06.03.D9143401.0200000000
// TranportRev = 02
// Product = 00
// MajorRel = 2
// MinorRel = 6
// MaintRel = 3
// Revision = 20190425 d (0x013414D9)
uint8_t major_rel = buf.get8(4);
uint8_t minor_rel = buf.get8(5);
uint8_t maint_rel = buf.get8(6);
uint32_t revision = buf.get32(7);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"MajorRel\":%d,\"MinorRel\":%d"
",\"MaintRel\":%d,\"Revision\":%d}}"),
ZIGBEE_STATUS_CC_VERSION, major_rel, minor_rel,
maint_rel, revision);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
if ((0x02 == major_rel) && (0x06 == minor_rel)) {
return 0; // version 2.6.x is ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
bool Z_ReceiveMatchPrefix(const class SBuffer &buf, const uint8_t *match) {
if ( (pgm_read_byte(&match[0]) == buf.get8(0)) &&
(pgm_read_byte(&match[1]) == buf.get8(1)) ) {
return true;
} else {
return false;
}
}
int32_t Z_ReceivePermitJoinStatus(int32_t res, const class SBuffer &buf) {
// we received a PermitJoin status change
uint8_t duration = buf.get8(2);
uint8_t status_code;
const char* message;
if (0xFF == duration) {
status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_XX;
message = PSTR("Enable Pairing mode until next boot");
} else if (duration > 0) {
status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_60;
message = PSTR("Enable Pairing mode for %d seconds");
} else {
status_code = ZIGBEE_STATUS_PERMITJOIN_CLOSE;
message = PSTR("Disable Pairing mode");
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"Message\":\""),
status_code);
ResponseAppend_P(message, duration);
ResponseAppend_P(PSTR("\"}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
return -1;
}
// Send ACTIVE_EP_REQ to collect active endpoints for this address
void Z_SendActiveEpReq(uint16_t shortaddr) {
uint8_t ActiveEpReq[] = { Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ,
Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
uint8_t NodeDescReq[] = { Z_SREQ | Z_ZDO, ZDO_NODE_DESC_REQ,
Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
ZigbeeZNPSend(ActiveEpReq, sizeof(ActiveEpReq));
//ZigbeeZNPSend(NodeDescReq, sizeof(NodeDescReq)); Not sure this is useful
}
// Send ZDO_SIMPLE_DESC_REQ to get full list of supported Clusters for a specific endpoint
void Z_SendSimpleDescReq(uint16_t shortaddr, uint8_t endpoint) {
uint8_t SimpleDescReq[] = { Z_SREQ | Z_ZDO, ZDO_SIMPLE_DESC_REQ, // 2504
Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr),
endpoint };
ZigbeeZNPSend(SimpleDescReq, sizeof(SimpleDescReq));
}
const char* Z_DeviceType[] = { "Coordinator", "Router", "End Device", "Unknown" };
int32_t Z_ReceiveNodeDesc(int32_t res, const class SBuffer &buf) {
// Received ZDO_NODE_DESC_RSP
Z_ShortAddress srcAddr = buf.get16(2);
uint8_t status = buf.get8(4);
Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t logicalType = buf.get8(7);
uint8_t apsFlags = buf.get8(8);
uint8_t MACCapabilityFlags = buf.get8(9);
uint16_t manufacturerCapabilities = buf.get16(10);
uint8_t maxBufferSize = buf.get8(12);
uint16_t maxInTransferSize = buf.get16(13);
uint16_t serverMask = buf.get16(15);
uint16_t maxOutTransferSize = buf.get16(17);
uint8_t descriptorCapabilities = buf.get8(19);
if (0 == status) {
uint8_t deviceType = logicalType & 0x7; // 0=coordinator, 1=router, 2=end device
if (deviceType > 3) { deviceType = 3; }
bool complexDescriptorAvailable = (logicalType & 0x08) ? 1 : 0;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"NodeType\":\"%s\",\"ComplexDesc\":%s}}"),
ZIGBEE_STATUS_NODE_DESC, Z_DeviceType[deviceType],
complexDescriptorAvailable ? "true" : "false"
);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLRECEIVED));
XdrvRulesProcess();
}
return -1;
}
int32_t Z_ReceiveActiveEp(int32_t res, const class SBuffer &buf) {
// Received ZDO_ACTIVE_EP_RSP
Z_ShortAddress srcAddr = buf.get16(2);
uint8_t status = buf.get8(4);
Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t activeEpCount = buf.get8(7);
uint8_t* activeEpList = (uint8_t*) buf.charptr(8);
for (uint32_t i = 0; i < activeEpCount; i++) {
Z_AddDeviceEndpoint(nwkAddr, activeEpList[i]);
}
for (uint32_t i = 0; i < activeEpCount; i++) {
Z_SendSimpleDescReq(nwkAddr, activeEpList[i]);
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"ActiveEndpoints\":["),
ZIGBEE_STATUS_ACTIVE_EP);
for (uint32_t i = 0; i < activeEpCount; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%02X\""), activeEpList[i]);
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLRECEIVED));
XdrvRulesProcess();
return -1;
}
int32_t Z_ReceiveSimpleDesc(int32_t res, const class SBuffer &buf) {
// Received ZDO_SIMPLE_DESC_RSP
Z_ShortAddress srcAddr = buf.get16(2);
uint8_t status = buf.get8(4);
Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t lenDescriptor = buf.get8(7);
uint8_t endpoint = buf.get8(8);
uint16_t profileId = buf.get16(9); // The profile Id for this endpoint.
uint16_t deviceId = buf.get16(11); // The Device Description Id for this endpoint.
uint8_t deviceVersion = buf.get8(13); // 0 Version 1.00
uint8_t numInCluster = buf.get8(14);
uint8_t numOutCluster = buf.get8(15 + numInCluster*2);
if (0 == status) {
for (uint32_t i = 0; i < numInCluster; i++) {
Z_AddDeviceCluster(nwkAddr, endpoint, buf.get16(15 + i*2), false);
}
for (uint32_t i = 0; i < numOutCluster; i++) {
Z_AddDeviceCluster(nwkAddr, endpoint, buf.get16(16 + numInCluster*2 + i*2), true);
}
// String dump = Z_DumpDevices();
// Serial.printf(">>> Devices dump = %s\n", dump.c_str());
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"Endpoint\":\"0x%02X\""
",\"ProfileId\":\"0x%04X\",\"DeviceId\":\"0x%04X\",\"DeviceVerion\":%d"
"\"InClusters\":["),
ZIGBEE_STATUS_SIMPLE_DESC, endpoint,
profileId, deviceId, deviceVersion);
for (uint32_t i = 0; i < numInCluster; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(15 + i*2));
}
ResponseAppend_P(PSTR("],\"OutClusters\":["));
for (uint32_t i = 0; i < numOutCluster; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(16 + numInCluster*2 + i*2));
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLRECEIVED));
XdrvRulesProcess();
}
return -1;
}
int32_t Z_ReceiveEndDeviceAnnonce(int32_t res, const class SBuffer &buf) {
Z_ShortAddress srcAddr = buf.get16(2);
Z_ShortAddress nwkAddr = buf.get16(4);
Z_IEEEAddress ieeeAddr = buf.get64(6);
uint8_t capabilities = buf.get8(14);
Z_AddDeviceLongAddr(nwkAddr, ieeeAddr);
// String dump = Z_DumpDevices();
// Serial.printf(">>> Devices dump = %s\n", dump.c_str());
char hex[20];
Uint64toHex(ieeeAddr, hex, 64);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"Status\":%d,\"IEEEAddr\":\"%s\",\"ShortAddr\":\"0x%04X\""
",\"PowerSource\":%s,\"ReceiveWhenIdle\":%s,\"Security\":%s}}"),
ZIGBEE_STATUS_DEVICE_ANNOUNCE, hex, nwkAddr,
(capabilities & 0x04) ? "true" : "false",
(capabilities & 0x08) ? "true" : "false",
(capabilities & 0x40) ? "true" : "false"
);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLRECEIVED));
XdrvRulesProcess();
Z_SendActiveEpReq(nwkAddr);
return -1;
}
int32_t Z_ReceiveAfIncomingMessage(int32_t res, const class SBuffer &buf) {
uint16_t groupid = buf.get16(2);
uint16_t clusterid = buf.get16(4);
Z_ShortAddress srcaddr = buf.get16(6);
uint8_t srcendpoint = buf.get8(8);
uint8_t dstendpoint = buf.get8(9);
uint8_t wasbroadcast = buf.get8(10);
uint8_t linkquality = buf.get8(11);
uint8_t securityuse = buf.get8(12);
uint32_t timestamp = buf.get32(13);
uint8_t seqnumber = buf.get8(17);
ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 19, buf.get8(18), clusterid, groupid);
zcl_received.publishMQTTReceived(groupid, clusterid, srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp);
char shortaddr[8];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%04X"), srcaddr);
DynamicJsonBuffer jsonBuffer;
JsonObject& json_root = jsonBuffer.createObject();
JsonObject& json = json_root.createNestedObject(shortaddr);
if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId())) {
zcl_received.parseRawAttributes(json);
} else if (zcl_received.isClusterSpecificCommand()) {
zcl_received.parseClusterSpecificCommand(json);
}
zcl_received.postProcessAttributes(json);
String msg("");
msg.reserve(100);
json_root.printTo(msg);
Response_P(PSTR("%s"), msg.c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLRECEIVED));
XdrvRulesProcess();
return -1;
}
int32_t Z_Recv_Default(int32_t res, const class SBuffer &buf) {
// Default message handler for new messages
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZIG: Z_Recv_Default"));
if (zigbee.init_phase) {
// if still during initialization phase, ignore any unexpected message
return -1; // ignore message
} else {
if (Z_ReceiveMatchPrefix(buf, ZBR_AF_INCOMING_MESSAGE)) {
return Z_ReceiveAfIncomingMessage(res, buf);
} else if (Z_ReceiveMatchPrefix(buf, ZBR_END_DEVICE_ANNCE_IND)) {
return Z_ReceiveEndDeviceAnnonce(res, buf);
} else if (Z_ReceiveMatchPrefix(buf, ZBR_PERMITJOIN_AREQ_OPEN_XX)) {
return Z_ReceivePermitJoinStatus(res, buf);
} else if (Z_ReceiveMatchPrefix(buf, AREQ_ZDO_NODEDESCRSP)) {
return Z_ReceiveNodeDesc(res, buf);
} else if (Z_ReceiveMatchPrefix(buf, AREQ_ZDO_ACTIVEEPRSP)) {
return Z_ReceiveActiveEp(res, buf);
} else if (Z_ReceiveMatchPrefix(buf, AREQ_ZDO_SIMPLEDESCRSP)) {
return Z_ReceiveSimpleDesc(res, buf);
}
return -1;
}
}
int32_t Z_State_Ready(uint8_t value) {
zigbee.init_phase = false; // initialization phase complete
return 0; // continue
}
#endif // USE_ZIGBEE

