mirror of https://github.com/arendst/Tasmota.git
Rotary driver adjusted for MiDesk if selected
Rotary driver adjusted accordingly if Mi Desk Lamp module is selected (#9399)
This commit is contained in:
parent
500fb147c4
commit
83a090b5a9
|
@ -19,6 +19,7 @@ All notable changes to this project will be documented in this file.
|
|||
- Command ``Gpios`` replaces command ``Adcs``
|
||||
- Management of serial baudrate (#9554)
|
||||
- ``#define MQTT_FINGERPRINT`` from string to hexnumbers (#9570)
|
||||
- Rotary driver adjusted accordingly if Mi Desk Lamp module is selected (#9399)
|
||||
|
||||
### Fixed
|
||||
- Convert AdcParam parameters from versions before v9.0.0.2
|
||||
|
|
|
@ -88,6 +88,7 @@ The attached binaries can also be downloaded from http://ota.tasmota.com/tasmota
|
|||
- IRremoteESP8266 library from v2.7.10 to v2.7.11
|
||||
- NeoPixelBus library from v2.5.0.09 to v2.6.0
|
||||
- Management of serial baudrate (#9554)
|
||||
- Rotary driver adjusted accordingly if Mi Desk Lamp module is selected (#9399)
|
||||
|
||||
### Fixed
|
||||
- Ledlink blink when no network connected regression from v8.3.1.4 (#9292)
|
||||
|
|
|
@ -37,57 +37,30 @@
|
|||
#define ROTARY_MAX_STEPS 10 // Rotary step boundary
|
||||
#endif
|
||||
|
||||
#define ROTARY_OPTION1 // Up to 4 interrupts and pulses per step
|
||||
//#define ROTARY_OPTION2 // Up to 4 interrupts but 1 pulse per step
|
||||
//#define ROTARY_OPTION3 // 1 interrupt and pulse per step
|
||||
// (0) = Mi Desk lamp (1) = Normal rotary
|
||||
// ---------------------------- ----------------------
|
||||
const uint8_t rotary_dimmer_increment[2] = { 100 / (ROTARY_MAX_STEPS * 3), 100 / ROTARY_MAX_STEPS }; // Dimmer 1..100 = 100
|
||||
const uint8_t rotary_ct_increment[2] = { 350 / (ROTARY_MAX_STEPS * 3), 350 / ROTARY_MAX_STEPS }; // Ct 153..500 = 347
|
||||
const uint8_t rotary_color_increment[2] = { 360 / (ROTARY_MAX_STEPS * 3), 360 / ROTARY_MAX_STEPS }; // Hue 0..359 = 360
|
||||
|
||||
#ifdef ROTARY_OPTION1
|
||||
// up to 4 pulses per step
|
||||
const uint8_t rotary_dimmer_increment = 100 / (ROTARY_MAX_STEPS * 3); // Dimmer 1..100 = 100
|
||||
const uint8_t rotary_ct_increment = 350 / (ROTARY_MAX_STEPS * 3); // Ct 153..500 = 347
|
||||
const uint8_t rotary_color_increment = 360 / (ROTARY_MAX_STEPS * 3); // Hue 0..359 = 360
|
||||
#endif // ROTARY_OPTION1
|
||||
|
||||
#ifdef ROTARY_OPTION2
|
||||
// 1 pulse per step
|
||||
const uint8_t rotary_dimmer_increment = 100 / ROTARY_MAX_STEPS; // Dimmer 1..100 = 100
|
||||
const uint8_t rotary_ct_increment = 350 / ROTARY_MAX_STEPS; // Ct 153..500 = 347
|
||||
const uint8_t rotary_color_increment = 360 / ROTARY_MAX_STEPS; // Hue 0..359 = 360
|
||||
#endif // ROTARY_OPTION2
