Merge branch 'development' of github.com:arendst/Tasmota into pr_tm1638

This commit is contained in:
Ajith Vasudevan 2021-03-08 22:57:58 +05:30
commit 728074ccd2
3 changed files with 79 additions and 42 deletions

View File

@ -7,7 +7,10 @@
#endif //PROJECTOR_CTRL_PWR_BY_RELAY
#define PROJECTOR_CTRL_SERIAL_TIMEOUT 10 //up to 254 seconds
#ifndef PROJECTOR_CTRL_SERIAL_BAUDRATE
#define PROJECTOR_CTRL_SERIAL_BAUDRATE 9600
#endif //PROJECTOR_CTRL_SERIAL_BAUDRATE
#ifdef USE_PROJECTOR_CTRL_NEC
/* see the serial codes in
@ -32,6 +35,8 @@ static const struct projector_ctrl_command_info_s projector_ctrl_commands[] = {
};
#define PROJECTOR_CTRL_QRYPWR_ON 0x04
#define PROJECTOR_CTRL_QRYPWR_COOLING 0x05
#define PROJECTOR_CTRL_QRYPWR_STARTING 0x01 //undocumented state, seen on V300W
#define PROJECTOR_CTRL_QRYPWR_WARMING 0x02 //undocumented state, seen on V300W
#elif defined(USE_PROJECTOR_CTRL_OPTOMA)
@ -56,6 +61,8 @@ static const struct projector_ctrl_command_info_s projector_ctrl_commands[] = {
};
#define PROJECTOR_CTRL_QRYPWR_ON 0x31
#define PROJECTOR_CTRL_QRYPWR_COOLING 0x31 //placebo
#define PROJECTOR_CTRL_QRYPWR_STARTING 0x31 //placebo
#define PROJECTOR_CTRL_QRYPWR_WARMING 0x31 //placebo
#else

View File

@ -27,7 +27,7 @@
#define XDRV_53 53
#ifndef USE_PROJECTOR_CTRL_NEC
#if !defined(USE_PROJECTOR_CTRL_NEC) && !defined(USE_PROJECTOR_CTRL_OPTOMA)
#define USE_PROJECTOR_CTRL_NEC // Use at least one projector
#endif
@ -324,15 +324,29 @@ projector_ctrl_loop(struct projector_ctrl_softc_s *sc)
oldstate = sc->sc_ser_state;
switch (sc->sc_ser_state = (projector_ctrl_serial_state_e)projector_ctrl_parse(sc, serial->read())) {
case PROJECTOR_CTRL_S_UNCONNECTED:
if (sc->sc_dev_state!=PROJECTOR_CTRL_DEV_UNKNOWN){
sc->sc_dev_state=PROJECTOR_CTRL_DEV_UNKNOWN;