View File

@ -24,20 +24,6 @@
const uint32_t ZIGBEE_BUFFER_SIZE = 256; // Max ZNP frame is SOF+LEN+CMD1+CMD2+250+FCS = 255
const uint8_t ZIGBEE_SOF = 0xFE;
// Status code used for ZigbeeStatus MQTT message
// Ex: {"ZigbeeStatus":{"code": 3,"message":"Configured, starting coordinator"}}
const uint8_t ZIGBEE_STATUS_OK = 0; // Zigbee started and working
const uint8_t ZIGBEE_STATUS_BOOT = 1; // CC2530 booting
const uint8_t ZIGBEE_STATUS_RESET_CONF = 2; // Resetting CC2530 configuration
const uint8_t ZIGBEE_STATUS_STARTING = 3; // Starting CC2530 as coordinator
const uint8_t ZIGBEE_STATUS_PERMITJOIN_CLOSE = 20; // Disable PermitJoin
const uint8_t ZIGBEE_STATUS_PERMITJOIN_OPEN_60 = 21; // Enable PermitJoin for 60 seconds
const uint8_t ZIGBEE_STATUS_PERMITJOIN_OPEN_XX = 22; // Enable PermitJoin until next boot
const uint8_t ZIGBEE_STATUS_DEVICE_VERSION = 50; // Status: CC2530 ZNP Version
const uint8_t ZIGBEE_STATUS_DEVICE_INFO = 51; // Status: CC2530 Device Configuration
const uint8_t ZIGBEE_STATUS_UNSUPPORTED_VERSION = 98; // Unsupported ZNP version
const uint8_t ZIGBEE_STATUS_ABORT = 99; // Fatal error, Zigbee not working
//#define Z_USE_SOFTWARE_SERIAL
#ifdef Z_USE_SOFTWARE_SERIAL
@ -49,739 +35,11 @@ TasmotaSerial *ZigbeeSerial = nullptr;
#endif
const char kZigbeeCommands[] PROGMEM = "|" D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN;
const char kZigbeeCommands[] PROGMEM = "|" D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN
"|" D_CMND_ZIGBEE_DUMP;
void (* const ZigbeeCommand[])(void) PROGMEM = { &CmndZigbeeZNPSend, &CmndZigbeePermitJoin };
typedef int32_t (*ZB_Func)(uint8_t value);
typedef int32_t (*ZB_RecvMsgFunc)(int32_t res, class SBuffer &buf);
typedef union Zigbee_Instruction {
struct {
uint8_t i; // instruction
uint8_t d8; // 8 bits data
uint16_t d16; // 16 bits data
} i;
const void *p; // pointer
// const void *m; // for type checking only, message
// const ZB_Func f;
// const ZB_RecvMsgFunc fr;
} Zigbee_Instruction;
//
// Zigbee_Instruction z1 = { .i = {1,2,3}};
// Zigbee_Instruction z3 = { .p = nullptr };
typedef struct Zigbee_Instruction_Type {
uint8_t instr;
uint8_t data;
} Zigbee_Instruction_Type;
enum Zigbee_StateMachine_Instruction_Set {
// 2 bytes instructions
ZGB_INSTR_4_BYTES = 0,
ZGB_INSTR_NOOP = 0, // do nothing
ZGB_INSTR_LABEL, // define a label
ZGB_INSTR_GOTO, // goto label
ZGB_INSTR_ON_ERROR_GOTO, // goto label if error
ZGB_INSTR_ON_TIMEOUT_GOTO, // goto label if timeout
ZGB_INSTR_WAIT, // wait for x ms (in chunks of 100ms)
ZGB_INSTR_WAIT_FOREVER, // wait forever but state machine still active
ZGB_INSTR_STOP, // stop state machine with optional error code
// 6 bytes instructions
ZGB_INSTR_8_BYTES = 0x80,
ZGB_INSTR_CALL = 0x80, // call a function
ZGB_INSTR_LOG, // log a message, if more detailed logging required, call a function
ZGB_INSTR_MQTT_STATUS, // send MQTT status string with code
ZGB_INSTR_SEND, // send a ZNP message
ZGB_INSTR_WAIT_UNTIL, // wait until the specified message is received, ignore all others
ZGB_INSTR_WAIT_RECV, // wait for a message according to the filter
ZGB_ON_RECV_UNEXPECTED, // function to handle unexpected messages, or nullptr
// 10 bytes instructions
ZGB_INSTR_12_BYTES = 0xF0,
ZGB_INSTR_WAIT_RECV_CALL, // wait for a filtered message and call function upon receive
};
#define ZI_NOOP() { .i = { ZGB_INSTR_NOOP, 0x00, 0x0000} },
#define ZI_LABEL(x) { .i = { ZGB_INSTR_LABEL, (x), 0x0000} },
#define ZI_GOTO(x) { .i = { ZGB_INSTR_GOTO, (x), 0x0000} },
#define ZI_ON_ERROR_GOTO(x) { .i = { ZGB_INSTR_ON_ERROR_GOTO, (x), 0x0000} },
#define ZI_ON_TIMEOUT_GOTO(x) { .i = { ZGB_INSTR_ON_TIMEOUT_GOTO, (x), 0x0000} },
#define ZI_WAIT(x) { .i = { ZGB_INSTR_WAIT, 0x00, (x)} },
#define ZI_WAIT_FOREVER() { .i = { ZGB_INSTR_WAIT_FOREVER, 0x00, 0x0000} },
#define ZI_STOP(x) { .i = { ZGB_INSTR_STOP, (x), 0x0000} },
#define ZI_CALL(f, x) { .i = { ZGB_INSTR_CALL, (x), 0x0000} }, { .p = (const void*)(f) },
#define ZI_LOG(x, m) { .i = { ZGB_INSTR_LOG, (x), 0x0000 } }, { .p = ((const void*)(m)) },
#define ZI_MQTT_STATUS(x, m) { .i = { ZGB_INSTR_MQTT_STATUS, (x), 0x0000 } }, { .p = ((const void*)(m)) },
#define ZI_ON_RECV_UNEXPECTED(f) { .i = { ZGB_ON_RECV_UNEXPECTED, 0x00, 0x0000} }, { .p = (const void*)(f) },
#define ZI_SEND(m) { .i = { ZGB_INSTR_SEND, sizeof(m), 0x0000} }, { .p = (const void*)(m) },
#define ZI_WAIT_RECV(x, m) { .i = { ZGB_INSTR_WAIT_RECV, sizeof(m), (x)} }, { .p = (const void*)(m) },
#define ZI_WAIT_UNTIL(x, m) { .i = { ZGB_INSTR_WAIT_UNTIL, sizeof(m), (x)} }, { .p = (const void*)(m) },
#define ZI_WAIT_RECV_FUNC(x, m, f) { .i = { ZGB_INSTR_WAIT_RECV_CALL, sizeof(m), (x)} }, { .p = (const void*)(m) }, { .p = (const void*)(f) },
// Labels used in the State Machine -- internal only
const uint8_t ZIGBEE_LABEL_START = 10; // Start ZNP
const uint8_t ZIGBEE_LABEL_READY = 20; // goto label 20 for main loop
const uint8_t ZIGBEE_LABEL_MAIN_LOOP = 21; // main loop
const uint8_t ZIGBEE_LABEL_PERMIT_JOIN_CLOSE = 30; // disable permit join
const uint8_t ZIGBEE_LABEL_PERMIT_JOIN_OPEN_60 = 31; // enable permit join for 60 seconds
const uint8_t ZIGBEE_LABEL_PERMIT_JOIN_OPEN_XX = 32; // enable permit join for 60 seconds
// errors
const uint8_t ZIGBEE_LABEL_ABORT = 99; // goto label 99 in case of fatal error
const uint8_t ZIGBEE_LABEL_UNSUPPORTED_VERSION = 98; // Unsupported ZNP version
struct ZigbeeStatus {
bool active = true; // is Zigbee active for this device, i.e. GPIOs configured
bool state_machine = false; // the state machine is running
bool state_waiting = false; // the state machine is waiting for external event or timeout
bool state_no_timeout = false; // the current wait loop does not generate a timeout but only continues running
bool ready = false; // cc2530 initialization is complet, ready to operate
uint8_t on_error_goto = ZIGBEE_LABEL_ABORT; // on error goto label, 99 default to abort
uint8_t on_timeout_goto = ZIGBEE_LABEL_ABORT; // on timeout goto label, 99 default to abort
int16_t pc = 0; // program counter, -1 means abort
uint32_t next_timeout = 0; // millis for the next timeout
uint8_t *recv_filter = nullptr; // receive filter message
bool recv_until = false; // ignore all messages until the received frame fully matches
size_t recv_filter_len = 0;
ZB_RecvMsgFunc recv_func = nullptr; // function to call when message is expected
ZB_RecvMsgFunc recv_unexpected = nullptr; // function called when unexpected message is received
bool init_phase = true; // initialization phase, before accepting zigbee traffic
};
struct ZigbeeStatus zigbee;
SBuffer *zigbee_buffer = nullptr;
/*********************************************************************************************\
* State Machine
\*********************************************************************************************/
#define Z_B0(a) (uint8_t)( ((a) ) & 0xFF )
#define Z_B1(a) (uint8_t)( ((a) >> 8) & 0xFF )
#define Z_B2(a) (uint8_t)( ((a) >> 16) & 0xFF )
#define Z_B3(a) (uint8_t)( ((a) >> 24) & 0xFF )
#define Z_B4(a) (uint8_t)( ((a) >> 32) & 0xFF )
#define Z_B5(a) (uint8_t)( ((a) >> 40) & 0xFF )
#define Z_B6(a) (uint8_t)( ((a) >> 48) & 0xFF )
#define Z_B7(a) (uint8_t)( ((a) >> 56) & 0xFF )
// Macro to define message to send and receive
#define ZBM(n, x...) const uint8_t n[] PROGMEM = { x };
// ZBS_* Zigbee Send
// ZBR_* Zigbee Recv
ZBM(ZBS_RESET, Z_AREQ | Z_SYS, SYS_RESET, 0x00 ) // 410001 SYS_RESET_REQ Hardware reset
ZBM(ZBR_RESET, Z_AREQ | Z_SYS, SYS_RESET_IND ) // 4180 SYS_RESET_REQ Hardware reset response
ZBM(ZBS_VERSION, Z_SREQ | Z_SYS, SYS_VERSION ) // 2102 Z_SYS:version
ZBM(ZBR_VERSION, Z_SRSP | Z_SYS, SYS_VERSION ) // 6102 Z_SYS:version
// Check if ZNP_HAS_CONFIGURED is set
ZBM(ZBS_ZNPHC, Z_SREQ | Z_SYS, SYS_OSAL_NV_READ, ZNP_HAS_CONFIGURED & 0xFF, ZNP_HAS_CONFIGURED >> 8, 0x00 /* offset */ ) // 2108000F00 - 6108000155
ZBM(ZBR_ZNPHC, Z_SRSP | Z_SYS, SYS_OSAL_NV_READ, Z_Success, 0x01 /* len */, 0x55) // 6108000155
// If not set, the response is 61-08-02-00 = Z_SRSP | Z_SYS, SYS_OSAL_NV_READ, Z_InvalidParameter, 0x00 /* len */
ZBM(ZBS_PAN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_PANID ) // 260483
ZBM(ZBR_PAN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_PANID, 0x02 /* len */,
Z_B0(USE_ZIGBEE_PANID), Z_B1(USE_ZIGBEE_PANID) ) // 6604008302xxxx
ZBM(ZBS_EXTPAN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_EXTENDED_PAN_ID ) // 26042D
ZBM(ZBR_EXTPAN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_EXTENDED_PAN_ID,
0x08 /* len */,
Z_B0(USE_ZIGBEE_EXTPANID), Z_B1(USE_ZIGBEE_EXTPANID), Z_B2(USE_ZIGBEE_EXTPANID), Z_B3(USE_ZIGBEE_EXTPANID),
Z_B4(USE_ZIGBEE_EXTPANID), Z_B5(USE_ZIGBEE_EXTPANID), Z_B6(USE_ZIGBEE_EXTPANID), Z_B7(USE_ZIGBEE_EXTPANID),
) // 6604002D08xxxxxxxxxxxxxxxx
ZBM(ZBS_CHANN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_CHANLIST ) // 260484
ZBM(ZBR_CHANN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_CHANLIST,
0x04 /* len */,
Z_B0(USE_ZIGBEE_CHANNEL), Z_B1(USE_ZIGBEE_CHANNEL), Z_B2(USE_ZIGBEE_CHANNEL), Z_B3(USE_ZIGBEE_CHANNEL),
) // 6604008404xxxxxxxx
ZBM(ZBS_PFGK, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_PRECFGKEY ) // 260462
ZBM(ZBR_PFGK, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_PRECFGKEY,
0x10 /* len */,
Z_B0(USE_ZIGBEE_PRECFGKEY_L), Z_B1(USE_ZIGBEE_PRECFGKEY_L), Z_B2(USE_ZIGBEE_PRECFGKEY_L), Z_B3(USE_ZIGBEE_PRECFGKEY_L),
Z_B4(USE_ZIGBEE_PRECFGKEY_L), Z_B5(USE_ZIGBEE_PRECFGKEY_L), Z_B6(USE_ZIGBEE_PRECFGKEY_L), Z_B7(USE_ZIGBEE_PRECFGKEY_L),
Z_B0(USE_ZIGBEE_PRECFGKEY_H), Z_B1(USE_ZIGBEE_PRECFGKEY_H), Z_B2(USE_ZIGBEE_PRECFGKEY_H), Z_B3(USE_ZIGBEE_PRECFGKEY_H),
Z_B4(USE_ZIGBEE_PRECFGKEY_H), Z_B5(USE_ZIGBEE_PRECFGKEY_H), Z_B6(USE_ZIGBEE_PRECFGKEY_H), Z_B7(USE_ZIGBEE_PRECFGKEY_H),
/*0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0D*/ ) // 660400621001030507090B0D0F00020406080A0C0D
ZBM(ZBS_PFGKEN, Z_SREQ | Z_SAPI, SAPI_READ_CONFIGURATION, CONF_PRECFGKEYS_ENABLE ) // 260463
ZBM(ZBR_PFGKEN, Z_SRSP | Z_SAPI, SAPI_READ_CONFIGURATION, Z_Success, CONF_PRECFGKEYS_ENABLE,
0x01 /* len */, 0x00 ) // 660400630100
// commands to "format" the device
// Write configuration - write success
ZBM(ZBR_W_OK, Z_SRSP | Z_SAPI, SAPI_WRITE_CONFIGURATION, Z_Success ) // 660500 - Write Configuration
ZBM(ZBR_WNV_OK, Z_SRSP | Z_SYS, SYS_OSAL_NV_WRITE, Z_Success ) // 610900 - NV Write
// Factory reset
ZBM(ZBS_FACTRES, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 /* len */, 0x02 ) // 2605030102
// Write PAN ID
ZBM(ZBS_W_PAN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_PANID, 0x02 /* len */, Z_B0(USE_ZIGBEE_PANID), Z_B1(USE_ZIGBEE_PANID) ) // 26058302xxxx
// Write EXT PAN ID
ZBM(ZBS_W_EXTPAN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_EXTENDED_PAN_ID, 0x08 /* len */,
Z_B0(USE_ZIGBEE_EXTPANID), Z_B1(USE_ZIGBEE_EXTPANID), Z_B2(USE_ZIGBEE_EXTPANID), Z_B3(USE_ZIGBEE_EXTPANID),
Z_B4(USE_ZIGBEE_EXTPANID), Z_B5(USE_ZIGBEE_EXTPANID), Z_B6(USE_ZIGBEE_EXTPANID), Z_B7(USE_ZIGBEE_EXTPANID)
) // 26052D086263151D004B1200
// Write Channel ID
ZBM(ZBS_W_CHANN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_CHANLIST, 0x04 /* len */,
Z_B0(USE_ZIGBEE_CHANNEL), Z_B1(USE_ZIGBEE_CHANNEL), Z_B2(USE_ZIGBEE_CHANNEL), Z_B3(USE_ZIGBEE_CHANNEL),
/*0x00, 0x08, 0x00, 0x00*/ ) // 26058404xxxxxxxx
// Write Logical Type = 00 = coordinator
ZBM(ZBS_W_LOGTYP, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_LOGICAL_TYPE, 0x01 /* len */, 0x00 ) // 2605870100
// Write precfgkey
ZBM(ZBS_W_PFGK, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_PRECFGKEY,
0x10 /* len */,
Z_B0(USE_ZIGBEE_PRECFGKEY_L), Z_B1(USE_ZIGBEE_PRECFGKEY_L), Z_B2(USE_ZIGBEE_PRECFGKEY_L), Z_B3(USE_ZIGBEE_PRECFGKEY_L),
Z_B4(USE_ZIGBEE_PRECFGKEY_L), Z_B5(USE_ZIGBEE_PRECFGKEY_L), Z_B6(USE_ZIGBEE_PRECFGKEY_L), Z_B7(USE_ZIGBEE_PRECFGKEY_L),
Z_B0(USE_ZIGBEE_PRECFGKEY_H), Z_B1(USE_ZIGBEE_PRECFGKEY_H), Z_B2(USE_ZIGBEE_PRECFGKEY_H), Z_B3(USE_ZIGBEE_PRECFGKEY_H),
Z_B4(USE_ZIGBEE_PRECFGKEY_H), Z_B5(USE_ZIGBEE_PRECFGKEY_H), Z_B6(USE_ZIGBEE_PRECFGKEY_H), Z_B7(USE_ZIGBEE_PRECFGKEY_H),
/*0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0D*/ ) // 2605621001030507090B0D0F00020406080A0C0D
// Write precfgkey enable
ZBM(ZBS_W_PFGKEN, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_PRECFGKEYS_ENABLE, 0x01 /* len */, 0x00 ) // 2605630100
// Write Security Mode
ZBM(ZBS_WNV_SECMODE, Z_SREQ | Z_SYS, SYS_OSAL_NV_WRITE, Z_B0(CONF_TCLK_TABLE_START), Z_B1(CONF_TCLK_TABLE_START),
0x00 /* offset */, 0x20 /* len */,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x5a, 0x69, 0x67, 0x42, 0x65, 0x65, 0x41, 0x6c,
0x6c, 0x69, 0x61, 0x6e, 0x63, 0x65, 0x30, 0x39,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) // 2109010100200FFFFFFFFFFFFFFFF5A6967426565416C6C69616E636530390000000000000000
// Write Z_ZDO Direct CB
ZBM(ZBS_W_ZDODCB, Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_ZDO_DIRECT_CB, 0x01 /* len */, 0x01 ) // 26058F0101
// NV Init ZNP Has Configured
ZBM(ZBS_WNV_INITZNPHC, Z_SREQ | Z_SYS, SYS_OSAL_NV_ITEM_INIT, ZNP_HAS_CONFIGURED & 0xFF, ZNP_HAS_CONFIGURED >> 8,
0x01, 0x00 /* InitLen 16 bits */, 0x01 /* len */, 0x00 ) // 2107000F01000100 - 610709
// Init succeeded
ZBM(ZBR_WNV_INIT_OK, Z_SRSP | Z_SYS, SYS_OSAL_NV_ITEM_INIT, Z_Created ) // 610709 - NV Write
// Write ZNP Has Configured
ZBM(ZBS_WNV_ZNPHC, Z_SREQ | Z_SYS, SYS_OSAL_NV_WRITE, Z_B0(ZNP_HAS_CONFIGURED), Z_B1(ZNP_HAS_CONFIGURED),
0x00 /* offset */, 0x01 /* len */, 0x55 ) // 2109000F000155 - 610900
// Z_ZDO:startupFromApp
ZBM(ZBS_STARTUPFROMAPP, Z_SREQ | Z_ZDO, ZDO_STARTUP_FROM_APP, 100, 0 /* delay */) // 25406400
ZBM(ZBR_STARTUPFROMAPP, Z_SRSP | Z_ZDO, ZDO_STARTUP_FROM_APP ) // 6540 + 01 for new network, 00 for exisitng network, 02 for error
ZBM(AREQ_STARTUPFROMAPP, Z_AREQ | Z_ZDO, ZDO_STATE_CHANGE_IND, ZDO_DEV_ZB_COORD ) // 45C009 + 08 = starting, 09 = started
// GetDeviceInfo
ZBM(ZBS_GETDEVICEINFO, Z_SREQ | Z_UTIL, Z_UTIL_GET_DEVICE_INFO ) // 2700
ZBM(ZBR_GETDEVICEINFO, Z_SRSP | Z_UTIL, Z_UTIL_GET_DEVICE_INFO, Z_Success ) // Ex= 6700.00.6263151D004B1200.0000.07.09.00
// IEEE Adr (8 bytes) = 6263151D004B1200
// Short Addr (2 bytes) = 0000
// Device Type (1 byte) = 07 (coord?)
// Device State (1 byte) = 09 (coordinator started)
// NumAssocDevices (1 byte) = 00
// Read Pan ID
//ZBM(ZBS_READ_NV_PANID, Z_SREQ | Z_SYS, SYS_OSAL_NV_READ, PANID & 0xFF, PANID >> 8, 0x00 /* offset */ ) // 2108830000
// Z_ZDO:nodeDescReq
ZBM(ZBS_ZDO_NODEDESCREQ, Z_SREQ | Z_ZDO, ZDO_NODE_DESC_REQ, 0x00, 0x00 /* dst addr */, 0x00, 0x00 /* NWKAddrOfInterest */) // 250200000000
ZBM(ZBR_ZDO_NODEDESCREQ, Z_SRSP | Z_ZDO, ZDO_NODE_DESC_REQ, Z_Success ) // 650200
// Async resp ex: 4582.0000.00.0000.00.40.8F.0000.50.A000.0100.A000.00
ZBM(AREQ_ZDO_NODEDESCREQ, Z_AREQ | Z_ZDO, ZDO_NODE_DESC_RSP) // 4582
// SrcAddr (2 bytes) 0000
// Status (1 byte) 00 Success
// NwkAddr (2 bytes) 0000
// LogicalType (1 byte) - 00 Coordinator
// APSFlags (1 byte) - 40 0=APSFlags 4=NodeFreqBands
// MACCapabilityFlags (1 byte) - 8F ALL
// ManufacturerCode (2 bytes) - 0000
// MaxBufferSize (1 byte) - 50 NPDU
// MaxTransferSize (2 bytes) - A000 = 160
// ServerMask (2 bytes) - 0100 - Primary Trust Center
// MaxOutTransferSize (2 bytes) - A000 = 160
// DescriptorCapabilities (1 byte) - 00
// Z_ZDO:activeEpReq
ZBM(ZBS_ZDO_ACTIVEEPREQ, Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ, 0x00, 0x00, 0x00, 0x00) // 250500000000
ZBM(ZBR_ZDO_ACTIVEEPREQ, Z_SRSP | Z_ZDO, ZDO_ACTIVE_EP_REQ, Z_Success) // 65050000
ZBM(ZBR_ZDO_ACTIVEEPRSP_NONE, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP, 0x00, 0x00 /* srcAddr */, Z_Success,
0x00, 0x00 /* nwkaddr */, 0x00 /* activeepcount */) // 45050000 - no Ep running
ZBM(ZBR_ZDO_ACTIVEEPRSP_OK, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP, 0x00, 0x00 /* srcAddr */, Z_Success,
0x00, 0x00 /* nwkaddr */, 0x02 /* activeepcount */, 0x0B, 0x01 /* the actual endpoints */) // 25050000 - no Ep running
// Z_AF:register profile:104, ep:01
ZBM(ZBS_AF_REGISTER01, Z_SREQ | Z_AF, AF_REGISTER, 0x01 /* endpoint */, Z_B0(Z_PROF_HA), Z_B1(Z_PROF_HA), // 24000401050000000000
0x05, 0x00 /* AppDeviceId */, 0x00 /* AppDevVer */, 0x00 /* LatencyReq */,
0x00 /* AppNumInClusters */, 0x00 /* AppNumInClusters */)
ZBM(ZBR_AF_REGISTER, Z_SRSP | Z_AF, AF_REGISTER, Z_Success) // 640000
ZBM(ZBS_AF_REGISTER0B, Z_SREQ | Z_AF, AF_REGISTER, 0x0B /* endpoint */, Z_B0(Z_PROF_HA), Z_B1(Z_PROF_HA), // 2400040B050000000000
0x05, 0x00 /* AppDeviceId */, 0x00 /* AppDevVer */, 0x00 /* LatencyReq */,
0x00 /* AppNumInClusters */, 0x00 /* AppNumInClusters */)
// Z_ZDO:mgmtPermitJoinReq
ZBM(ZBS_PERMITJOINREQ_CLOSE, Z_SREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, 0x02 /* AddrMode */, // 25360200000000
0x00, 0x00 /* DstAddr */, 0x00 /* Duration */, 0x00 /* TCSignificance */)
ZBM(ZBS_PERMITJOINREQ_OPEN_60, Z_SREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, 0x0F /* AddrMode */, // 25360FFFFC3C00
0xFC, 0xFF /* DstAddr */, 60 /* Duration */, 0x00 /* TCSignificance */)
ZBM(ZBS_PERMITJOINREQ_OPEN_XX, Z_SREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, 0x0F /* AddrMode */, // 25360FFFFCFF00
0xFC, 0xFF /* DstAddr */, 0xFF /* Duration */, 0x00 /* TCSignificance */)
ZBM(ZBR_PERMITJOINREQ, Z_SRSP | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_REQ, Z_Success) // 653600