|
||||
|
||||
#ifdef ROTARY_OPTION3
|
||||
// 1 pulse per step
|
||||
const uint8_t rotary_dimmer_increment = 100 / ROTARY_MAX_STEPS; // Dimmer 1..100 = 100
|
||||
const uint8_t rotary_ct_increment = 350 / ROTARY_MAX_STEPS; // Ct 153..500 = 347
|
||||
const uint8_t rotary_color_increment = 360 / ROTARY_MAX_STEPS; // Hue 0..359 = 360
|
||||
const uint8_t ROTARY_DEBOUNCE = 10; // Debounce time in milliseconds
|
||||
#endif // ROTARY_OPTION3
|
||||
|
||||
const uint8_t ROTARY_TIMEOUT = 10; // 10 * RotaryHandler() call which is usually 10 * 0.05 seconds
|
||||
const uint8_t ROTARY_TIMEOUT = 10; // 10 * RotaryHandler() call which is usually 10 * 0.05 seconds
|
||||
const uint8_t ROTARY_DEBOUNCE = 10; // Debounce time in milliseconds
|
||||
|
||||
struct ROTARY {
|
||||
uint8_t model = 1;
|
||||
bool present = false;
|
||||
} Rotary;
|
||||
|
||||
struct tEncoder {
|
||||
#ifdef ROTARY_OPTION1
|
||||
volatile uint8_t state = 0;
|
||||
volatile int8_t pina = -1;
|
||||
#endif // ROTARY_OPTION1
|
||||
#ifdef ROTARY_OPTION2
|
||||
volatile uint16_t store;
|
||||
volatile uint8_t prev_next_code;
|
||||
volatile int8_t pina = -1;
|
||||
#endif // ROTARY_OPTION2
|
||||
#ifdef ROTARY_OPTION3
|
||||
volatile uint32_t debounce = 0;
|
||||
#endif // ROTARY_OPTION3
|
||||
volatile int8_t direction = 0; // Control consistent direction
|
||||
volatile int8_t pinb = -1;
|
||||
volatile uint8_t state = 0;
|
||||
volatile uint8_t position = 128;
|
||||
uint8_t last_position = 128;
|
||||
int8_t abs_position[2] = { 0 };
|
||||
uint8_t timeout = 0; // Disallow direction change within 0.5 second
|
||||
int8_t abs_position[2] = { 0 };
|
||||
int8_t pina = -1;
|
||||
int8_t pinb = -1;
|
||||
bool changed = false;
|
||||
volatile bool busy = false;
|
||||
};
|
||||
|
@ -117,63 +90,12 @@ bool RotaryButtonPressed(uint32_t button_index) {
|
|||
return false;
|
||||
}
|
||||
|
||||
void ICACHE_RAM_ATTR RotaryIsrArg(void *arg) {
|
||||
void ICACHE_RAM_ATTR RotaryIsrArgMiDesk(void *arg) {
|
||||
tEncoder* encoder = static_cast<tEncoder*>(arg);
|
||||
|
||||
if (encoder->busy) { return; }
|
||||
|
||||
#ifdef ROTARY_OPTION1
|
||||
// https://github.com/PaulStoffregen/Encoder/blob/master/Encoder.h
|
||||
/*
|
||||
uint8_t p1val = digitalRead(encoder->pina);
|
||||
uint8_t p2val = digitalRead(encoder->pinb);
|
||||
uint8_t state = encoder->state & 3;
|
||||
if (p1val) { state |= 4; }
|
||||
if (p2val) { state |= 8; }
|
||||
encoder->state = (state >> 2);
|
||||
switch (state) {
|
||||
case 1: case 7: case 8: case 14:
|
||||
encoder->position++;
|
||||
return;
|
||||
case 2: case 4: case 11: case 13:
|
||||
encoder->position--;
|
||||
return;
|
||||
case 3: case 12:
|
||||
