Fix CSE7761 default calibration

This commit is contained in:
Theo Arends 2021-03-08 12:34:32 +01:00
parent b101657fba
commit 86e2bc53be
1 changed files with 39 additions and 25 deletions

View File

@ -31,9 +31,9 @@
//#define CSE7761_SIMULATE
#define CSE7761_UREF 10000 // Gain 1 * 10000 in V
#define CSE7761_IREF 160000 // Gain 16 * 10000 in A
#define CSE7761_PREF 50000 // in W
#define CSE7761_UREF 42563 // RmsUc
#define CSE7761_IREF 52241 // RmsIAC
#define CSE7761_PREF 44513 // PowerPAC
#define CSE7761_REG_SYSCON 0x00 // System Control Register
#define CSE7761_REG_EMUCON 0x01 // Metering control register
@ -80,6 +80,7 @@ struct {
uint32_t current_rms[2] = { 0 };
uint32_t energy[2] = { 0 };
uint32_t active_power[2] = { 0 };
uint16_t coefficient[8] = { 0 };
uint8_t energy_update = 0;
uint8_t init = 4;
uint8_t ready = 0;
@ -162,16 +163,36 @@ uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev) {
return value;
}
uint32_t Cse7761Ref(uint32_t unit) {
switch (unit) {
case 1: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC];
case 2: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits
case 3: return 0x80000000 / CSE7761Data.coefficient[PowerPAC];
}
return 0;
}
bool Cse7761ChipInit(void) {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
calc_chksum = Cse7761Read(CSE7761_REG_RMSIAC + i);
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i);
calc_chksum += CSE7761Data.coefficient[i];
}
calc_chksum = ~calc_chksum;
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET);
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM);
if (calc_chksum != coeff_chksum) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Not calibrated"));
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration"));
CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF;
// CSE7761Data.coefficient[RmsIBC] = 0xCC05;
CSE7761Data.coefficient[RmsUC] = CSE7761_UREF;
CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF;
// CSE7761Data.coefficient[PowerPBC] = 0xADD7;
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
Settings.energy_voltage_calibration = Cse7761Ref(1);
Settings.energy_current_calibration = Cse7761Ref(2);
Settings.energy_power_calibration = Cse7761Ref(3);
}
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
@ -317,8 +338,7 @@ void Cse7761GetData(void) {
// The active power parameter PowerA/B is in twos complement format, 32-bit data, the highest bit is Sign bit.
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms);
#ifdef CSE7761_SIMULATE
// value = 2342160; // 234.2V
value = 2000000; // 200V
value = 2342160; // 237.7V
#endif
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
@ -335,14 +355,12 @@ void Cse7761GetData(void) {
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1]);
#ifdef CSE7761_SIMULATE
// value = 29760; // 0.186A
value = 800000; // 5A
value = 29760; // 0.185A
#endif
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1]);
#ifdef CSE7761_SIMULATE
// value = 2126641; // 42.5W
value = 50000000; // 1000W
value = 2126641; // 44.05W
#endif
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
@ -352,24 +370,25 @@ void Cse7761GetData(void) {
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
if (Energy.power_on) { // Powered on
// Voltage = RmsU * RmsUC * 10 / 0x400000
// Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
// Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W
if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0;
} else {
// Current = RmsIA * RmsIAC / 0x800000
// Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
CSE7761Data.energy[channel] += Energy.active_power[channel];
CSE7761Data.energy_update++;
}
}
/*
} else { // Powered off
Energy.data_valid[0] = ENERGY_WATCHDOG;
Energy.data_valid[1] = ENERGY_WATCHDOG;
*/
}
}
@ -428,11 +447,6 @@ void Cse7761SnsInit(void) {
SetSerial(38400, TS_SERIAL_8E1);
ClaimSerial();
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
Settings.energy_voltage_calibration = CSE7761_UREF;
Settings.energy_current_calibration = CSE7761_IREF;
Settings.energy_power_calibration = CSE7761_PREF;
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
@ -455,15 +469,15 @@ bool Cse7761Command(void) {
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_PREF; }
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(3); }
// Service in xdrv_03_energy.ino
}
else if (CMND_VOLTAGECAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_UREF; }
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(1); }
// Service in xdrv_03_energy.ino
}
else if (CMND_CURRENTCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_IREF; }
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(2); }
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy.command_code) {