ZBM(ZBR_PERMITJOIN_AREQ_CLOSE, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND, 0x00 /* Duration */) // 45CB00
ZBM(ZBR_PERMITJOIN_AREQ_OPEN_60, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND, 60 /* Duration */) // 45CB3C
ZBM(ZBR_PERMITJOIN_AREQ_OPEN_XX, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND, 0xFF /* Duration */) // 45CBFF
ZBM(ZBR_PERMITJOIN_AREQ_RSP, Z_AREQ | Z_ZDO, ZDO_MGMT_PERMIT_JOIN_RSP, 0x00, 0x00 /* srcAddr*/, Z_Success ) // 45B6000000
// Filters for ZCL frames
ZBM(ZBR_AF_INCOMING_MESSAGE, Z_AREQ | Z_AF, AF_INCOMING_MSG) // 4481
static const Zigbee_Instruction zb_prog[] PROGMEM = {
ZI_LABEL(0)
ZI_NOOP()
ZI_ON_ERROR_GOTO(ZIGBEE_LABEL_ABORT)
ZI_ON_TIMEOUT_GOTO(ZIGBEE_LABEL_ABORT)
ZI_ON_RECV_UNEXPECTED(&Z_Recv_Default)
ZI_WAIT(15000) // wait for 15 seconds for Tasmota to stabilize
ZI_ON_ERROR_GOTO(50)
ZI_MQTT_STATUS(ZIGBEE_STATUS_BOOT, "Booting")
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: rebooting device")
ZI_SEND(ZBS_RESET) // reboot cc2530 just in case we rebooted ESP8266 but not cc2530
ZI_WAIT_RECV(5000, ZBR_RESET) // timeout 5s
ZI_LOG(LOG_LEVEL_INFO, "ZIG: checking device configuration")
ZI_SEND(ZBS_ZNPHC) // check value of ZNP Has Configured
ZI_WAIT_RECV(2000, ZBR_ZNPHC)
ZI_SEND(ZBS_VERSION) // check ZNP software version
ZI_WAIT_RECV_FUNC(1000, ZBR_VERSION, &Z_ReceiveCheckVersion) // Check version
ZI_SEND(ZBS_PAN) // check PAN ID
ZI_WAIT_RECV(1000, ZBR_PAN)
ZI_SEND(ZBS_EXTPAN) // check EXT PAN ID
ZI_WAIT_RECV(1000, ZBR_EXTPAN)
ZI_SEND(ZBS_CHANN) // check CHANNEL
ZI_WAIT_RECV(1000, ZBR_CHANN)
ZI_SEND(ZBS_PFGK) // check PFGK
ZI_WAIT_RECV(1000, ZBR_PFGK)
ZI_SEND(ZBS_PFGKEN) // check PFGKEN
ZI_WAIT_RECV(1000, ZBR_PFGKEN)
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee configuration ok")
// all is good, we can start
ZI_LABEL(ZIGBEE_LABEL_START) // START ZNP App
ZI_MQTT_STATUS(ZIGBEE_STATUS_STARTING, "Configured, starting coordinator")
//ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_ON_ERROR_GOTO(ZIGBEE_LABEL_ABORT)
// Z_ZDO:startupFromApp
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: starting zigbee coordinator")
ZI_SEND(ZBS_STARTUPFROMAPP) // start coordinator
ZI_WAIT_RECV(2000, ZBR_STARTUPFROMAPP) // wait for sync ack of command
ZI_WAIT_UNTIL(5000, AREQ_STARTUPFROMAPP) // wait for async message that coordinator started
ZI_SEND(ZBS_GETDEVICEINFO) // GetDeviceInfo
ZI_WAIT_RECV_FUNC(2000, ZBR_GETDEVICEINFO, &Z_ReceiveDeviceInfo)
//ZI_WAIT_RECV(2000, ZBR_GETDEVICEINFO) // TODO memorize info
ZI_SEND(ZBS_ZDO_NODEDESCREQ) // Z_ZDO:nodeDescReq
ZI_WAIT_RECV(1000, ZBR_ZDO_NODEDESCREQ)
ZI_WAIT_UNTIL(5000, AREQ_ZDO_NODEDESCREQ)
ZI_SEND(ZBS_ZDO_ACTIVEEPREQ) // Z_ZDO:activeEpReq
ZI_WAIT_RECV(1000, ZBR_ZDO_ACTIVEEPREQ)
ZI_WAIT_UNTIL(1000, ZBR_ZDO_ACTIVEEPRSP_NONE)
ZI_SEND(ZBS_AF_REGISTER01) // Z_AF register for endpoint 01, profile 0x0104 Home Automation
ZI_WAIT_RECV(1000, ZBR_AF_REGISTER)
ZI_SEND(ZBS_AF_REGISTER0B) // Z_AF register for endpoint 0B, profile 0x0104 Home Automation
ZI_WAIT_RECV(1000, ZBR_AF_REGISTER)
// Z_ZDO:nodeDescReq ?? Is is useful to redo it? TODO
// redo Z_ZDO:activeEpReq to check that Ep are available
ZI_SEND(ZBS_ZDO_ACTIVEEPREQ) // Z_ZDO:activeEpReq
ZI_WAIT_RECV(1000, ZBR_ZDO_ACTIVEEPREQ)
ZI_WAIT_UNTIL(1000, ZBR_ZDO_ACTIVEEPRSP_OK)
ZI_SEND(ZBS_PERMITJOINREQ_CLOSE) // Closing the Permit Join
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_CLOSE)
//ZI_SEND(ZBS_PERMITJOINREQ_OPEN_XX) // Opening Permit Join, normally through command
//ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_OPEN_XX)
ZI_LABEL(ZIGBEE_LABEL_READY)
ZI_MQTT_STATUS(ZIGBEE_STATUS_OK, "Started")
ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee device ready, listening...")
ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_LABEL(ZIGBEE_LABEL_MAIN_LOOP)
ZI_WAIT_FOREVER()
ZI_GOTO(ZIGBEE_LABEL_READY)
ZI_LABEL(ZIGBEE_LABEL_PERMIT_JOIN_CLOSE)
ZI_MQTT_STATUS(ZIGBEE_STATUS_PERMITJOIN_CLOSE, "Disable Pairing mode")
ZI_SEND(ZBS_PERMITJOINREQ_CLOSE) // Closing the Permit Join
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_CLOSE)
ZI_GOTO(ZIGBEE_LABEL_MAIN_LOOP)
ZI_LABEL(ZIGBEE_LABEL_PERMIT_JOIN_OPEN_60)
ZI_MQTT_STATUS(ZIGBEE_STATUS_PERMITJOIN_OPEN_60, "Enable Pairing mode for 60 seconds")
ZI_SEND(ZBS_PERMITJOINREQ_OPEN_60)
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_OPEN_60)
ZI_GOTO(ZIGBEE_LABEL_MAIN_LOOP)
ZI_LABEL(ZIGBEE_LABEL_PERMIT_JOIN_OPEN_XX)
ZI_MQTT_STATUS(ZIGBEE_STATUS_PERMITJOIN_OPEN_XX, "Enable Pairing mode until next boot")
ZI_SEND(ZBS_PERMITJOINREQ_OPEN_XX)
ZI_WAIT_RECV(1000, ZBR_PERMITJOINREQ)
//ZI_WAIT_UNTIL(1000, ZBR_PERMITJOIN_AREQ_RSP) // not sure it's useful
//ZI_WAIT_UNTIL(500, ZBR_PERMITJOIN_AREQ_OPEN_XX)
ZI_GOTO(ZIGBEE_LABEL_MAIN_LOOP)
ZI_LABEL(50) // reformat device
ZI_MQTT_STATUS(ZIGBEE_STATUS_RESET_CONF, "Reseting configuration")
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee bad configuration of device, doing a factory reset")
ZI_ON_ERROR_GOTO(ZIGBEE_LABEL_ABORT)
ZI_SEND(ZBS_FACTRES) // factory reset
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_RESET) // reset device
ZI_WAIT_RECV(5000, ZBR_RESET)
ZI_SEND(ZBS_W_PAN) // write PAN ID
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_EXTPAN) // write EXT PAN ID
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_CHANN) // write CHANNEL
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_LOGTYP) // write Logical Type = coordinator
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_PFGK) // write PRECFGKEY
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_W_PFGKEN) // write PRECFGKEY Enable
ZI_WAIT_RECV(1000, ZBR_W_OK)
ZI_SEND(ZBS_WNV_SECMODE) // write Security Mode
ZI_WAIT_RECV(1000, ZBR_WNV_OK)
ZI_SEND(ZBS_W_ZDODCB) // write Z_ZDO Direct CB
ZI_WAIT_RECV(1000, ZBR_W_OK)
// Now mark the device as ready, writing 0x55 in memory slot 0x0F00
ZI_SEND(ZBS_WNV_INITZNPHC) // Init NV ZNP Has Configured
ZI_WAIT_RECV(1000, ZBR_WNV_INIT_OK)
ZI_SEND(ZBS_WNV_ZNPHC) // Write NV ZNP Has Configured
ZI_WAIT_RECV(1000, ZBR_WNV_OK)
//ZI_LOG(LOG_LEVEL_INFO, "ZIG: zigbee device reconfigured")
ZI_GOTO(ZIGBEE_LABEL_START)
ZI_LABEL(ZIGBEE_LABEL_UNSUPPORTED_VERSION)
ZI_MQTT_STATUS(ZIGBEE_STATUS_UNSUPPORTED_VERSION, "Only ZNP 1.2 is currently supported")
ZI_GOTO(ZIGBEE_LABEL_ABORT)
ZI_LABEL(ZIGBEE_LABEL_ABORT) // Label 99: abort
ZI_MQTT_STATUS(ZIGBEE_STATUS_ABORT, "Abort")
ZI_LOG(LOG_LEVEL_ERROR, "ZIG: Abort")
ZI_STOP(ZIGBEE_LABEL_ABORT)
};
int32_t Z_ReceiveDeviceInfo(int32_t res, class SBuffer &buf) {
// Ex= 6700.00.6263151D004B1200.0000.07.09.02.83869991
// IEEE Adr (8 bytes) = 0x00124B001D156362
// Short Addr (2 bytes) = 0x0000
// Device Type (1 byte) = 0x07 (coord?)
// Device State (1 byte) = 0x09 (coordinator started)
// NumAssocDevices (1 byte) = 0x02
// List of devices: 0x8683, 0x9199
Z_IEEEAddress long_adr = buf.get64(3);
Z_ShortAddress short_adr = buf.get16(11);
uint8_t device_type = buf.get8(13);
uint8_t device_state = buf.get8(14);
uint8_t device_associated = buf.get8(15);
char hex[20];
Uint64toHex(long_adr, hex, 64);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"code\":%d,\"IEEEAddr\":\"%s\",\"ShortAddr\":\"0x%04X\""
",\"DeviceType\":%d,\"DeviceState\":%d"
",\"NumAssocDevices\":%d"),
ZIGBEE_STATUS_DEVICE_INFO, hex, short_adr, device_type, device_state,
device_associated);
if (device_associated > 0) {
uint idx = 16;
ResponseAppend_P(PSTR(",\"AssocDevicesList\":["));
for (uint32_t i = 0; i < device_associated; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(idx));
idx += 2;
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEnd(); // append '}'
ResponseJsonEnd(); // append '}'
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
return res;
}
int32_t Z_ReceiveCheckVersion(int32_t res, class SBuffer &buf) {
// check that the version is supported
// typical version for ZNP 1.2
// 61020200-02.06.03.D9143401.0200000000
// TranportRev = 02
// Product = 00
// MajorRel = 2
// MinorRel = 6
// MaintRel = 3
// Revision = 20190425 d (0x013414D9)
uint8_t major_rel = buf.get8(4);
uint8_t minor_rel = buf.get8(5);
uint8_t maint_rel = buf.get8(6);
uint32_t revision = buf.get32(7);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{"
"\"code\":%d,\"MajorRel\":%d,\"MinorRel\":%d"
",\"MaintRel\":%d,\"Revision\":%d}}"),
ZIGBEE_STATUS_DEVICE_VERSION, major_rel, minor_rel,
maint_rel, revision);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
if ((0x02 == major_rel) && (0x06 == minor_rel)) {
return 0; // version 2.6.x is ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
int32_t Z_Recv_Default(int32_t res, class SBuffer &buf) {
// Default message handler for new messages
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZIG: Z_Recv_Default"));
if (zigbee.init_phase) {
// if still during initialization phase, ignore any unexpected message
return -1; // ignore message
} else {
if ( (pgm_read_byte(&ZBR_AF_INCOMING_MESSAGE[0]) == buf.get8(0)) &&
(pgm_read_byte(&ZBR_AF_INCOMING_MESSAGE[1]) == buf.get8(1)) ) {
uint16_t groupid = buf.get16(2);
uint16_t clusterid = buf.get16(4);
Z_ShortAddress srcaddr = buf.get16(6);
uint8_t srcendpoint = buf.get8(8);
uint8_t dstendpoint = buf.get8(9);
uint8_t wasbroadcast = buf.get8(10);
uint8_t linkquality = buf.get8(11);
uint8_t securityuse = buf.get8(12);
uint32_t timestamp = buf.get32(13);
uint8_t seqnumber = buf.get8(17);
ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 19, buf.get8(18), clusterid, groupid);
zcl_received.publishMQTTReceived(groupid, clusterid, srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp);
char shortaddr[8];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%04X"), srcaddr);
DynamicJsonBuffer jsonBuffer;
JsonObject& json_root = jsonBuffer.createObject();
JsonObject& json = json_root.createNestedObject(shortaddr);
if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId())) {
zcl_received.parseRawAttributes(json);
} else if (zcl_received.isClusterSpecificCommand()) {
zcl_received.parseClusterSpecificCommand(json);
}
zcl_received.postProcessAttributes(json);
String msg("");
msg.reserve(100);
json_root.printTo(msg);
Response_P(PSTR("%s"), msg.c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLRECEIVED));
XdrvRulesProcess();
}
return -1;
}
}
int32_t Z_State_Ready(uint8_t value) {
zigbee.init_phase = false; // initialization phase complete
return 0; // continue
}
uint8_t ZigbeeGetInstructionSize(uint8_t instr) { // in Zigbee_Instruction lines (words)
if (instr >= ZGB_INSTR_12_BYTES) {
return 3;
} else if (instr >= ZGB_INSTR_8_BYTES) {
return 2;
} else {
return 1;
}
}
void ZigbeeGotoLabel(uint8_t label) {
// look for the label scanning entire code
uint16_t goto_pc = 0xFFFF; // 0xFFFF means not found
uint8_t cur_instr = 0;
uint8_t cur_d8 = 0;
uint8_t cur_instr_len = 1; // size of current instruction in words
for (uint32_t i = 0; i < sizeof(zb_prog)/sizeof(zb_prog[0]); i += cur_instr_len) {
const Zigbee_Instruction *cur_instr_line = &zb_prog[i];
cur_instr = pgm_read_byte(&cur_instr_line->i.i);
cur_d8 = pgm_read_byte(&cur_instr_line->i.d8);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZGB GOTO: pc %d instr %d"), i, cur_instr);
if (ZGB_INSTR_LABEL == cur_instr) {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: found label %d at pc %d"), cur_d8, i);
if (label == cur_d8) {
// label found, goto to this pc
zigbee.pc = i;
zigbee.state_machine = true;
zigbee.state_waiting = false;
return;
}
}
// get instruction length
cur_instr_len = ZigbeeGetInstructionSize(cur_instr);
}
// no label found, abort
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Goto label not found, label=%d pc=%d"), label, zigbee.pc);
if (ZIGBEE_LABEL_ABORT != label) {
// if not already looking for ZIGBEE_LABEL_ABORT, goto ZIGBEE_LABEL_ABORT
ZigbeeGotoLabel(ZIGBEE_LABEL_ABORT);
} else {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Label Abort (%d) not present, aborting Zigbee"), ZIGBEE_LABEL_ABORT);
zigbee.state_machine = false;
zigbee.active = false;
}
}
void ZigbeeStateMachine_Run(void) {
uint8_t cur_instr = 0;
uint8_t cur_d8 = 0;
uint16_t cur_d16 = 0;
const void* cur_ptr1 = nullptr;
const void* cur_ptr2 = nullptr;
uint32_t now = millis();
if (zigbee.state_waiting) { // state machine is waiting for external event or timeout
// checking if timeout expired
if ((zigbee.next_timeout) && (now > zigbee.next_timeout)) { // if next_timeout == 0 then wait forever
//AddLog_P2(LOG_LEVEL_INFO, PSTR("ZIG: timeout occured pc=%d"), zigbee.pc);
if (!zigbee.state_no_timeout) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZIG: timeout, goto label %d"), zigbee.on_timeout_goto);
ZigbeeGotoLabel(zigbee.on_timeout_goto);
} else {
zigbee.state_waiting = false; // simply stop waiting
}
}
}
while ((zigbee.state_machine) && (!zigbee.state_waiting)) {
// reinit receive filters and functions (they only work for a single instruction)
zigbee.recv_filter = nullptr;
zigbee.recv_func = nullptr;
zigbee.recv_until = false;
zigbee.state_no_timeout = false; // reset the no_timeout for next instruction
if (zigbee.pc > (sizeof(zb_prog)/sizeof(zb_prog[0]))) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Invalid pc: %d, aborting"), zigbee.pc);
zigbee.pc = -1;
}
if (zigbee.pc < 0) {
zigbee.state_machine = false;
return;
}
// load current instruction details
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: Executing instruction pc=%d"), zigbee.pc);
const Zigbee_Instruction *cur_instr_line = &zb_prog[zigbee.pc];
cur_instr = pgm_read_byte(&cur_instr_line->i.i);
cur_d8 = pgm_read_byte(&cur_instr_line->i.d8);
cur_d16 = pgm_read_word(&cur_instr_line->i.d16);
if (cur_instr >= ZGB_INSTR_8_BYTES) {
cur_instr_line++;
cur_ptr1 = cur_instr_line->p;
}
if (cur_instr >= ZGB_INSTR_12_BYTES) {
cur_instr_line++;
cur_ptr2 = cur_instr_line->p;
}
zigbee.pc += ZigbeeGetInstructionSize(cur_instr); // move pc to next instruction, before any goto
switch (cur_instr) {
case ZGB_INSTR_NOOP:
case ZGB_INSTR_LABEL: // do nothing
break;
case ZGB_INSTR_GOTO:
ZigbeeGotoLabel(cur_d8);
break;
case ZGB_INSTR_ON_ERROR_GOTO:
zigbee.on_error_goto = cur_d8;
break;
case ZGB_INSTR_ON_TIMEOUT_GOTO:
zigbee.on_timeout_goto = cur_d8;
break;
case ZGB_INSTR_WAIT:
zigbee.next_timeout = now + cur_d16;
zigbee.state_waiting = true;
zigbee.state_no_timeout = true; // do not generate a timeout error when waiting is done
break;
case ZGB_INSTR_WAIT_FOREVER:
zigbee.next_timeout = 0;
zigbee.state_waiting = true;
//zigbee.state_no_timeout = true; // do not generate a timeout error when waiting is done
break;
case ZGB_INSTR_STOP:
zigbee.state_machine = false;
if (cur_d8) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("ZIG: Stopping (%d)"), cur_d8);
}
break;
case ZGB_INSTR_CALL:
if (cur_ptr1) {
uint32_t res;
res = (*((ZB_Func)cur_ptr1))(cur_d8);
if (res > 0) {
ZigbeeGotoLabel(res);
continue; // avoid incrementing PC after goto
} else if (res == 0) {
// do nothing
} else if (res == -1) {
// do nothing
} else {
ZigbeeGotoLabel(zigbee.on_error_goto);
continue;
}
}
break;
case ZGB_INSTR_LOG:
AddLog_P(cur_d8, (char*) cur_ptr1);
break;
case ZGB_INSTR_MQTT_STATUS:
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATUS "\":{\"code\":%d,\"message\":\"%s\"}}"),
cur_d8, (char*) cur_ptr1);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATUS));
XdrvRulesProcess();
break;
case ZGB_INSTR_SEND:
ZigbeeZNPSend((uint8_t*) cur_ptr1, cur_d8 /* len */);
break;
case ZGB_INSTR_WAIT_UNTIL:
zigbee.recv_until = true; // and reuse ZGB_INSTR_WAIT_RECV
case ZGB_INSTR_WAIT_RECV:
zigbee.recv_filter = (uint8_t *) cur_ptr1;
zigbee.recv_filter_len = cur_d8; // len
zigbee.next_timeout = now + cur_d16;
zigbee.state_waiting = true;
break;
case ZGB_ON_RECV_UNEXPECTED:
zigbee.recv_unexpected = (ZB_RecvMsgFunc) cur_ptr1;
break;
case ZGB_INSTR_WAIT_RECV_CALL:
zigbee.recv_filter = (uint8_t *) cur_ptr1;
zigbee.recv_filter_len = cur_d8; // len
zigbee.recv_func = (ZB_RecvMsgFunc) cur_ptr2;
zigbee.next_timeout = now + cur_d16;
zigbee.state_waiting = true;
break;
}
}
}
void (* const ZigbeeCommand[])(void) PROGMEM = { &CmndZigbeeZNPSend, &CmndZigbeePermitJoin,
&CmndZigbeeDump };
int32_t ZigbeeProcessInput(class SBuffer &buf) {
if (!zigbee.state_machine) { return -1; } // if state machine is stopped, send 'ignore' message
@ -932,7 +190,7 @@ void ZigbeeInput(void)
SBuffer znp_buffer = zigbee_buffer->subBuffer(2, zigbee_frame_len - 3); // remove SOF, LEN and FCS
ToHex_P((unsigned char*)znp_buffer.getBuffer(), znp_buffer.len(), hex_char, sizeof(hex_char));
ResponseTime_P(PSTR(",\"" D_JSON_ZIGBEEZNPRECEIVED "\":\"%s\"}"), hex_char);
Response_P(PSTR("{\"" D_JSON_ZIGBEEZNPRECEIVED "\":\"%s\"}"), hex_char);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZNPRECEIVED));
XdrvRulesProcess();
@ -976,6 +234,13 @@ void ZigbeeInit(void)
* Commands
\*********************************************************************************************/
void CmndZigbeeDump(void) {
if (ZigbeeSerial) {
String dump = Z_DumpDevices();
Response_P(S_JSON_COMMAND_XVALUE, XdrvMailbox.command, dump.c_str());
}
}
void CmndZigbeeZNPSend(void)
{
if (ZigbeeSerial && (XdrvMailbox.data_len > 0)) {
@ -1031,7 +296,7 @@ void ZigbeeZNPSend(const uint8_t *msg, size_t len) {
XdrvRulesProcess();
}
// Allow or Deny pairing of new Zigbee devices
void CmndZigbeePermitJoin(void)
{
uint32_t payload = XdrvMailbox.payload;