encoder->position += 2;
|
||||
return;
|
||||
case 6: case 9:
|
||||
encoder->position -= 2;
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
uint8_t p1val = digitalRead(encoder->pina);
|
||||
uint8_t p2val = digitalRead(encoder->pinb);
|
||||
uint8_t state = encoder->state & 3;
|
||||
if (p1val) { state |= 4; }
|
||||
if (p2val) { state |= 8; }
|
||||
encoder->state = (state >> 2);
|
||||
int direction = 0;
|
||||
int multiply = 1;
|
||||
switch (state) {
|
||||
case 3: case 12:
|
||||
multiply = 2;
|
||||
case 1: case 7: case 8: case 14:
|
||||
direction = 1;
|
||||
break;
|
||||
case 6: case 9:
|
||||
multiply = 2;
|
||||
case 2: case 4: case 11: case 13:
|
||||
direction = -1;
|
||||
break;
|
||||
}
|
||||
if ((0 == encoder->direction) || (direction == encoder->direction)) {
|
||||
encoder->position += (direction * multiply);
|
||||
encoder->direction = direction;
|
||||
}
|
||||
*/
|
||||
|
||||
uint8_t state = encoder->state & 3;
|
||||
if (digitalRead(encoder->pina)) { state |= 4; }
|
||||
if (digitalRead(encoder->pinb)) { state |= 8; }
|
||||
|
@ -192,58 +114,13 @@ void ICACHE_RAM_ATTR RotaryIsrArg(void *arg) {
|
|||
encoder->position -= 2;
|
||||
return;
|
||||
}
|
||||
#endif // ROTARY_OPTION1
|
||||
}
|
||||
|
||||
#ifdef ROTARY_OPTION2
|
||||
// https://github.com/FrankBoesing/EncoderBounce/blob/master/EncoderBounce.h
|
||||
/*
|
||||
const uint16_t rot_enc = 0b0110100110010110;
|
||||
void ICACHE_RAM_ATTR RotaryIsrArg(void *arg) {
|
||||
tEncoder* encoder = static_cast<tEncoder*>(arg);
|
||||
|
||||
uint8_t p1val = digitalRead(encoder->pinb);
|
||||
uint8_t p2val = digitalRead(encoder->pina);
|
||||
uint8_t t = encoder->prev_next_code;
|
||||
t <<= 2;
|
||||
if (p1val) { t |= 0x02; }
|
||||
if (p2val) { t |= 0x01; }
|
||||
t &= 0x0f;
|
||||
encoder->prev_next_code = t;
|
||||
if (encoder->busy) { return; }
|
||||
|
||||
// If valid then store as 16 bit data.
|
||||
if (rot_enc & (1 << t)) {
|
||||
encoder->store = (encoder->store << 4) | encoder->prev_next_code;
|
||||
if (encoder->store == 0xd42b) { encoder->position++; }
|
||||
else if (encoder->store == 0xe817) { encoder->position--; }
|
||||
else if ((encoder->store & 0xff) == 0x2b) { encoder->position--; }
|
||||
else if ((encoder->store & 0xff) == 0x17) { encoder->position++; }
|
||||
}
|
||||
*/
|
||||
const uint16_t rot_enc = 0b0110100110010110;
|
||||
|
||||
uint8_t p1val = digitalRead(encoder->pinb);
|
||||
uint8_t p2val = digitalRead(encoder->pina);
|
||||
uint8_t t = encoder->prev_next_code;
|
||||
t <<= 2;
|
||||
if (p1val) { t |= 0x02; }
|
||||
if (p2val) { t |= 0x01; }
|
||||
t &= 0x0f;
|
||||
encoder->prev_next_code = t;
|
||||
|
||||
// If valid then store as 16 bit data.
