ArduinoSlave->TasmotaSlave

This commit is contained in:
andrethomas 2019-10-26 22:58:04 +02:00
parent 6066eb0bfc
commit 8c5934890e
3 changed files with 324 additions and 136 deletions

View File

@ -208,10 +208,9 @@ enum UserSelectablePins {
GPIO_SM2135_DAT, // SM2135 Dat GPIO_SM2135_DAT, // SM2135 Dat
GPIO_DEEPSLEEP, // Kill switch for deepsleep GPIO_DEEPSLEEP, // Kill switch for deepsleep
GPIO_EXS_ENABLE, // EXS MCU Enable GPIO_EXS_ENABLE, // EXS MCU Enable
GPIO_ARDUINO_TXD, // Arduino Slave TX GPIO_TASMOTASLAVE_TXD, // Arduino Slave TX
GPIO_ARDUINO_RXD, // Arduino Slave RX GPIO_TASMOTASLAVE_RXD, // Arduino Slave RX
GPIO_ARDUINO_RST, // Arduino Reset Pin GPIO_TASMOTASLAVE_RST, // Arduino Reset Pin
GPIO_ARDUINO_RST_INV, // Arduino Reset Pin inverted
GPIO_SENSOR_END }; GPIO_SENSOR_END };
// Programmer selectable GPIO functionality // Programmer selectable GPIO functionality
@ -290,7 +289,7 @@ const char kSensorNames[] PROGMEM =
D_SENSOR_DDSU666_TX "|" D_SENSOR_DDSU666_RX "|" D_SENSOR_DDSU666_TX "|" D_SENSOR_DDSU666_RX "|"
D_SENSOR_SM2135_CLK "|" D_SENSOR_SM2135_DAT "|" D_SENSOR_SM2135_CLK "|" D_SENSOR_SM2135_DAT "|"
D_SENSOR_DEEPSLEEP "|" D_SENSOR_EXS_ENABLE "|" D_SENSOR_DEEPSLEEP "|" D_SENSOR_EXS_ENABLE "|"
D_SENSOR_ARDUINO_TX "|" D_SENSOR_ARDUINO_RX "|" D_SENSOR_ARDUINO_RESET "|" D_SENSOR_ARDUINO_RESET "i|" D_SENSOR_SLAVE_TX "|" D_SENSOR_SLAVE_RX "|" D_SENSOR_SLAVE_RESET "|"
; ;
const char kSensorNamesFixed[] PROGMEM = const char kSensorNamesFixed[] PROGMEM =
@ -703,11 +702,10 @@ const uint8_t kGpioNiceList[] PROGMEM = {
GPIO_PN532_TXD, // PN532 HSU Tx GPIO_PN532_TXD, // PN532 HSU Tx
GPIO_PN532_RXD, // PN532 HSU Rx GPIO_PN532_RXD, // PN532 HSU Rx
#endif #endif
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
GPIO_ARDUINO_TXD, // Arduino Slave TX GPIO_TASMOTASLAVE_TXD, // Tasmota Slave TX
GPIO_ARDUINO_RXD, // Arduino Slave RX GPIO_TASMOTASLAVE_RXD, // Tasmota Slave RX
GPIO_ARDUINO_RST, // Arduino Reset Pin GPIO_TASMOTASLAVE_RST, // Tasmota Reset Pin
GPIO_ARDUINO_RST_INV, // Arduino Reset Pin inverted
#endif #endif
#ifdef USE_RDM6300 #ifdef USE_RDM6300
GPIO_RDM6300_RX, GPIO_RDM6300_RX,