120
sonoff/xdrv_26_sm2135.ino Normal file
View File

@ -0,0 +1,120 @@
/*
xdrv_26_sm2135.ino - sm2135 I2C five channel led support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_LIGHT
#ifdef USE_SM2135
/*********************************************************************************************\
* SM2135 I2C RGBCW Led bulbs like Action LSC SmartLed
\*********************************************************************************************/
#define XDRV_26 26
#define SM2135_ADDR 0x40 // 0x40 .. 0x46
//#define SM2135_CURRENT 0x24 // Defaults: 20mA for RGB, 30mA for CW
#define SM2135_CURRENT 0x16 // 3 x 15mA for RGB, 2 x 40mA/2 for CW
#define SM2135_RGB 0x00
#define SM2135_CW 0x80
struct SM2135 {
bool found = true;
} Sm2135;
bool Sm2135SetChannels(void)
{
char *buffer = XdrvMailbox.data;
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SM1: R %d G %d B %d, C %d W %d"), buffer[0], buffer[1], buffer[2], buffer[3], buffer[4]);
if (('\0' == buffer[0]) && ('\0' == buffer[1]) && ('\0' == buffer[2])) {
// No color so must be Cold/Warm
if ((buffer[3] + buffer[4]) >= (1 * 256)) {
// Scale down to 255 total to fix max power usage of 9W (=40mA)
// Currently not needed with setting 2 x 40mA/2 = 40mA = 9W = 255 (handled by lights.ino)
buffer[3] >>= 1; // Divide by 2
buffer[4] >>= 1; // Divide by 2
}
Wire.beginTransmission(SM2135_ADDR);
Wire.write(SM2135_CURRENT); // Set current to 40mA
Wire.write(SM2135_CW); // Select CW - Shutdown RGB?
Wire.endTransmission();
delay(1);
Wire.beginTransmission(SM2135_ADDR +5);
Wire.write(buffer[3]); // Cold
Wire.write(buffer[4]); // Warm
Wire.endTransmission();
} else {
// Color
if ((buffer[0] + buffer[1] + buffer[2]) >= (3 * 256)) {
// Scale down to 765 total to fix max power usage of 9W
// Currently not needed with setting 3 x 15mA = 45mA = 11W = 765
}
Wire.beginTransmission(SM2135_ADDR);
Wire.write(SM2135_CURRENT); // Set current to 15mA
Wire.write(SM2135_RGB); // Select RGB - Shutdown CW?
Wire.write(buffer[0]); // Red
Wire.write(buffer[1]); // Green
Wire.write(buffer[2]); // Blue
Wire.endTransmission();
}
return true;
}
bool Sm2135ModuleSelected(void)
{
if (I2cDevice(SM2135_ADDR)) {
// Make sure it is the SM2135 chip as it's address is also used by HTU21, INA219, INA226
// EXPERIMENTAL: Need further testing
light_type = LT_RGBWC;
AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, "SM2135", SM2135_ADDR);
} else {
Sm2135.found = false;
}
return Sm2135.found;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv26(uint8_t function)
{
bool result = false;
if (i2c_flg && Sm2135.found) {
switch (function) {
case FUNC_SET_CHANNELS:
result = Sm2135SetChannels();
break;
case FUNC_MODULE_INIT:
result = Sm2135ModuleSelected();
break;
}
}
return result;
}
#endif // USE_SM2135
#endif // USE_LIGHT