|
||||
if (rot_enc & (1 << t)) {
|
||||
encoder->store = (encoder->store << 4) | encoder->prev_next_code;
|
||||
int direction = 0;
|
||||
if (encoder->store == 0xd42b) { direction = 1; }
|
||||
else if (encoder->store == 0xe817) { direction = -1; }
|
||||
else if ((encoder->store & 0xff) == 0x2b) { direction = -1; }
|
||||
else if ((encoder->store & 0xff) == 0x17) { direction = 1; }
|
||||
if ((0 == encoder->direction) || (direction == encoder->direction)) {
|
||||
encoder->position += direction;
|
||||
encoder->direction = direction;
|
||||
}
|
||||
}
|
||||
#endif // ROTARY_OPTION2
|
||||
|
||||
#ifdef ROTARY_OPTION3
|
||||
// Theo Arends
|
||||
uint32_t time = millis();
|
||||
if ((encoder->debounce < time) || (encoder->debounce > time + ROTARY_DEBOUNCE)) {
|
||||
|
@ -254,24 +131,29 @@ void ICACHE_RAM_ATTR RotaryIsrArg(void *arg) {
|
|||
}
|
||||
encoder->debounce = time + ROTARY_DEBOUNCE; // Experimental debounce
|
||||
}
|
||||
#endif // ROTARY_OPTION3
|
||||
}
|
||||
|
||||
void RotaryInit(void) {
|
||||
Rotary.present = false;
|
||||
Rotary.model = 1;
|
||||
#ifdef ESP8266
|
||||
if (MI_DESK_LAMP == my_module_type) {
|
||||
Rotary.model = 0;
|
||||
}
|
||||
#endif // ESP8266
|
||||
for (uint32_t index = 0; index < MAX_ROTARIES; index++) {
|
||||
Encoder[index].pinb = -1;
|
||||
if (PinUsed(GPIO_ROT1A, index) && PinUsed(GPIO_ROT1B, index)) {
|
||||
Encoder[index].pinb = Pin(GPIO_ROT1B, index);
|
||||
pinMode(Encoder[index].pinb, INPUT_PULLUP);
|
||||
#ifdef ROTARY_OPTION3
|
||||
pinMode(Pin(GPIO_ROT1A, index), INPUT_PULLUP);
|
||||
attachInterruptArg(Pin(GPIO_ROT1A, index), RotaryIsrArg, &Encoder[index], FALLING);
|
||||
#else
|
||||
Encoder[index].pina = Pin(GPIO_ROT1A, index);
|
||||
pinMode(Encoder[index].pina, INPUT_PULLUP);
|
||||
attachInterruptArg(Pin(GPIO_ROT1A, index), RotaryIsrArg, &Encoder[index], CHANGE);
|
||||
attachInterruptArg(Pin(GPIO_ROT1B, index), RotaryIsrArg, &Encoder[index], CHANGE);
|
||||
#endif
|
||||
Encoder[index].pinb = Pin(GPIO_ROT1B, index);
|
||||
pinMode(Encoder[index].pinb, INPUT_PULLUP);
|
||||
if (0 == Rotary.model) {
|
||||
attachInterruptArg(Encoder[index].pina, RotaryIsrArgMiDesk, &Encoder[index], CHANGE);
|
||||
attachInterruptArg(Encoder[index].pinb, RotaryIsrArgMiDesk, &Encoder[index], CHANGE);
|
||||
} else {
|
||||
attachInterruptArg(Encoder[index].pina, RotaryIsrArg, &Encoder[index], FALLING);
|
||||
}
|
||||
}
|
||||
Rotary.present |= (Encoder[index].pinb > -1);
|
||||
}
|
||||
|
@ -320,20 +202,20 @@ void RotaryHandler(void) {
|
|||
if (0 == index) { // Rotary1
|
||||
if (button_pressed) {
|
||||
if (second_rotary) { // Color RGB
|
||||
LightColorOffset(rotary_position * rotary_color_increment);
|
||||
LightColorOffset(rotary_position * rotary_color_increment[Rotary.model]);
|
||||
} else { // Color Temperature or Color RGB
|
||||
if (!LightColorTempOffset(rotary_position * rotary_ct_increment)) {
|
||||
LightColorOffset(rotary_position * rotary_color_increment);
|
||||
if (!LightColorTempOffset(rotary_position * rotary_ct_increment[Rotary.model])) {
|
||||
LightColorOffset(rotary_position * rotary_color_increment[Rotary.model]);
|
||||
}
|
||||
}
|
||||
} else { // Dimmer RGBCW or RGB only if second rotary
|
||||
LightDimmerOffset(second_rotary ? 1 : 0, rotary_position * rotary_dimmer_increment);
|
||||
LightDimmerOffset(second_rotary ? 1 : 0, rotary_position * rotary_dimmer_increment[Rotary.model]);
|
||||
}
|
||||
} else { // Rotary2
|
||||
if (button_pressed) { // Color Temperature
|
||||
LightColorTempOffset(rotary_position * rotary_ct_increment);
|
||||
LightColorTempOffset(rotary_position * rotary_ct_increment[Rotary.model]);
|
||||
} else { // Dimmer CW
|
||||
LightDimmerOffset(2, rotary_position * rotary_dimmer_increment);
|
||||
LightDimmerOffset(2, rotary_position * rotary_dimmer_increment[Rotary.model]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
|
Loading…
Reference in New Issue