AddLog_P(LOG_LEVEL_INFO,PSTR(PROJECTOR_CTRL_LOGNAME ": DISCONNECTED(unexpected input)"));
}
break;
case PROJECTOR_CTRL_S_IDLE:
if ((oldstate==PROJECTOR_CTRL_S_QRY_PWR)&&(sc->sc_ser_result==PROJECTOR_CTRL_R_PASS)){
if(((sc->sc_ser_value==PROJECTOR_CTRL_QRYPWR_ON)||(sc->sc_ser_value==PROJECTOR_CTRL_QRYPWR_COOLING))&&(sc->sc_dev_state!=PROJECTOR_CTRL_DEV_PWR_ON)){
if(sc->sc_dev_state==PROJECTOR_CTRL_DEV_UNKNOWN){
AddLog_P(LOG_LEVEL_INFO,PSTR(PROJECTOR_CTRL_LOGNAME ": CONNECTED"));
};
if(( (sc->sc_ser_value==PROJECTOR_CTRL_QRYPWR_ON)
||(sc->sc_ser_value==PROJECTOR_CTRL_QRYPWR_COOLING)
||(sc->sc_ser_value==PROJECTOR_CTRL_QRYPWR_STARTING)
||(sc->sc_ser_value==PROJECTOR_CTRL_QRYPWR_WARMING)
)&&(sc->sc_dev_state!=PROJECTOR_CTRL_DEV_PWR_ON)){
sc->sc_dev_state=PROJECTOR_CTRL_DEV_PWR_ON;
ExecuteCommandPower(sc->sc_device, POWER_ON, SRC_IGNORE);
};
if(((sc->sc_ser_value!=PROJECTOR_CTRL_QRYPWR_ON)&&(sc->sc_ser_value!=PROJECTOR_CTRL_QRYPWR_COOLING))&&(sc->sc_dev_state!=PROJECTOR_CTRL_DEV_PWR_OFF)){
if(( (sc->sc_ser_value!=PROJECTOR_CTRL_QRYPWR_ON)
&&(sc->sc_ser_value!=PROJECTOR_CTRL_QRYPWR_COOLING)
&&(sc->sc_ser_value!=PROJECTOR_CTRL_QRYPWR_STARTING)
&&(sc->sc_ser_value!=PROJECTOR_CTRL_QRYPWR_WARMING)
)&&(sc->sc_dev_state!=PROJECTOR_CTRL_DEV_PWR_OFF)){
sc->sc_dev_state=PROJECTOR_CTRL_DEV_PWR_OFF;
ExecuteCommandPower(sc->sc_device, POWER_OFF, SRC_IGNORE);
};
@ -375,7 +389,7 @@ projector_ctrl_tick(struct projector_ctrl_softc_s *sc)
};
}else if(sc->sc_ticks > sc->sc_cmd_info->timeout_ticks){
//current CMD has ran out of time, drop connection
AddLog_P(LOG_LEVEL_INFO,PSTR(PROJECTOR_CTRL_LOGNAME ": DISCONNECTED"));
AddLog_P(LOG_LEVEL_INFO,PSTR(PROJECTOR_CTRL_LOGNAME ": DISCONNECTED(timeout)"));
sc->sc_dev_state=PROJECTOR_CTRL_DEV_UNKNOWN;
sc->sc_ser_state=PROJECTOR_CTRL_S_UNCONNECTED;
};