594
sonoff/xdrv_27_shutter.ino Normal file
View File

@ -0,0 +1,594 @@
/*
xdrv_27_shutter.ino - Shutter/Blind support for Sonoff-Tasmota
Copyright (C) 2019 Stefan Bode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SHUTTER
/*********************************************************************************************\
* Shutter or Blind support using two consecutive relays
\*********************************************************************************************/
#define XDRV_27 27
#define D_PRFX_SHUTTER "Shutter"
#define D_CMND_SHUTTER_OPEN "Open"
#define D_CMND_SHUTTER_CLOSE "Close"
#define D_CMND_SHUTTER_STOP "Stop"
#define D_CMND_SHUTTER_POSITION "Position"
#define D_CMND_SHUTTER_OPENTIME "OpenDuration"
#define D_CMND_SHUTTER_CLOSETIME "CloseDuration"
#define D_CMND_SHUTTER_RELAY "Relay"
#define D_CMND_SHUTTER_SETHALFWAY "SetHalfway"
#define D_CMND_SHUTTER_SETCLOSE "SetClose"
#define D_CMND_SHUTTER_INVERT "Invert"
#define D_CMND_SHUTTER_CLIBRATION "Calibration"
#define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS
enum ShutterModes { SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE };
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION;
void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration };
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"direction\":%d}";
#include <Ticker.h>
Ticker TickerShutter;
struct SHUTTER {
power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes.
power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed.
uint32_t time[MAX_SHUTTERS];
int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated
int32_t target_position[MAX_SHUTTERS]; // position to go to
int32_t start_position[MAX_SHUTTERS];
int32_t real_position[MAX_SHUTTERS]; // value between 0 and Shutter.open_max
uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter
uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter
uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster
uint16_t operations[MAX_SHUTTERS];
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE
} Shutter;
void ShutterRtc50mS(void)
{
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
Shutter.time[i]++;
}
}
int32_t ShutterPercentToRealPosition(uint8_t percent,uint8_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return percent <= 5 ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index];
} else {
return percent <= 5 ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index];
}
}
uint8_t ShutterRealToPercentPosition(int32_t realpos, uint8_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return Settings.shuttercoeff[2][index] * 5 > realpos ? realpos / Settings.shuttercoeff[2][index] : (realpos-Settings.shuttercoeff[0][index]) / Settings.shuttercoeff[1][index];
} else {
return Settings.shuttercoeff[2][index] * 5 > realpos ? realpos / Settings.shuttercoeff[2][index] : (realpos-Settings.shuttercoeff[0][index]) / Settings.shuttercoeff[1][index];
}
}
void ShutterInit(void)
{
shutters_present = 0;
Shutter.mask = 0;
//Initialize to get relay that changed
Shutter.old_power = power;
char shutter_open_chr[10];
char shutter_close_chr[10];
bool relay_in_interlock = false;
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Accuracy digits: %d"), Settings.shutter_accuracy);
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// upgrade to 0.1sec calculation base.
if ( Settings.shutter_accuracy == 0) {
Settings.shutter_closetime[i] = Settings.shutter_closetime[i] * 10;
Settings.shutter_opentime[i] = Settings.shutter_opentime[i] * 10;
}
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase
Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]);
if (Settings.shutter_startrelay[i] && Settings.shutter_startrelay[i] <9) {
shutters_present++;
// Determine shutter types
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ;
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.mask, Settings.interlock[i]&Shutter.mask);
if (Settings.interlock[j] && Settings.interlock[j] & Shutter.mask) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
if (relay_in_interlock) {
if (Settings.pulse_timer[i] > 0) {
Shutter.mode = SHT_PULSE_OPEN__PULSE_CLOSE;
} else {
Shutter.mode = SHT_OFF_OPEN__OFF_CLOSE;
}
} else {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE;
}
TickerShutter.attach_ms(50, ShutterRtc50mS );
// default the 50 percent should not have any impact without changing it. set to 60
Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] == 0 ? 50 : Settings.shutter_set50percent[i]);
// use 10 sec. as default to allow everybody to play without deep initialize
Shutter.open_time[i] = Settings.shutter_opentime[i] > 0 ? Settings.shutter_opentime[i] : 100;
Shutter.close_time[i] = Settings.shutter_closetime[i] > 0 ? Settings.shutter_closetime[i] : 100;
// Update Calculation 20 because time interval is 0.05 sec
Shutter.open_max[i] = 200 * Shutter.open_time[i];
Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ;
// calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part
Settings.shuttercoeff[1][i] = Shutter.open_max[i] * (100 - Settings.shutter_set50percent[i] ) / 5000;
Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100);
Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5;
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ;
Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i);
//Shutter.real_position[i] = Settings.shutter_position[i] <= 5 ? Settings.shuttercoeff[2][i] * Settings.shutter_position[i] : Settings.shuttercoeff[1][i] * Settings.shutter_position[i] + Settings.shuttercoeff[0,i];
Shutter.start_position[i] = Shutter.real_position[i];
dtostrfd((float)Shutter.open_time[i] / 10 , 1, shutter_open_chr);
dtostrfd((float)Shutter.close_time[i] / 10, 1, shutter_close_chr);
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d (Relay:%d): Init. Pos: %d [%d %%], Open Vel.: 100 Close Vel.: %d , Max Way: %d, Opentime %s [s], Closetime %s [s], CoedffCalc: c0: %d, c1 %d, c2: %d, c3: %d, c4: %d, binmask %d, is inverted %d, shuttermode %d"),
i, Settings.shutter_startrelay[i], Shutter.real_position[i], Settings.shutter_position[i], Shutter.close_velocity[i], Shutter.open_max[i], shutter_open_chr, shutter_close_chr,
Settings.shuttercoeff[0][i], Settings.shuttercoeff[1][i], Settings.shuttercoeff[2][i], Settings.shuttercoeff[3][i], Settings.shuttercoeff[4][i],
Shutter.mask, Settings.shutter_invert[i], Shutter.mode);
} else {
// terminate loop at first INVALID shutter.
break;
}
Settings.shutter_accuracy = 1;
}
}
void ShutterUpdatePosition(void)
{
char scommand[CMDSZ];
char stopic[TOPSZ];
for (uint32_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i] != 0) {
//char stemp1[20];
Shutter.real_position[i] = Shutter.start_position[i] + ( Shutter.time[i] * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
// avoid real position leaving the boundaries.
Shutter.real_position[i] = Shutter.real_position[i] < 0 ? 0 : (Shutter.real_position[i] > Shutter.open_max[i] ? Shutter.open_max[i] : Shutter.real_position[i]) ;
// Add additional runtime, if shutter did not reach the endstop for some time.
if (Shutter.target_position[i] == Shutter.real_position[i] && Shutter.target_position[i] == 0) {
// for every operation add 5x50ms = 250ms to stop position
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Adding additional runtime"));
Shutter.real_position[i] += 500 * Shutter.operations[i] ;
Shutter.operations[i] = 0;
}
if (Shutter.real_position[i] * Shutter.direction[i] >= Shutter.target_position[i] * Shutter.direction[i] ) {
// calculate relay number responsible for current movement.
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Condition detected: real: %d, Target: %d, direction: %d"),Shutter.real_position[i], Shutter.target_position[i],Shutter.direction[i]);
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : 1) ;
char stemp2[10];
Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i);
//Settings.shutter_position[i] = Settings.shuttercoeff[2][i] * 5 > Shutter.real_position[i] ? (Shutter.real_position[i] * 10 / Settings.shuttercoeff[2][i] + 4)/10 : ((Shutter.real_position[i]-Settings.shuttercoeff[0,i]) *10 / Settings.shuttercoeff[1][i] +4) / 10;
if (0 < Settings.shutter_position[i] && Settings.shutter_position[i] < 100) {
Shutter.operations[i]++;
} else {
Shutter.operations[i] = 0;
}
dtostrfd((float)Shutter.time[i] / 20, 1, stemp2);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Real Pos. %d, Stoppos: %ld, relay: %d, direction %d, pulsetimer: %d, rtcshutter: %s [s], operationtime %d"), i, Shutter.real_position[i], Settings.shutter_position[i], cur_relay -1, Shutter.direction[i], Settings.pulse_timer[cur_relay -1], stemp2, Shutter.operations[i]);
Shutter.start_position[i] = Shutter.real_position[i];
// sending MQTT result to broker
snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1);
GetTopic_P(stopic, STAT, mqtt_topic, scommand);
Response_P("%d", Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]);
MqttPublish(stopic, Settings.flag.mqtt_power_retain);
switch (Shutter.mode) {
case SHT_PULSE_OPEN__PULSE_CLOSE:
// we have a momentary switch here. Needs additional pulse on same relay after the end
if (SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source) {
ExecuteCommandPower(cur_relay, 1, SRC_SHUTTER);
} else {
last_source = SRC_SHUTTER;
}
break;
case SHT_OFF_ON__OPEN_CLOSE:
// This is a failsafe configuration. Relay1 ON/OFF Relay2 -1/1 direction
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
}
break;
case SHT_OFF_OPEN__OFF_CLOSE:
// avoid switching OFF a relay already OFF
if ((1 << (cur_relay-1)) & power) {
// Relay is on and need to be switched off.
ExecuteCommandPower(cur_relay, 0, SRC_SHUTTER);
}
break;
}
Shutter.direction[i] = 0;
uint8_t position = Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i];
Response_P(PSTR("{"));
ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, 0 /*Shutter.direction[i]*/);
ResponseJsonEnd();
MqttPublishPrefixTopic_P(RESULT_OR_TELE, mqtt_data);
XdrvRulesProcess();
}
}
}
}
bool ShutterState(uint8_t device)
{
device--;
device &= 3;
return (Settings.flag3.shutter_mode && (Shutter.mask & (1 << (Settings.shutter_startrelay[device]-1))) );
}
void ShutterStartInit(uint8_t index, uint8_t direction, int32_t target_pos)
{
Shutter.direction[index] = direction;
Shutter.target_position[index] = target_pos;
Shutter.start_position[index] = Shutter.real_position[index];
Shutter.time[index] = 0;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), index, Shutter.start_position[index], Shutter.target_position[index], Shutter.direction[index]);
}
void ShutterDelayForMotorStop(void)
{
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Wait for Motorstop %d"), MOTOR_STOP_TIME);
delay(MOTOR_STOP_TIME);
}
void ShutterReportPosition(void)
{
uint16_t shutter_moving = 0;
for (uint32_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i] != 0) {
char stemp1[20];
char stemp2[10];
dtostrfd((float)Shutter.time[i] / 20, 1, stemp2);
shutter_moving = 1;
//Settings.shutter_position[i] = Settings.shuttercoeff[2][i] * 5 > Shutter.real_position[i] ? Shutter.real_position[i] / Settings.shuttercoeff[2][i] : (Shutter.real_position[i]-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i];
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d, Target %d, source: %s, start-pos: %d %%, direction: %d, rtcshutter: %s [s]"), i,Shutter.real_position[i], Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), Settings.shutter_position[i], Shutter.direction[i], stemp2 );
}
}
if (rules_flag.shutter_moving > shutter_moving) {
rules_flag.shutter_moved = 1;
} else {
rules_flag.shutter_moved = 0;
}
rules_flag.shutter_moving = shutter_moving;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved);
}
void ShutterRelayChanged(void)
{
// Shutter.switched_relay = binary relay that was recently changed and cause an Action
// powerstate_local = binary powermatrix and relays from shutter: 0..3
// relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer
char stemp1[10];
for (uint32_t i = 0; i < shutters_present; i++) {
power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3;
//uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
if (manual_relays_changed) {
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE) {
switch (powerstate_local) {
case 1:
ShutterDelayForMotorStop();
ShutterStartInit(i, 1, Shutter.open_max[i]);
break;
case 3:
ShutterDelayForMotorStop();
ShutterStartInit(i, -1, 0);
break;
default:
Shutter.direction[i] = 0;
Shutter.target_position[i] = Shutter.real_position[i];
}
} else {
if (Shutter.direction[i] != 0 && (!powerstate_local || (powerstate_local && Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE))) {
Shutter.target_position[i] = Shutter.real_position[i];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed);
} else {
last_source = SRC_SHUTTER; // avoid switch off in the next loop
if (powerstate_local == 2) { // testing on CLOSE relay, if ON
// close with relay two
ShutterDelayForMotorStop();
ShutterStartInit(i, -1, 0);
} else {
// opens with relay one
ShutterDelayForMotorStop();
ShutterStartInit(i, 1, Shutter.open_max[i]);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i, Shutter.target_position[i], powerstate_local);
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////
// Shutter specific functions
// TODO: move to shutter driver and make them accessible in a generic way
// device: 1..<numberOfShutters>
// position: 0-100
void ShutterSetPosition(uint8_t device, uint8_t position)
{
char svalue[32]; // Command and number parameter
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position);
ExecuteCommand(svalue, SRC_IGNORE);
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndShutterOpen(void)
{
XdrvMailbox.payload = 100;
last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterClose(void)
{
XdrvMailbox.payload = 0;
last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStop(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
uint32_t index = XdrvMailbox.index -1;
if (Shutter.direction[index] != 0) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Stop moving shutter %d: direction: %d"), XdrvMailbox.index, Shutter.direction[index]);
int32_t temp_realpos = Shutter.start_position[index] + ( (Shutter.time[index]+10) * (Shutter.direction[index] > 0 ? 100 : -Shutter.close_velocity[index]));
XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, index);
//XdrvMailbox.payload = Settings.shuttercoeff[2][index] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][index] : (temp_realpos-Settings.shuttercoeff[0,index]) / Settings.shuttercoeff[1][index];
last_source = SRC_WEBGUI;
CmndShutterPosition();
} else {
ResponseCmndDone();
}
}
}
void CmndShutterPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
uint32_t index = XdrvMailbox.index -1;
//limit the payload
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Position in: payload %d, index %d, source %d"), XdrvMailbox.payload , XdrvMailbox.index, last_source );
int8_t target_pos_percent = XdrvMailbox.payload < 0 ? 0 : (XdrvMailbox.payload > 100 ? 100 : XdrvMailbox.payload);
// webgui still send also on inverted shutter the native position.
target_pos_percent = Settings.shutter_invert[index] && SRC_WEBGUI != last_source ? 100 - target_pos_percent : target_pos_percent;
if (target_pos_percent != -99) {
//target_pos_percent = Settings.shutter_invert[index] ? 100 - target_pos_percent : target_pos_percent;
Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index);
//Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: lastsource %d:, realpos %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent);
}
if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter.target_position[index] - Shutter.real_position[index] ) / Shutter.close_velocity[index] > 2) {
int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1;
if (Shutter.direction[index] == -new_shutterdirection ) {
// direction need to be changed. on momentary switches first stop the Shutter
if (Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE) {
// code for momentary shutters only small switch on to stop Shutter
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
delay(100);
} else {
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), 0, SRC_SHUTTER);
ShutterDelayForMotorStop();
}
}
if (Shutter.direction[index] != new_shutterdirection ) {
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]);
Shutter.operations[index]++;
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE) {
ExecuteCommandPower(Settings.shutter_startrelay[index] , 0, SRC_SHUTTER);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay5 5s, xdrv %d"), XdrvMailbox.payload);
ShutterDelayForMotorStop();
// Code for shutters with circuit safe configuration, switch the direction Relay
ExecuteCommandPower(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER);
// power on
ExecuteCommandPower(Settings.shutter_startrelay[index] , 1, SRC_SHUTTER);
} else {
// now start the motor for the right direction, work for momentary and normal shutters.
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter in direction %d"), Shutter.direction[index]);
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay6 5s, xdrv %d"), XdrvMailbox.payload);
}
Shutter.switched_relay = 0;
}
} else {
target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index);
}
ResponseCmndIdxNumber(Settings.shutter_invert[index] ? 100 - target_pos_percent : target_pos_percent);
}
}
void CmndShutterOpenTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_opentime[XdrvMailbox.index-1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index-1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterCloseTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_closetime[XdrvMailbox.index-1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index-1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterRelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) {
Settings.shutter_startrelay[XdrvMailbox.index-1] = XdrvMailbox.payload;
if (XdrvMailbox.payload > 0) {
Shutter.mask |= 3 << (XdrvMailbox.payload - 1);
} else {
Shutter.mask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index-1] - 1);
}
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay %d is %d"), XdrvMailbox.index, XdrvMailbox.payload);
Settings.shutter_startrelay[XdrvMailbox.index-1] = XdrvMailbox.payload;
ShutterInit();
// if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work
}
ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]);
}
}
void CmndShutterSetHalfway(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.shutter_set50percent[XdrvMailbox.index-1] = Settings.shutter_invert[XdrvMailbox.index-1] ? 100 - XdrvMailbox.payload : XdrvMailbox.payload;
ShutterInit();
ResponseCmndIdxNumber(XdrvMailbox.payload); // ????
} else {
ResponseCmndIdxNumber(Settings.shutter_set50percent[XdrvMailbox.index-1]);
}
}
}
void CmndShutterSetClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
Shutter.real_position[XdrvMailbox.index-1] = 0;
ShutterStartInit(XdrvMailbox.index-1, 0, 0);
Settings.shutter_position[XdrvMailbox.index-1] = 0;
ResponseCmndChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterInvert(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
Settings.shutter_invert[XdrvMailbox.index-1] = XdrvMailbox.payload;
}
ResponseCmndIdxNumber(Settings.shutter_invert[XdrvMailbox.index-1]);
}
}
void CmndShutterCalibration(void) // ????
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
if (XdrvMailbox.data_len > 0) {
ResponseCmndIdxChar(XdrvMailbox.data);
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv27(uint8_t function)
{
bool result = false;
if (Settings.flag3.shutter_mode) {
switch (function) {
case FUNC_PRE_INIT:
ShutterInit();
break;
case FUNC_EVERY_50_MSECOND:
ShutterUpdatePosition();
break;
case FUNC_EVERY_SECOND:
ShutterReportPosition();
break;
case FUNC_COMMAND:
result = DecodeCommand(kShutterCommands, ShutterCommand);
break;
case FUNC_JSON_APPEND:
for (uint32_t i = 0; i < shutters_present; i++) {
uint8_t position = Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i];
ResponseAppend_P(",");
ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter.direction[i]);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzSensor(DZ_SHUTTER, position);
}
#endif // USE_DOMOTICZ
}
break;
case FUNC_SET_POWER:
char stemp1[10];
// extract the number of the relay that was switched and save for later in Update Position.
Shutter.switched_relay = power ^ Shutter.old_power;
Shutter.old_power = power;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.switched_relay,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource));
ShutterRelayChanged();
break;
}
}
return result;
}
#endif //USE_SHUTTER

View File

@ -89,7 +89,7 @@ void HlwCfInterrupt(void) // Service Power
Hlw.cf_pulse_last_time = us;
Hlw.energy_period_counter++;
}
Energy.data_valid = 0;
Energy.data_valid[0] = 0;
}
void HlwCf1Interrupt(void) // Service Voltage and Current
@ -108,7 +108,7 @@ void HlwCf1Interrupt(void) // Service Voltage and Current
Hlw.cf1_timer = 8; // We need up to HLW_SAMPLE_COUNT samples within 1 second (low current could take up to 0.3 second)
}
}
Energy.data_valid = 0;
Energy.data_valid[0] = 0;
}
/********************************************************************************************/
@ -199,7 +199,7 @@ void HlwEvery200ms(void)
void HlwEverySecond(void)
{
if (Energy.data_valid > ENERGY_WATCHDOG) {
if (Energy.data_valid[0] > ENERGY_WATCHDOG) {
Hlw.cf1_voltage_pulse_length = 0;
Hlw.cf1_current_pulse_length = 0;
Hlw.cf_power_pulse_length = 0;

View File

@ -143,7 +143,7 @@ bool CseSerialInput(void)
uint8_t checksum = 0;
for (uint32_t i = 2; i < 23; i++) { checksum += serial_in_buffer[i]; }
if (checksum == serial_in_buffer[23]) {
Energy.data_valid = 0;
Energy.data_valid[0] = 0;
CseReceived();
Cse.received = false;
return true;
@ -175,7 +175,7 @@ bool CseSerialInput(void)
void CseEverySecond(void)
{
if (Energy.data_valid > ENERGY_WATCHDOG) {
if (Energy.data_valid[0] > ENERGY_WATCHDOG) {
Cse.voltage_cycle = 0;
Cse.current_cycle = 0;
Cse.power_cycle = 0;

View File

@ -179,7 +179,7 @@ void PzemEvery200ms(void)
if (data_ready) {
float value = 0;
if (PzemRecieve(pzem_responses[Pzem.read_state], &value)) {
Energy.data_valid = 0;
Energy.data_valid[Pzem.phase] = 0;
switch (Pzem.read_state) {
case 1: // Voltage as 230.2V
Energy.voltage[Pzem.phase] = value;

View File

@ -455,6 +455,7 @@ void McpParseData(void)
mcp_line_frequency = McpExtractInt(mcp_buffer, 22, 2);
if (Energy.power_on) { // Powered on
Energy.data_valid[0] = 0;
Energy.frequency[0] = (float)mcp_line_frequency / 1000;
Energy.voltage[0] = (float)mcp_voltage_rms / 10;
Energy.active_power[0] = (float)mcp_active_power / 100;
@ -464,12 +465,8 @@ void McpParseData(void)
Energy.current[0] = (float)mcp_current_rms / 10000;
}
} else { // Powered off
Energy.frequency[0] = 0;
Energy.voltage[0] = 0;
Energy.active_power[0] = 0;
Energy.current[0] = 0;
Energy.data_valid[0] = ENERGY_WATCHDOG;
}
Energy.data_valid = 0;
}
/********************************************************************************************/
@ -527,7 +524,7 @@ void McpSerialInput(void)
void McpEverySecond(void)
{
if (Energy.data_valid > ENERGY_WATCHDOG) {
if (Energy.data_valid[0] > ENERGY_WATCHDOG) {
mcp_voltage_rms = 0;
mcp_current_rms = 0;
mcp_active_power = 0;

View File

@ -62,7 +62,7 @@ void PzemAcEverySecond(void)
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PAC: PzemAc %d error %d"), PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, error);
} else {
Energy.data_valid = 0;
Energy.data_valid[PzemAc.phase] = 0;
if (10 == registers) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

View File

@ -62,7 +62,7 @@ void PzemDcEverySecond(void)
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PDC: PzemDc %d error %d"), PZEM_DC_DEVICE_ADDRESS + PzemDc.channel, error);
} else {
Energy.data_valid = 0;
Energy.data_valid[PzemDc.channel] = 0;
if (8 == registers) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

View File

@ -155,6 +155,7 @@ void Ade7953GetData(void)
Energy.voltage[0] = (float)Ade7953.voltage_rms / Settings.energy_voltage_calibration;
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
Energy.active_power[channel] = (float)Ade7953.active_power[channel] / (Settings.energy_power_calibration / 10);
Energy.reactive_power[channel] = (float)reactive_power[channel] / (Settings.energy_power_calibration / 10);
Energy.apparent_power[channel] = (float)apparent_power[channel] / (Settings.energy_power_calibration / 10);
@ -165,13 +166,8 @@ void Ade7953GetData(void)
}
}
} else { // Powered off
Energy.voltage[0] = 0;
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.current[channel] = 0;
Energy.active_power[channel] = 0;
Energy.reactive_power[channel] = 0;
Energy.apparent_power[channel] = 0;
}
Energy.data_valid[0] = ENERGY_WATCHDOG;
Energy.data_valid[1] = ENERGY_WATCHDOG;
}
if (active_power_sum) {

View File

@ -85,7 +85,7 @@ void SDM120Every250ms(void)
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SDM: SDM120 error %d"), error);
} else {
Energy.data_valid = 0;
Energy.data_valid[0] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch

View File

@ -52,7 +52,7 @@ void Dds2382EverySecond(void)
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "DDS2382 response error %d"), error);
} else {
Energy.data_valid = 0;
Energy.data_valid[0] = 0;
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// SA FC BC EnergyTotal ExportActiv ImportActiv Volta Curre APowe RPowe PFact Frequ Crc--

View File

@ -78,7 +78,9 @@ void SDM630Every250ms(void)
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SDM: SDM630 error %d"), error);
} else {
Energy.data_valid = 0;
Energy.data_valid[0] = 0;
Energy.data_valid[1] = 0;
Energy.data_valid[2] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch

View File

@ -74,7 +74,11 @@ uint8_t OneWireReset(void)
uint8_t retries = 125;
//noInterrupts();
#ifdef DS18B20_INTERNAL_PULLUP
pinMode(ds18x20_pin, INPUT_PULLUP);
#else
pinMode(ds18x20_pin, INPUT);
#endif
do {
if (--retries == 0) {
return 0;
@ -84,7 +88,11 @@ uint8_t OneWireReset(void)
pinMode(ds18x20_pin, OUTPUT);
digitalWrite(ds18x20_pin, LOW);
delayMicroseconds(480);
#ifdef DS18B20_INTERNAL_PULLUP
pinMode(ds18x20_pin, INPUT_PULLUP);
#else
pinMode(ds18x20_pin, INPUT);
#endif
delayMicroseconds(70);
uint8_t r = !digitalRead(ds18x20_pin);
//interrupts();
@ -113,7 +121,11 @@ uint8_t OneWireReadBit(void)
pinMode(ds18x20_pin, OUTPUT);
digitalWrite(ds18x20_pin, LOW);
delayMicroseconds(3);
#ifdef DS18B20_INTERNAL_PULLUP
pinMode(ds18x20_pin, INPUT_PULLUP);
#else
pinMode(ds18x20_pin, INPUT);
#endif
delayMicroseconds(10);
uint8_t r = digitalRead(ds18x20_pin);
//interrupts();
@ -432,7 +444,7 @@ void Ds18x20Show(bool json)
if (json) {
if (1 == ds18x20_sensors) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_TEMPERATURE "\":%s}"), ds18x20_types, temperature);
ResponseAppend_P(JSON_SNS_TEMP, ds18x20_types, temperature);
} else {
char address[17];
for (uint32_t j = 0; j < 6; j++) {

View File

@ -1,245 +0,0 @@
/*
xsns_05_ds18x20_legacy.ino - DS18x20 temperature sensor support for Sonoff-Tasmota
Copyright (C) 2019 Heiko Krupp and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DS18x20_LEGACY
/*********************************************************************************************\
* DS18B20 - Temperature
\*********************************************************************************************/
#define XSNS_05 5
#define DS18S20_CHIPID 0x10
#define DS18B20_CHIPID 0x28
#define MAX31850_CHIPID 0x3B
#define W1_SKIP_ROM 0xCC
#define W1_CONVERT_TEMP 0x44
#define W1_READ_SCRATCHPAD 0xBE
#define DS18X20_MAX_SENSORS 8
#include <OneWire.h>
OneWire *ds = nullptr;
uint8_t ds18x20_address[DS18X20_MAX_SENSORS][8];
uint8_t ds18x20_index[DS18X20_MAX_SENSORS];
uint8_t ds18x20_sensors = 0;
char ds18x20_types[9];
void Ds18x20Init(void)
{
ds = new OneWire(pin[GPIO_DSB]);
}
void Ds18x20Search(void)
{
uint8_t num_sensors=0;
uint8_t sensor = 0;
ds->reset_search();
for (num_sensors = 0; num_sensors < DS18X20_MAX_SENSORS; num_sensors) {
if (!ds->search(ds18x20_address[num_sensors])) {
ds->reset_search();
break;
}
// If CRC Ok and Type DS18S20, DS18B20 or MAX31850
if ((OneWire::crc8(ds18x20_address[num_sensors], 7) == ds18x20_address[num_sensors][7]) &&
((ds18x20_address[num_sensors][0]==DS18S20_CHIPID) || (ds18x20_address[num_sensors][0]==DS18B20_CHIPID) || (ds18x20_address[num_sensors][0]==MAX31850_CHIPID))) {
num_sensors++;
}
}
for (uint32_t i = 0; i < num_sensors; i++) {
ds18x20_index[i] = i;
}
for (uint32_t i = 0; i < num_sensors; i++) {
for (uint32_t j = i + 1; j < num_sensors; j++) {
if (uint32_t(ds18x20_address[ds18x20_index[i]]) > uint32_t(ds18x20_address[ds18x20_index[j]])) {
std::swap(ds18x20_index[i], ds18x20_index[j]);
}
}
}
ds18x20_sensors = num_sensors;
}
uint8_t Ds18x20Sensors(void)
{
return ds18x20_sensors;
}
String Ds18x20Addresses(uint8_t sensor)
{
char address[20];
for (uint32_t i = 0; i < 8; i++) {
sprintf(address+2*i, "%02X", ds18x20_address[ds18x20_index[sensor]][i]);
}
return String(address);
}
void Ds18x20Convert(void)
{
ds->reset();
ds->write(W1_SKIP_ROM); // Address all Sensors on Bus
ds->write(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end
// delay(750); // 750ms should be enough for 12bit conv
}
bool Ds18x20Read(uint8_t sensor, float &t)
{
uint8_t data[12];
int8_t sign = 1;
uint16_t temp12 = 0;
int16_t temp14 = 0;
float temp9 = 0.0;
uint8_t present = 0;
t = NAN;
ds->reset();
ds->select(ds18x20_address[ds18x20_index[sensor]]);
ds->write(W1_READ_SCRATCHPAD); // Read Scratchpad
for (uint32_t i = 0; i < 9; i++) {
data[i] = ds->read();
}
if (OneWire::crc8(data, 8) == data[8]) {
switch(ds18x20_address[ds18x20_index[sensor]][0]) {
case DS18S20_CHIPID:
if (data[1] > 0x80) {
data[0] = (~data[0]) +1;
sign = -1; // App-Note fix possible sign error
}
temp9 = (float)(data[0] >> 1) * sign;
t = ConvertTemp((temp9 - 0.25) + ((16.0 - data[6]) / 16.0));
break;
case DS18B20_CHIPID:
temp12 = (data[1] << 8) + data[0];
if (temp12 > 2047) {
temp12 = (~temp12) +1;
sign = -1;
}
t = ConvertTemp(sign * temp12 * 0.0625); // Divide by 16
break;
case MAX31850_CHIPID:
temp14 = (data[1] << 8) + (data[0] & 0xFC);
t = ConvertTemp(temp14 * 0.0625); // Divide by 16
break;
}
}
return (!isnan(t));
}
/********************************************************************************************/
void Ds18x20Type(uint8_t sensor)
{
strcpy_P(ds18x20_types, PSTR("DS18x20"));
switch(ds18x20_address[ds18x20_index[sensor]][0]) {
case DS18S20_CHIPID:
strcpy_P(ds18x20_types, PSTR("DS18S20"));
break;
case DS18B20_CHIPID:
strcpy_P(ds18x20_types, PSTR("DS18B20"));
break;
case MAX31850_CHIPID:
strcpy_P(ds18x20_types, PSTR("MAX31850"));
break;
}
}
void Ds18x20Show(bool json)
{
char stemp[10];
float t;
uint8_t dsxflg = 0;
for (uint32_t i = 0; i < Ds18x20Sensors(); i++) {
if (Ds18x20Read(i, t)) { // Check if read failed
Ds18x20Type(i);
char temperature[33];
dtostrfd(t, Settings.flag2.temperature_resolution, temperature);
if (json) {
if (!dsxflg) {
ResponseAppend_P(PSTR(",\"DS18x20\":{"));
stemp[0] = '\0';
}
dsxflg++;
ResponseAppend_P(PSTR("%s\"DS%d\":{\"" D_JSON_TYPE "\":\"%s\",\"" D_JSON_ADDRESS "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%s}"),
stemp, i +1, ds18x20_types, Ds18x20Addresses(i).c_str(), temperature);
strlcpy(stemp, ",", sizeof(stemp));
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (1 == dsxflg)) {
DomoticzSensor(DZ_TEMP, temperature);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == tele_period) && (1 == dsxflg)) {
KnxSensor(KNX_TEMPERATURE, t);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
snprintf_P(stemp, sizeof(stemp), PSTR("%s%c%d"), ds18x20_types, IndexSeparator(), i +1);
WSContentSend_PD(HTTP_SNS_TEMP, stemp, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
}
if (json) {
if (dsxflg) {
ResponseJsonEnd();
}
}
Ds18x20Search(); // Check for changes in sensors number
Ds18x20Convert(); // Start Conversion, takes up to one second
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns05(uint8_t function)
{
bool result = false;
if (pin[GPIO_DSB] < 99) {
switch (function) {
case FUNC_INIT:
Ds18x20Init();
break;
case FUNC_PREP_BEFORE_TELEPERIOD:
Ds18x20Search(); // Check for changes in sensors number
Ds18x20Convert(); // Start Conversion, takes up to one second
break;
case FUNC_JSON_APPEND:
Ds18x20Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ds18x20Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_DS18x20_LEGACY

View File

@ -124,14 +124,11 @@ void Sgp30Show(bool json)
if (sgp30_ready) {
char abs_hum[33];
if (global_update && global_humidity>0 && global_temperature!=9999) {
// has humidity + temperature
dtostrfd(sgp30_abshum,4,abs_hum);
}
if (json) {
ResponseAppend_P(PSTR(",\"SGP30\":{\"" D_JSON_ECO2 "\":%d,\"" D_JSON_TVOC "\":%d"), sgp.eCO2, sgp.TVOC);
if (global_update) {
if (global_update && global_humidity>0 && global_temperature!=9999) {
// has humidity + temperature
dtostrfd(sgp30_abshum,4,abs_hum);
ResponseAppend_P(PSTR(",\"" D_JSON_AHUM "\":%s"),abs_hum);
}
ResponseJsonEnd();

View File

@ -32,48 +32,53 @@
* - Execute command Sensor34 2 and follow messages shown
\*********************************************************************************************/
#define XSNS_34 34
#define XSNS_34 34
#ifndef HX_MAX_WEIGHT
#define HX_MAX_WEIGHT 20000 // Default max weight in gram
#define HX_MAX_WEIGHT 20000 // Default max weight in gram
#endif
#ifndef HX_REFERENCE
#define HX_REFERENCE 250 // Default reference weight for calibration in gram
#define HX_REFERENCE 250 // Default reference weight for calibration in gram
#endif
#ifndef HX_SCALE
#define HX_SCALE 120 // Default result of measured weight / reference weight when scale is 1
#define HX_SCALE 120 // Default result of measured weight / reference weight when scale is 1
#endif
#define HX_TIMEOUT 120 // A reading at default 10Hz (pin RATE to Gnd on HX711) can take up to 100 milliseconds
#define HX_SAMPLES 10 // Number of samples for average calculation
#define HX_CAL_TIMEOUT 15 // Calibration step window in number of seconds
#define HX_TIMEOUT 120 // A reading at default 10Hz (pin RATE to Gnd on HX711) can take up to 100 milliseconds
#define HX_SAMPLES 10 // Number of samples for average calculation
#define HX_CAL_TIMEOUT 15 // Calibration step window in number of seconds
#define HX_GAIN_128 1 // Channel A, gain factor 128
#define HX_GAIN_32 2 // Channel B, gain factor 32
#define HX_GAIN_64 3 // Channel A, gain factor 64
#define HX_GAIN_128 1 // Channel A, gain factor 128
#define HX_GAIN_32 2 // Channel B, gain factor 32
#define HX_GAIN_64 3 // Channel A, gain factor 64
#define D_JSON_WEIGHT_REF "WeightRef"
#define D_JSON_WEIGHT_CAL "WeightCal"
#define D_JSON_WEIGHT_MAX "WeightMax"
#define D_JSON_WEIGHT_ITEM "WeightItem"
#define D_JSON_WEIGHT_REF "WeightRef"
#define D_JSON_WEIGHT_CAL "WeightCal"
#define D_JSON_WEIGHT_MAX "WeightMax"
#define D_JSON_WEIGHT_ITEM "WeightItem"
#define D_JSON_WEIGHT_CHANGE "WeightChange"
enum HxCalibrationSteps { HX_CAL_END, HX_CAL_LIMBO, HX_CAL_FINISH, HX_CAL_FAIL, HX_CAL_DONE, HX_CAL_FIRST, HX_CAL_RESET, HX_CAL_START };
const char kHxCalibrationStates[] PROGMEM = D_HX_CAL_FAIL "|" D_HX_CAL_DONE "|" D_HX_CAL_REFERENCE "|" D_HX_CAL_REMOVE;
long hx_weight = 0;
long hx_last_weight = 0;
long hx_sum_weight = 0;
long hx_offset = 0;
long hx_scale = 1;
uint8_t hx_type = 1;
uint8_t hx_sample_count = 0;
uint8_t hx_calibrate_step = HX_CAL_END;
uint8_t hx_calibrate_timer = 0;
uint8_t hx_calibrate_msg = 0;
uint8_t hx_pin_sck;
uint8_t hx_pin_dout;
bool hx_tare_flg = false;
struct HX {
long weight = 0;
long last_weight = 0;
long sum_weight = 0;
long offset = 0;
long scale = 1;
long weight_diff = 0;
uint8_t type = 1;
uint8_t sample_count = 0;
uint8_t calibrate_step = HX_CAL_END;
uint8_t calibrate_timer = 0;
uint8_t calibrate_msg = 0;
uint8_t pin_sck;
uint8_t pin_dout;
bool tare_flg = false;
bool weight_changed = false;
} Hx;
/*********************************************************************************************/
@ -81,8 +86,8 @@ bool HxIsReady(uint16_t timeout)
{
// A reading can take up to 100 mS or 600mS after power on
uint32_t start = millis();
while ((digitalRead(hx_pin_dout) == HIGH) && (millis() - start < timeout)) { yield(); }
return (digitalRead(hx_pin_dout) == LOW);
while ((digitalRead(Hx.pin_dout) == HIGH) && (millis() - start < timeout)) { yield(); }
return (digitalRead(Hx.pin_dout) == LOW);
}
long HxRead()
@ -93,14 +98,14 @@ long HxRead()
uint8_t filler = 0x00;
// pulse the clock pin 24 times to read the data
data[2] = shiftIn(hx_pin_dout, hx_pin_sck, MSBFIRST);
data[1] = shiftIn(hx_pin_dout, hx_pin_sck, MSBFIRST);
data[0] = shiftIn(hx_pin_dout, hx_pin_sck, MSBFIRST);
data[2] = shiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[1] = shiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[0] = shiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
// set the channel and the gain factor for the next reading using the clock pin
for (unsigned int i = 0; i < HX_GAIN_128; i++) {
digitalWrite(hx_pin_sck, HIGH);
digitalWrite(hx_pin_sck, LOW);
digitalWrite(Hx.pin_sck, HIGH);
digitalWrite(Hx.pin_sck, LOW);
}
// Replicate the most significant bit to pad out a 32-bit signed integer
@ -119,10 +124,10 @@ long HxRead()
void HxResetPart(void)
{
hx_tare_flg = true;
hx_sum_weight = 0;
hx_sample_count = 0;
hx_last_weight = 0;
Hx.tare_flg = true;
Hx.sum_weight = 0;
Hx.sample_count = 0;
Hx.last_weight = 0;
}
void HxReset(void)
@ -135,8 +140,8 @@ void HxCalibrationStateTextJson(uint8_t msg_id)
{
char cal_text[30];
hx_calibrate_msg = msg_id;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, GetTextIndexed(cal_text, sizeof(cal_text), hx_calibrate_msg, kHxCalibrationStates));
Hx.calibrate_msg = msg_id;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, GetTextIndexed(cal_text, sizeof(cal_text), Hx.calibrate_msg, kHxCalibrationStates));
if (msg_id < 3) { MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR("Sensor34")); }
}
@ -156,6 +161,8 @@ void HxCalibrationStateTextJson(uint8_t msg_id)
* Sensor34 6 - Show item weigth in decigram
* Sensor34 6 <weight in decigram> - Set item weight
* Sensor34 7 - Save current weight to be used as start weight on restart
* Sensor34 8 0 - Disable JSON weight change message
* Sensor34 8 1 - Enable JSON weight change message
\*********************************************************************************************/
bool HxCommand(void)
@ -177,10 +184,10 @@ bool HxCommand(void)
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.weight_reference = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
}
hx_scale = 1;
Hx.scale = 1;
HxReset();
hx_calibrate_step = HX_CAL_START;
hx_calibrate_timer = 1;
Hx.calibrate_step = HX_CAL_START;
Hx.calibrate_timer = 1;
HxCalibrationStateTextJson(3);
break;
case 3: // WeightRef to user reference
@ -192,7 +199,7 @@ bool HxCommand(void)
case 4: // WeightCal to user calculated value
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.weight_calibration = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
hx_scale = Settings.weight_calibration;
Hx.scale = Settings.weight_calibration;
}
show_parms = true;
break;
@ -209,18 +216,24 @@ bool HxCommand(void)
show_parms = true;
break;
case 7: // WeightSave
Settings.energy_frequency_calibration = hx_weight;
Settings.energy_frequency_calibration = Hx.weight;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, D_JSON_DONE);
break;
case 8: // Json on weight change
if (strstr(XdrvMailbox.data, ",") != nullptr) {
Settings.SensorBits1.hx711_json_weight_change = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10) & 1;
}
show_parms = true;
break;
default:
serviced = false;
show_parms = true;
}
if (show_parms) {
char item[33];
dtostrfd((float)Settings.weight_item / 10, 1, item);
Response_P(PSTR("{\"Sensor34\":{\"" D_JSON_WEIGHT_REF "\":%d,\"" D_JSON_WEIGHT_CAL "\":%d,\"" D_JSON_WEIGHT_MAX "\":%d,\"" D_JSON_WEIGHT_ITEM "\":%s}}"),
Settings.weight_reference, Settings.weight_calibration, Settings.weight_max * 1000, item);
Response_P(PSTR("{\"Sensor34\":{\"" D_JSON_WEIGHT_REF "\":%d,\"" D_JSON_WEIGHT_CAL "\":%d,\"" D_JSON_WEIGHT_MAX "\":%d,\"" D_JSON_WEIGHT_ITEM "\":%s,\"" D_JSON_WEIGHT_CHANGE "\":\"%s\"}}"),
Settings.weight_reference, Settings.weight_calibration, Settings.weight_max * 1000, item, GetStateText(Settings.SensorBits1.hx711_json_weight_change));
}
return serviced;
@ -230,123 +243,138 @@ bool HxCommand(void)
long HxWeight()
{
return (hx_calibrate_step < HX_CAL_FAIL) ? hx_weight : 0;
return (Hx.calibrate_step < HX_CAL_FAIL) ? Hx.weight : 0;
}
void HxInit(void)
{
hx_type = 0;
Hx.type = 0;
if ((pin[GPIO_HX711_DAT] < 99) && (pin[GPIO_HX711_SCK] < 99)) {
hx_pin_sck = pin[GPIO_HX711_SCK];
hx_pin_dout = pin[GPIO_HX711_DAT];
Hx.pin_sck = pin[GPIO_HX711_SCK];
Hx.pin_dout = pin[GPIO_HX711_DAT];
pinMode(hx_pin_sck, OUTPUT);
pinMode(hx_pin_dout, INPUT);
pinMode(Hx.pin_sck, OUTPUT);
pinMode(Hx.pin_dout, INPUT);
digitalWrite(hx_pin_sck, LOW);
digitalWrite(Hx.pin_sck, LOW);
if (HxIsReady(8 * HX_TIMEOUT)) { // Can take 600 milliseconds after power on
if (!Settings.weight_max) { Settings.weight_max = HX_MAX_WEIGHT / 1000; }
if (!Settings.weight_calibration) { Settings.weight_calibration = HX_SCALE; }
if (!Settings.weight_reference) { Settings.weight_reference = HX_REFERENCE; }
hx_scale = Settings.weight_calibration;
Hx.scale = Settings.weight_calibration;
HxRead();
HxResetPart();
hx_type = 1;
Hx.type = 1;
}
}
}
void HxEvery100mSecond(void)
{
hx_sum_weight += HxRead();
Hx.sum_weight += HxRead();
hx_sample_count++;
if (HX_SAMPLES == hx_sample_count) {
long average = hx_sum_weight / hx_sample_count; // grams
long value = average - hx_offset; // grams
hx_weight = value / hx_scale; // grams
if (hx_weight < 0) {
Hx.sample_count++;
if (HX_SAMPLES == Hx.sample_count) {
long average = Hx.sum_weight / Hx.sample_count; // grams
long value = average - Hx.offset; // grams
Hx.weight = value / Hx.scale; // grams
if (Hx.weight < 0) {
if (Settings.energy_frequency_calibration) {
long difference = Settings.energy_frequency_calibration + hx_weight;
hx_last_weight = difference;
long difference = Settings.energy_frequency_calibration + Hx.weight;
Hx.last_weight = difference;
if (difference < 0) { HxReset(); } // Cancel last weight as there seems to be no more weight on the scale
}
hx_weight = 0;
Hx.weight = 0;
} else {
hx_last_weight = Settings.energy_frequency_calibration;
Hx.last_weight = Settings.energy_frequency_calibration;
}
if (hx_tare_flg) {
hx_tare_flg = false;
hx_offset = average; // grams
if (Hx.tare_flg) {
Hx.tare_flg = false;
Hx.offset = average; // grams
}
if (hx_calibrate_step) {
hx_calibrate_timer--;
if (Hx.calibrate_step) {
Hx.calibrate_timer--;
if (HX_CAL_START == hx_calibrate_step) { // Skip reset just initiated
hx_calibrate_step--;
hx_calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
if (HX_CAL_START == Hx.calibrate_step) { // Skip reset just initiated
Hx.calibrate_step--;
Hx.calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
}
else if (HX_CAL_RESET == hx_calibrate_step) { // Wait for stable reset
if (hx_calibrate_timer) {
if (hx_weight < (long)Settings.weight_reference) {
hx_calibrate_step--;
hx_calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
else if (HX_CAL_RESET == Hx.calibrate_step) { // Wait for stable reset
if (Hx.calibrate_timer) {
if (Hx.weight < (long)Settings.weight_reference) {
Hx.calibrate_step--;
Hx.calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
HxCalibrationStateTextJson(2);
}
} else {
hx_calibrate_step = HX_CAL_FAIL;
Hx.calibrate_step = HX_CAL_FAIL;
}
}
else if (HX_CAL_FIRST == hx_calibrate_step) { // Wait for first reference weight
if (hx_calibrate_timer) {
if (hx_weight > (long)Settings.weight_reference) {
hx_calibrate_step--;
else if (HX_CAL_FIRST == Hx.calibrate_step) { // Wait for first reference weight
if (Hx.calibrate_timer) {
if (Hx.weight > (long)Settings.weight_reference) {
Hx.calibrate_step--;
}
} else {
hx_calibrate_step = HX_CAL_FAIL;
Hx.calibrate_step = HX_CAL_FAIL;
}
}
else if (HX_CAL_DONE == hx_calibrate_step) { // Second stable reference weight
if (hx_weight > (long)Settings.weight_reference) {
hx_calibrate_step = HX_CAL_FINISH; // Calibration done
Settings.weight_calibration = hx_weight / Settings.weight_reference;
hx_weight = 0; // Reset calibration value
else if (HX_CAL_DONE == Hx.calibrate_step) { // Second stable reference weight
if (Hx.weight > (long)Settings.weight_reference) {
Hx.calibrate_step = HX_CAL_FINISH; // Calibration done
Settings.weight_calibration = Hx.weight / Settings.weight_reference;
Hx.weight = 0; // Reset calibration value
HxCalibrationStateTextJson(1);
} else {
hx_calibrate_step = HX_CAL_FAIL;
Hx.calibrate_step = HX_CAL_FAIL;
}
}
if (HX_CAL_FAIL == hx_calibrate_step) { // Calibration failed
hx_calibrate_step--;
hx_tare_flg = true; // Perform a reset using old scale
if (HX_CAL_FAIL == Hx.calibrate_step) { // Calibration failed
Hx.calibrate_step--;
Hx.tare_flg = true; // Perform a reset using old scale
HxCalibrationStateTextJson(0);
}
if (HX_CAL_FINISH == hx_calibrate_step) { // Calibration finished
hx_calibrate_step--;
hx_calibrate_timer = 3 * (10 / HX_SAMPLES);
hx_scale = Settings.weight_calibration;
if (HX_CAL_FINISH == Hx.calibrate_step) { // Calibration finished
Hx.calibrate_step--;
Hx.calibrate_timer = 3 * (10 / HX_SAMPLES);
Hx.scale = Settings.weight_calibration;
}
if (!hx_calibrate_timer) {
hx_calibrate_step = HX_CAL_END; // End of calibration
if (!Hx.calibrate_timer) {
Hx.calibrate_step = HX_CAL_END; // End of calibration
}
} else {
hx_weight += hx_last_weight; // grams
Hx.weight += Hx.last_weight; // grams
if (Settings.SensorBits1.hx711_json_weight_change) {
if (abs(Hx.weight - Hx.weight_diff) > 4) { // Use 4 gram threshold to decrease "ghost" weights
Hx.weight_diff = Hx.weight;
Hx.weight_changed = true;
}
else if (Hx.weight_changed && (Hx.weight == Hx.weight_diff)) {
mqtt_data[0] = '\0';
ResponseAppendTime();
HxShow(true);
ResponseJsonEnd();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
Hx.weight_changed = false;
}
}
}
hx_sum_weight = 0;
hx_sample_count = 0;
Hx.sum_weight = 0;
Hx.sample_count = 0;
}
}
void HxSaveBeforeRestart()
{
Settings.energy_frequency_calibration = hx_weight;
hx_sample_count = HX_SAMPLES +1; // Stop updating hx_weight
Settings.energy_frequency_calibration = Hx.weight;
Hx.sample_count = HX_SAMPLES +1; // Stop updating Hx.weight
}
#ifdef USE_WEBSERVER
@ -364,14 +392,14 @@ void HxShow(bool json)
uint16_t count = 0;
float weight = 0;
if (hx_calibrate_step < HX_CAL_FAIL) {
if (hx_weight && Settings.weight_item) {
count = (hx_weight * 10) / Settings.weight_item;
if (Hx.calibrate_step < HX_CAL_FAIL) {
if (Hx.weight && Settings.weight_item) {
count = (Hx.weight * 10) / Settings.weight_item;
if (count > 1) {
snprintf_P(scount, sizeof(scount), PSTR(",\"" D_JSON_COUNT "\":%d"), count);
}
}
weight = (float)hx_weight / 1000; // kilograms
weight = (float)Hx.weight / 1000; // kilograms
}
char weight_chr[33];
dtostrfd(weight, Settings.flag2.weight_resolution, weight_chr);
@ -384,9 +412,9 @@ void HxShow(bool json)
if (count > 1) {
WSContentSend_PD(HTTP_HX711_COUNT, count);
}
if (hx_calibrate_step) {
if (Hx.calibrate_step) {
char cal_text[30];
WSContentSend_PD(HTTP_HX711_CAL, GetTextIndexed(cal_text, sizeof(cal_text), hx_calibrate_msg, kHxCalibrationStates));
WSContentSend_PD(HTTP_HX711_CAL, GetTextIndexed(cal_text, sizeof(cal_text), Hx.calibrate_msg, kHxCalibrationStates));
}
#endif // USE_WEBSERVER
}
@ -497,11 +525,8 @@ bool Xsns34(uint8_t function)
{
bool result = false;
if (hx_type) {
if (Hx.type) {
switch (function) {
case FUNC_INIT:
HxInit();
break;
case FUNC_EVERY_100_MSECOND:
HxEvery100mSecond();
break;
@ -532,6 +557,9 @@ bool Xsns34(uint8_t function)
break;
#endif // USE_HX711_GUI
#endif // USE_WEBSERVER
case FUNC_INIT:
HxInit();
break;
}
}
return result;