View File

@ -31,9 +31,9 @@
//#define CSE7761_SIMULATE
#define CSE7761_UREF 10000 // Gain 1 * 10000 in V
#define CSE7761_IREF 160000 // Gain 16 * 10000 in A
#define CSE7761_PREF 50000 // in W
#define CSE7761_UREF 42563 // RmsUc
#define CSE7761_IREF 52241 // RmsIAC
#define CSE7761_PREF 44513 // PowerPAC
#define CSE7761_REG_SYSCON 0x00 // System Control Register
#define CSE7761_REG_EMUCON 0x01 // Metering control register
@ -80,6 +80,7 @@ struct {
uint32_t current_rms[2] = { 0 };
uint32_t energy[2] = { 0 };
uint32_t active_power[2] = { 0 };
uint16_t coefficient[8] = { 0 };
uint8_t energy_update = 0;
uint8_t init = 4;
uint8_t ready = 0;
@ -113,7 +114,7 @@ void Cse7761Write(uint32_t reg, uint32_t data) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer);
}
uint32_t Cse7761Read(uint32_t reg) {
uint32_t Cse7761Read(uint32_t reg, uint32_t size) {
while (Cse7761Serial->available()) { Cse7761Serial->read(); }
Cse7761Write(reg, 0);
@ -121,6 +122,8 @@ uint32_t Cse7761Read(uint32_t reg) {
uint8_t buffer[8] = { 0 };
uint32_t rcvd = 0;
uint32_t timeout = millis() + 3;
// while (!TimeReached(timeout) && (rcvd <= size)) {
while (!TimeReached(timeout)) {
int value = Cse7761Serial->read();
if ((value > -1) && (rcvd < sizeof(buffer) -1)) {
@ -154,24 +157,44 @@ uint32_t Cse7761Read(uint32_t reg) {
return result;
}
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev) {
uint32_t value = Cse7761Read(reg);
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev, uint32_t size) {
uint32_t value = Cse7761Read(reg, size);
if (1 == value) { // CRC Error so use previous value read
value = prev;
}
return value;
}
uint32_t Cse7761Ref(uint32_t unit) {
switch (unit) {
case RmsUC: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC];
case RmsIAC: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits
case PowerPAC: return 0x80000000 / CSE7761Data.coefficient[PowerPAC];
}
return 0;
}
bool Cse7761ChipInit(void) {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
calc_chksum = Cse7761Read(CSE7761_REG_RMSIAC + i);
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i, 2);
calc_chksum += CSE7761Data.coefficient[i];
}
calc_chksum = ~calc_chksum;
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET);
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM);
if (calc_chksum != coeff_chksum) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Not calibrated"));
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET, 2);
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM, 2);
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration"));
CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF;
// CSE7761Data.coefficient[RmsIBC] = 0xCC05;
CSE7761Data.coefficient[RmsUC] = CSE7761_UREF;
CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF;
// CSE7761Data.coefficient[PowerPBC] = 0xADD7;
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
Settings.energy_voltage_calibration = Cse7761Ref(RmsUC);
Settings.energy_current_calibration = Cse7761Ref(RmsIAC);
Settings.energy_power_calibration = Cse7761Ref(PowerPAC);
}
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
@ -180,7 +203,7 @@ bool Cse7761ChipInit(void) {
uint32_t timeout = millis() + 8;
while (!TimeReached(timeout)) { }
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS);
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS, 1);
#ifdef CSE7761_SIMULATE
sys_status = 0x11;
#endif
@ -315,34 +338,31 @@ void Cse7761GetData(void) {
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
// and when the highest bit is 1, the reading will be processed as zero
// The active power parameter PowerA/B is in twos complement format, 32-bit data, the highest bit is Sign bit.
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms);
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms, 3);
#ifdef CSE7761_SIMULATE
// value = 2342160; // 234.2V
value = 2000000; // 200V
value = 2342160; // 237.7V
#endif
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0]);
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3);
#ifdef CSE7761_SIMULATE
value = 455;
#endif
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0]);
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0], 4);
#ifdef CSE7761_SIMULATE
value = 217;
#endif
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1]);
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1], 3);
#ifdef CSE7761_SIMULATE
// value = 29760; // 0.186A
value = 800000; // 5A
value = 29760; // 0.185A
#endif
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1]);
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1], 4);
#ifdef CSE7761_SIMULATE
// value = 2126641; // 42.5W
value = 50000000; // 1000W
value = 2126641; // 44.05W
#endif
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
@ -352,24 +372,25 @@ void Cse7761GetData(void) {
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
if (Energy.power_on) { // Powered on
// Voltage = RmsU * RmsUC * 10 / 0x400000
// Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
// Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W
if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0;
} else {
// Current = RmsIA * RmsIAC / 0x800000
// Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
CSE7761Data.energy[channel] += Energy.active_power[channel];
CSE7761Data.energy_update++;
}
}
/*
} else { // Powered off
Energy.data_valid[0] = ENERGY_WATCHDOG;
Energy.data_valid[1] = ENERGY_WATCHDOG;
*/
}
}
@ -387,7 +408,7 @@ void Cse7761EverySecond(void) {
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
}
else if (2 == CSE7761Data.init) {
uint16_t syscon = Cse7761Read(0x00); // Default 0x0A04
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
#ifdef CSE7761_SIMULATE
syscon = 0x0A04;
#endif
@ -428,11 +449,6 @@ void Cse7761SnsInit(void) {
SetSerial(38400, TS_SERIAL_8E1);
ClaimSerial();
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
Settings.energy_voltage_calibration = CSE7761_UREF;
Settings.energy_current_calibration = CSE7761_IREF;
Settings.energy_power_calibration = CSE7761_PREF;
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
@ -455,15 +471,15 @@ bool Cse7761Command(void) {
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_PREF; }
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(PowerPAC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_VOLTAGECAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_UREF; }
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_CURRENTCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_IREF; }
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy.command_code) {