View File

@ -20,7 +20,11 @@
Version Date Action Description
--------------------------------------------------------------------------------------------
1.0.0.1 20190917 changed - rework of the inner loop to enable delays in the middle of I2C-reads
changed - double send address change only for fw>0x25
changed - use DEBUG_SENSOR_LOG, change ILLUMINANCE to DARKNESS
changed - do not publish missing temperature reads, show fw-version as hex
added - now really support the (slower) CHIRP!-Sensor
---
1.0.0.0 20190608 started - further development by Christian Baars - https://github.com/Staars/Sonoff-Tasmota
forked - from arendst/tasmota - https://github.com/arendst/Sonoff-Tasmota
@ -32,15 +36,16 @@
#ifdef USE_CHIRP
/*********************************************************************************************\
* CHIRP - Soil moisture sensor
* CHIRP - Chirp!-sensor and I2C-soil-moisture-sensor
* !! The I2C-soil-moisture-sensor is the preferred one !!
*
* I2C Address: 0x20 - standard address, is changeable
\*********************************************************************************************/
#define XSNS_48 48
#define CHIRP_MAX_SENSOR_COUNT 3 // 127 is expectectd to be the max number
#define XSNS_48 48
#define CHIRP_MAX_SENSOR_COUNT 3 // 127 is expectectd to be the max number
#define CHIRP_ADDR_STANDARD 0x20 // standard address
#define CHIRP_ADDR_STANDARD 0x20 // standard address
/*********************************************************************************************\
* constants
@ -71,24 +76,32 @@ enum CHIRP_Commands { // commands useable in con
* command defines
\*********************************************************************************************/
#define CHIRP_GET_CAPACITANCE 0x00 // 16 bit, read
#define CHIRP_SET_ADDRESS 0x01 // 8 bit, write
#define CHIRP_GET_ADDRESS 0x02 // 8 bit, read
#define CHIRP_MEASURE_LIGHT 0x03 // no value, write, -> initiate measurement, then wait at least 3 seconds
#define CHIRP_GET_LIGHT 0x04 // 16 bit, read, -> higher value means darker environment, noisy data, not calibrated
#define CHIRP_GET_TEMPERATURE 0x05 // 16 bit, read
#define CHIRP_RESET 0x06 // no value, write
#define CHIRP_GET_VERSION 0x07 // 8 bit, read, -> 22 means 2.2
#define CHIRP_SLEEP 0x08 // no value, write
#define CHIRP_GET_BUSY 0x09 // 8 bit, read, -> 1 = busy, 0 = otherwise
#define CHIRP_GET_CAPACITANCE 0x00 // 16 bit, read
#define CHIRP_SET_ADDRESS 0x01 // 8 bit, write
#define CHIRP_GET_ADDRESS 0x02 // 8 bit, read
#define CHIRP_MEASURE_LIGHT 0x03 // no value, write, -> initiate measurement, then wait at least 3 seconds
#define CHIRP_GET_LIGHT 0x04 // 16 bit, read, -> higher value means darker environment, noisy data, not calibrated
#define CHIRP_GET_TEMPERATURE 0x05 // 16 bit, read
#define CHIRP_RESET 0x06 // no value, write
#define CHIRP_GET_VERSION 0x07 // 8 bit, read, -> 0x22 means 2.2
#define CHIRP_SLEEP 0x08 // no value, write
#define CHIRP_GET_BUSY 0x09 // 8 bit, read, -> 1 = busy, 0 = otherwise
/*********************************************************************************************\
* helper function
\*********************************************************************************************/
bool I2cWriteReg(uint8_t addr, uint8_t reg)
{
return I2cWrite(addr, reg, 0, 0);
void ChirpWriteI2CRegister(uint8_t addr, uint8_t reg) {
Wire.beginTransmission(addr);
Wire.write(reg);
Wire.endTransmission();
} // now the original CHIRP needs 1100 ms delay
uint16_t ChirpFinishReadI2CRegister16bit(uint8_t addr) {
Wire.requestFrom(addr,(uint8_t)2);
uint16_t t = Wire.read() << 8;
t = t | Wire.read();
return t;
}
/********************************************************************************************/
@ -99,14 +112,14 @@ uint8_t chirp_current = 0; // current selected/active sensor
uint8_t chirp_found_sensors = 0; // number of found sensors
char chirp_name[7];
uint8_t chirp_next_job = 0; //0=reset, 1=auto-wake, 2=moisture+temperature, 3=light, 4 = pause; 5 = TELE done
uint8_t chirp_next_job = 0; //0=reset, 1=auto-wake, 2-13 = various measure steps; 14 = TELE done
uint32_t chirp_timeout_count = 0; //is handled every second, so value is equal to seconds (it is a slow sensor)
#pragma pack(1)
struct ChirpSensor_t{
uint16_t moisture = 0; // shall hold post-processed data, if implemented
uint16_t light = 0; // light level, maybe already postprocessed depending on the firmware
int16_t temperature= 0; // temperature in degrees CELSIUS * 10
int16_t temperature = 0; // temperature in degrees CELSIUS * 10 , we will also store the I2C error code
uint8_t version = 0; // firmware-version
uint8_t address:7; // we need only 7bit so...
uint8_t explicitSleep:1; // there is a free bit to play with ;)
@ -118,7 +131,7 @@ ChirpSensor_t chirp_sensor[CHIRP_MAX_SENSOR_COUNT]; // should be 8 bytes p
/********************************************************************************************/
void ChirpReset(uint8_t addr) {
I2cWriteReg(addr, CHIRP_RESET);
ChirpWriteI2CRegister(addr, CHIRP_RESET);
}
/********************************************************************************************/
@ -140,7 +153,7 @@ void ChirpClockSet() { // set I2C for this slow sensor
/********************************************************************************************/
void ChirpSleep(uint8_t addr) {
I2cWriteReg(addr, CHIRP_SLEEP);
ChirpWriteI2CRegister(addr, CHIRP_SLEEP);
}
/********************************************************************************************/
@ -168,77 +181,42 @@ void ChirpSleep(uint8_t addr) {
void ChirpSelect(uint8_t sensor) {
if(sensor < chirp_found_sensors) { //TODO: show some infos
chirp_current = sensor;
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: Sensor %u now active."), chirp_current);
DEBUG_SENSOR_LOG(PSTR("CHIRP: Sensor %u now active."), chirp_current);
}
if (sensor == 255) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: Sensor %u active at address 0x%x."), chirp_current, chirp_sensor[chirp_current].address);
DEBUG_SENSOR_LOG(PSTR("CHIRP: Sensor %u active at address 0x%x."), chirp_current, chirp_sensor[chirp_current].address);
}
}
/********************************************************************************************/
bool ChirpMeasureLight(void) {
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version && !chirp_sensor[i].explicitSleep) {
uint8_t lightReady = I2cRead8(chirp_sensor[i].address, CHIRP_GET_BUSY);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: busy status for light for sensor %u"), lightReady);
if (lightReady == 1) {
return false; // a measurement is still in progress, we stop everything and come back in the next loop = 1 second
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: init measure light for sensor %u"), i);
I2cWriteReg(chirp_sensor[i].address, CHIRP_MEASURE_LIGHT);
}
}
return true; // we could read all values (maybe at different times, but that does not really matter) and consider this job finished
}
/********************************************************************************************/
void ChirpReadCapTemp() { // no timeout needed for both measurements, so we do it at once
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version && !chirp_sensor[i].explicitSleep) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: now really read CapTemp for sensor at address 0x%x"), chirp_sensor[i].address);
chirp_sensor[i].moisture = I2cRead16(chirp_sensor[i].address, CHIRP_GET_CAPACITANCE);
chirp_sensor[i].temperature = I2cRead16(chirp_sensor[i].address, CHIRP_GET_TEMPERATURE);
}
}
}
/********************************************************************************************/
bool ChirpReadLight() { // sophisticated calculations could be done here
bool success = false;
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: will read light for sensor %u"), i);
if (chirp_sensor[i].version) {
if (I2cValidRead16(&chirp_sensor[i].light, chirp_sensor[i].address, CHIRP_GET_LIGHT)){
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: light read success"));
success = true;
}
if(!chirp_sensor[i].explicitSleep){ success = true;}
}
}
return success;
}
/********************************************************************************************/
/******************************************************************************************************************/
uint8_t ChirpReadVersion(uint8_t addr) {
return (I2cRead8(addr, CHIRP_GET_VERSION));
return (I2cRead8(addr, CHIRP_GET_VERSION)); // the Chirp!-sensor does not provide fw-version and we will get 255
}
/********************************************************************************************/
/******************************************************************************************************************/
bool ChirpSet(uint8_t addr) {
if(addr < 128){
if (I2cWrite8(chirp_sensor[chirp_current].address, CHIRP_SET_ADDRESS, addr)){
I2cWrite8(chirp_sensor[chirp_current].address, CHIRP_SET_ADDRESS, addr); // two calls are needed for sensor firmware version 2.6
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: Wrote adress %u "), addr);
if(chirp_sensor[chirp_current].version>0x25 && chirp_sensor[chirp_current].version != 255){
delay(5);
I2cWrite8(chirp_sensor[chirp_current].address, CHIRP_SET_ADDRESS, addr);
// two calls are needed for sensor firmware version 2.6, but maybe dangerous before
}
DEBUG_SENSOR_LOG(PSTR("CHIRP: Wrote adress %u "), addr);
ChirpReset(chirp_sensor[chirp_current].address);
chirp_sensor[chirp_current].address = addr;
chirp_timeout_count = 10;
chirp_next_job = 0;
if(chirp_sensor[chirp_current].version == 255){ // this should be Chirp! and it seems to need a power cycle (or RESET to GND)
AddLog_P2(LOG_LEVEL_INFO, PSTR("CHIRP: wrote new address %u, please power off device"), addr);
chirp_sensor[chirp_current].version == 0; // make it "invisible"
}
return true;
}
}
AddLog_P2(LOG_LEVEL_INFO, PSTR("CHIRP: address %u incorrect and not used"), addr);
return false;
}
@ -256,11 +234,12 @@ bool ChirpScan() {
AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, "CHIRP:", address);
if(chirp_found_sensors<CHIRP_MAX_SENSOR_COUNT){
chirp_sensor[chirp_found_sensors].address = address; // push next sensor, as long as there is space in the array
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: fw %u"), chirp_sensor[chirp_found_sensors].version);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: fw %x"), chirp_sensor[chirp_found_sensors].version);
}
chirp_found_sensors++;
}
}
// chirp_timeout_count = 11; // wait a second to read the real fw-version in the next step
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Found %u CHIRP sensor(s)."), chirp_found_sensors);
if (chirp_found_sensors == 0) {return false;}
else {return true;}
@ -273,57 +252,138 @@ void ChirpDetect(void)
if (chirp_next_job > 0) {
return;
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: scan will start ..."));
DEBUG_SENSOR_LOG(PSTR("CHIRP: scan will start ..."));
if (ChirpScan()) {
uint8_t chirp_model = 0; // TODO: ??
GetTextIndexed(chirp_name, sizeof(chirp_name), chirp_model, kChirpTypes);
}
}
/********************************************************************************************/
void ChirpServiceAllSensors(uint8_t job){
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version && !chirp_sensor[i].explicitSleep) {
DEBUG_SENSOR_LOG(PSTR("CHIRP: prepare for sensor at address 0x%x"), chirp_sensor[i].address);
switch(job){
case 0:
ChirpWriteI2CRegister(chirp_sensor[i].address, CHIRP_GET_CAPACITANCE);
break;
case 1:
chirp_sensor[i].moisture = ChirpFinishReadI2CRegister16bit(chirp_sensor[i].address);
break;
case 2:
ChirpWriteI2CRegister(chirp_sensor[i].address, CHIRP_GET_TEMPERATURE);
break;
case 3:
chirp_sensor[i].temperature = ChirpFinishReadI2CRegister16bit(chirp_sensor[i].address);
break;
case 4:
ChirpWriteI2CRegister(chirp_sensor[i].address, CHIRP_MEASURE_LIGHT);
break;
case 5:
ChirpWriteI2CRegister(chirp_sensor[i].address, CHIRP_GET_LIGHT);
break;
case 6:
chirp_sensor[i].light = ChirpFinishReadI2CRegister16bit(chirp_sensor[i].address);
break;
default:
break;
}
}
}
}
/********************************************************************************************/
void ChirpEverySecond(void)
void ChirpEvery100MSecond(void)
{
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: every second"));
// DEBUG_SENSOR_LOG(PSTR("CHIRP: every second"));
if(chirp_timeout_count == 0) { //countdown complete, now do something
switch(chirp_next_job) {
case 0: //this should only be called after driver initialization
AddLog_P2(LOG_LEVEL_DEBUG,PSTR( "CHIRP: reset all"));
DEBUG_SENSOR_LOG(PSTR("CHIRP: reset all"));
ChirpResetAll();
chirp_timeout_count = 1;
chirp_timeout_count = 10; // wait a second
chirp_next_job++;
break;
case 1: // auto-sleep-wake seems to expose a fundamental I2C-problem of the sensor and is deactivated
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: auto-wake all"));
// DEBUG_SENSOR_LOG(PSTR("CHIRP: auto-wake all"));
// ChirpAutoWakeAll(); // this is only a wake-up call at the start of next read cycle
chirp_next_job++; // go on, next job should start in a second
break;
case 2:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: call CapTemp twice"));
ChirpReadCapTemp(); // it is reported to be useful, to read twice, because otherwise old values are received
ChirpReadCapTemp(); // this is the "real" read call, we simply overwrite the existing values
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: call measure light"));
ChirpMeasureLight(); // prepare the next step -> initiate light read
chirp_timeout_count = 2; // wait 3 seconds, no need to hurry ...
DEBUG_SENSOR_LOG(PSTR("CHIRP: prepare moisture read"));
ChirpServiceAllSensors(0);
chirp_timeout_count = 11; // wait 1.1 seconds,
chirp_next_job++;
break;
case 3:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: call read light"));
if (ChirpReadLight()){ // now read light and if successful continue, otherwise come back in a second and try again
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: auto-sleep all"));
// ChirpSleepAll(); // let all sensors auto-sleep
chirp_next_job++;
}
DEBUG_SENSOR_LOG(PSTR("CHIRP: finish moisture read"));
ChirpServiceAllSensors(1);
chirp_next_job++;
break;
case 4:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: paused, waiting for TELE"));
DEBUG_SENSOR_LOG(PSTR("CHIRP: prepare moisture read - 2nd"));
ChirpServiceAllSensors(0);
chirp_timeout_count = 11; // wait 1.1 seconds,
chirp_next_job++;
break;
case 5:
if (Settings.tele_period > 9){
chirp_timeout_count = Settings.tele_period - 10; // sync it with the TELEPERIOD, we need about up to 10 seconds to measure, depending on the light level
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: timeout: %u, tele: %u"), chirp_timeout_count, Settings.tele_period);
DEBUG_SENSOR_LOG(PSTR("CHIRP: finish moisture read - 2nd"));
ChirpServiceAllSensors(1);
chirp_next_job++;
break;
case 6:
DEBUG_SENSOR_LOG(PSTR("CHIRP: prepare temperature read"));
ChirpServiceAllSensors(2);
chirp_timeout_count = 11; // wait 1.1 seconds,
chirp_next_job++;
break;
case 7:
DEBUG_SENSOR_LOG(PSTR("CHIRP: finish temperature read"));
ChirpServiceAllSensors(3);
chirp_next_job++;
break;
case 8:
DEBUG_SENSOR_LOG(PSTR("CHIRP: prepare temperature read - 2nd"));
ChirpServiceAllSensors(2);
chirp_timeout_count = 11; // wait 1.1 seconds,
chirp_next_job++;
break;
case 9:
DEBUG_SENSOR_LOG(PSTR("CHIRP: finish temperature read - 2nd"));
ChirpServiceAllSensors(3);
chirp_next_job++;
break;
case 10:
DEBUG_SENSOR_LOG(PSTR("CHIRP: start light measure process"));
ChirpServiceAllSensors(4);
chirp_timeout_count = 90; // wait 9 seconds,
chirp_next_job++;
break;
case 11:
DEBUG_SENSOR_LOG(PSTR("CHIRP: prepare light read"));
ChirpServiceAllSensors(5);
chirp_timeout_count = 11; // wait 1.1 seconds,
chirp_next_job++;
break;
case 12:
DEBUG_SENSOR_LOG(PSTR("CHIRP: finish light read"));
ChirpServiceAllSensors(6);
chirp_next_job++;
break;
case 13:
DEBUG_SENSOR_LOG(PSTR("CHIRP: paused, waiting for TELE"));
break;
case 14:
if (Settings.tele_period > 16){
chirp_timeout_count = (Settings.tele_period - 17) * 10; // sync it with the TELEPERIOD, we need about up to 17 seconds to measure
DEBUG_SENSOR_LOG(PSTR("CHIRP: timeout 1/10 sec: %u, tele: %u"), chirp_timeout_count, Settings.tele_period);
}
else{
AddLog_P2(LOG_LEVEL_INFO, PSTR("CHIRP: TELEPERIOD must be > 16 seconds !"));
// we could overwrite it to i.e. 20 seconds here
}
chirp_next_job = 1; // back to step 1
break;
}
@ -337,13 +397,15 @@ void ChirpEverySecond(void)
// normaly in i18n.h
#define D_JSON_MOISTURE "Moisture"
#define D_JSON_DARKNESS "Darkness"
#ifdef USE_WEBSERVER
// {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_SNS_MOISTURE[] PROGMEM = "{s} " D_JSON_MOISTURE ": {m}%s %{e}";
const char HTTP_SNS_CHIRPVER[] PROGMEM = "{s} CHIRP-sensor %u at address: {m}0x%x{e}"
"{s} FW-version: {m}%s {e}"; ;
const char HTTP_SNS_MOISTURE[] PROGMEM = "{s} " D_JSON_MOISTURE "{m}%s %{e}";
const char HTTP_SNS_DARKNESS[] PROGMEM = "{s} " D_JSON_DARKNESS "{m}%s %{e}";
const char HTTP_SNS_CHIRPVER[] PROGMEM = "{s} CHIRP-sensor %u at address{m}0x%x{e}"
"{s} FW-version{m}%s {e}"; ;
const char HTTP_SNS_CHIRPSLEEP[] PROGMEM = "{s} {m} is sleeping ...{e}";
#endif // USE_WEBSERVER
@ -360,22 +422,30 @@ void ChirpShow(bool json)
char str_temperature[33];
double t_temperature = ((double) chirp_sensor[i].temperature )/10.0;
dtostrfd(t_temperature, Settings.flag2.temperature_resolution, str_temperature);
char str_light[33];
char str_light[33];
dtostrfd(chirp_sensor[i].light, 0, str_light);
char str_version[33];
dtostrfd(chirp_sensor[i].version, 0, str_version);
char str_version[7];
if(chirp_sensor[i].version == 0xff){
strncpy_P(str_version, PSTR("Chirp!"), sizeof(str_version));
}
else{
sprintf(str_version, "%x", chirp_sensor[i].version);
}
if (json) {
if(!chirp_sensor[i].explicitSleep){
ResponseAppend_P(PSTR(",\"%s%u\":{\"" D_JSON_MOISTURE "\":%s,\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_ILLUMINANCE "\":\"%s}"),
chirp_name, i, str_moisture, str_temperature, str_light);}
if(!chirp_sensor[i].explicitSleep) {
ResponseAppend_P(PSTR(",\"%s%u\":{\"" D_JSON_MOISTURE "\":%s"),chirp_name, i, str_moisture);
if(chirp_sensor[i].temperature!=-1){ // this is the error code -> no temperature
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%s"),str_temperature);
}
ResponseAppend_P(PSTR(",\"" D_JSON_DARKNESS "\":%s}"),str_light);
}
else {
ResponseAppend_P(PSTR(",\"%s%u\":{\"sleeping\"}"),
chirp_name, i);
ResponseAppend_P(PSTR(",\"%s%u\":{\"sleeping\"}"),chirp_name, i);
}
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzTempHumSensor(str_temperature, str_moisture);
DomoticzSensor(DZ_ILLUMINANCE,chirp_sensor[i].light);
DomoticzSensor(DZ_ILLUMINANCE,chirp_sensor[i].light); // this is not LUX!!
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
@ -386,8 +456,10 @@ void ChirpShow(bool json)
}
else {
WSContentSend_PD(HTTP_SNS_MOISTURE, str_moisture);
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, " ", chirp_sensor[i].light);
WSContentSend_PD(HTTP_SNS_TEMP, " ",str_temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_DARKNESS, str_light);
if(chirp_sensor[i].temperature!=-1){ // this is the error code -> no temperature
WSContentSend_PD(HTTP_SNS_TEMP, " ",str_temperature, TempUnit());
}
}
#endif // USE_WEBSERVER
@ -435,9 +507,9 @@ bool ChirpCmd(void) {
Response_P(S_JSON_CHIRP_COMMAND, command, XdrvMailbox.payload);
break;
default:
// else for Unknown command
serviced = false;
break;
// else for Unknown command
serviced = false;
break;
}
}
return serviced;
@ -456,9 +528,9 @@ bool Xsns48(uint8_t function)
case FUNC_INIT:
ChirpDetect(); // We can call CHIRPSCAN later to re-detect
break;
case FUNC_EVERY_SECOND:
case FUNC_EVERY_100_MSECOND:
if(chirp_found_sensors > 0){
ChirpEverySecond();
ChirpEvery100MSecond();
}
break;
case FUNC_COMMAND:
@ -466,7 +538,7 @@ bool Xsns48(uint8_t function)
break;
case FUNC_JSON_APPEND:
ChirpShow(1);
chirp_next_job = 5; // TELE done, now compute time for next measure cycle
chirp_next_job = 14; // TELE done, now compute time for next measure cycle
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
@ -479,4 +551,4 @@ bool Xsns48(uint8_t function)
}
#endif // USE_CHIRP
#endif // USE_I2C
#endif // USE_I2C

View File

@ -847,13 +847,15 @@ uint8_t Serial_peek() {
return meter_ss[num-1]->peek();
}
uint8_t sml_logindex;
void Dump2log(void) {
int16_t index=0,hcnt=0;
uint32_t d_lastms;
uint8_t dchars[16];
if (!SML_SAVAILABLE) return;
//if (!SML_SAVAILABLE) return;
if (dump2log&8) {
// combo mode
@ -898,7 +900,25 @@ uint8_t dchars[16];
}
}
} else {
//while (SML_SAVAILABLE) {
if (meter_desc_p[(dump2log&7)-1].type=='o') {
// obis
while (SML_SAVAILABLE) {
char c=SML_SREAD&0x7f;
if (c=='\n' || c=='\r') {
log_data[sml_logindex]=0;
AddLog(LOG_LEVEL_INFO);
sml_logindex=2;
log_data[0]=':';
log_data[1]=' ';
break;
}
log_data[sml_logindex]=c;
if (sml_logindex<sizeof(log_data)-2) {
sml_logindex++;
}
}
} else {
//while (SML_SAVAILABLE) {
index=0;
log_data[index]=':';
index++;
@ -907,45 +927,36 @@ uint8_t dchars[16];
d_lastms=millis();
while ((millis()-d_lastms)<40) {
if (SML_SAVAILABLE) {
if (meter_desc_p[(dump2log&7)-1].type=='o') {
// obis
char c=SML_SREAD&0x7f;
if (c=='\n' || c=='\r') break;
log_data[index]=c;
index++;
unsigned char c;
if (meter_desc_p[(dump2log&7)-1].type=='e') {
// ebus
c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
index+=3;
if (c==EBUS_SYNC) break;
} else {
unsigned char c;
if (meter_desc_p[(dump2log&7)-1].type=='e') {
// ebus
c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
index+=3;
if (c==EBUS_SYNC) break;
// sml
if (sml_start==0x77) {
sml_start=0;
} else {
// sml
if (sml_start==0x77) {
sml_start=0;
} else {
c=SML_SPEAK;
if (c==0x77) {
sml_start=c;
break;
}
c=SML_SPEAK;
if (c==0x77) {
sml_start=c;
break;
}
c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
index+=3;
}
c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
index+=3;
}
}
}
if (index>0) {
if (index>2) {
log_data[index]=0;
AddLog(LOG_LEVEL_INFO);
}
}
//}
}
}
// skip sml entries
@ -1750,6 +1761,7 @@ void SML_Show(boolean json) {
}
/*
#ifdef USE_DOMOTICZ
if (json && !tele_period) {
char str[16];
@ -1761,6 +1773,7 @@ void SML_Show(boolean json) {
DomoticzSensor(DZ_CURRENT, str); // Current
}
#endif // USE_DOMOTICZ
*/
}
struct SML_COUNTER {