View File

@ -44,7 +44,7 @@ const uint16_t HTTP_REFRESH_TIME = 2345; // milliseconds
uint8_t *efm8bb1_update = nullptr; uint8_t *efm8bb1_update = nullptr;
#endif // USE_RF_FLASH #endif // USE_RF_FLASH
enum UploadTypes { UPL_TASMOTA, UPL_SETTINGS, UPL_EFM8BB1, UPL_ARDUINOSLAVE }; enum UploadTypes { UPL_TASMOTA, UPL_SETTINGS, UPL_EFM8BB1, UPL_TASMOTASLAVE };
static const char * HEADER_KEYS[] = { "User-Agent", }; static const char * HEADER_KEYS[] = { "User-Agent", };
@ -2037,8 +2037,8 @@ void HandleUploadDone(void)
WSContentSend_P(PSTR("%06x'>" D_SUCCESSFUL "</font></b><br>"), WebColor(COL_TEXT_SUCCESS)); WSContentSend_P(PSTR("%06x'>" D_SUCCESSFUL "</font></b><br>"), WebColor(COL_TEXT_SUCCESS));
WSContentSend_P(HTTP_MSG_RSTRT); WSContentSend_P(HTTP_MSG_RSTRT);
ShowWebSource(SRC_WEBGUI); ShowWebSource(SRC_WEBGUI);
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
if (ArduinoSlave_GetFlagFlashing()) { if (TasmotaSlave_GetFlagFlashing()) {
restart_flag = 0; restart_flag = 0;
} else { // It was a normal firmware file, or we are ready to restart device } else { // It was a normal firmware file, or we are ready to restart device
restart_flag = 2; restart_flag = 2;
@ -2051,9 +2051,9 @@ void HandleUploadDone(void)
WSContentSend_P(PSTR("</div><br>")); WSContentSend_P(PSTR("</div><br>"));
WSContentSpaceButton(BUTTON_MAIN); WSContentSpaceButton(BUTTON_MAIN);
WSContentStop(); WSContentStop();
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
if (ArduinoSlave_GetFlagFlashing()) { if (TasmotaSlave_GetFlagFlashing()) {
ArduinoSlave_Flash(); TasmotaSlave_Flash();
} }
#endif #endif
} }
@ -2121,11 +2121,11 @@ void HandleUploadLoop(void)
if (Web.upload_error != 0) { return; } if (Web.upload_error != 0) { return; }
} else } else
#endif // USE_RF_FLASH #endif // USE_RF_FLASH
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
if ((WEMOS == my_module_type) && (upload.buf[0] == ':')) { // Check if this is a ARDUINO SLAVE hex file if ((WEMOS == my_module_type) && (upload.buf[0] == ':')) { // Check if this is a ARDUINO SLAVE hex file
Update.end(); // End esp8266 update session Update.end(); // End esp8266 update session
Web.upload_file_type = UPL_ARDUINOSLAVE; Web.upload_file_type = UPL_TASMOTASLAVE;
Web.upload_error = ArduinoSlave_UpdateInit(); Web.upload_error = TasmotaSlave_UpdateInit();
if (Web.upload_error != 0) { return; } if (Web.upload_error != 0) { return; }
} else } else
#endif #endif
@ -2187,9 +2187,9 @@ void HandleUploadLoop(void)
} }
} }
#endif // USE_RF_FLASH #endif // USE_RF_FLASH
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
else if (UPL_ARDUINOSLAVE == Web.upload_file_type) { else if (UPL_TASMOTASLAVE == Web.upload_file_type) {
ArduinoSlave_WriteBuffer(upload.buf, upload.currentSize); TasmotaSlave_WriteBuffer(upload.buf, upload.currentSize);
} }
#endif #endif
else { // firmware else { // firmware
@ -2243,10 +2243,10 @@ void HandleUploadLoop(void)
Web.upload_file_type = UPL_TASMOTA; Web.upload_file_type = UPL_TASMOTA;
} }
#endif // USE_RF_FLASH #endif // USE_RF_FLASH
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
else if (UPL_ARDUINOSLAVE == Web.upload_file_type) { else if (UPL_TASMOTASLAVE == Web.upload_file_type) {
// Done writing the hex to SPI flash // Done writing the hex to SPI flash
ArduinoSlave_SetFlagFlashing(true); // So we know on upload success page if it needs to flash hex or do a normal restart TasmotaSlave_SetFlagFlashing(true); // So we know on upload success page if it needs to flash hex or do a normal restart
Web.upload_file_type = UPL_TASMOTA; Web.upload_file_type = UPL_TASMOTA;
} }
#endif #endif

View File

@ -1,5 +1,5 @@
/* /*
xdrv_31_arduino_slave.ino - Support for Arduino Slave on Serial xdrv_31_tasmota_slave.ino - Support for external microcontroller slave on serial
Copyright (C) 2019 Andre Thomas and Theo Arends Copyright (C) 2019 Andre Thomas and Theo Arends
@ -17,9 +17,9 @@
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#ifdef USE_ARDUINO_SLAVE #ifdef USE_TASMOTA_SLAVE
/*********************************************************************************************\ /*********************************************************************************************\
* Arduino slave * Tasmota slave
\*********************************************************************************************/ \*********************************************************************************************/
#define XDRV_31 31 #define XDRV_31 31
@ -34,50 +34,182 @@
#define CMND_STK_LOAD_ADDRESS 0x55 #define CMND_STK_LOAD_ADDRESS 0x55
#define CMND_STK_PROG_PAGE 0x64 #define CMND_STK_PROG_PAGE 0x64
#include <TasmotaSerial.h> /*************************************************\
#include <ArduinoHexParse.h> * Tasmota Slave Specific Commands
\*************************************************/
struct ASLAVE { #define CMND_START 0xFC
#define CMND_END 0xFD
#define CMND_FEATURES 0x01
#define CMND_JSON 0x02
#define PARAM_DATA_START 0xFE
#define PARAM_DATA_END 0xFF
#include <TasmotaSerial.h>
/*
* Embedding class in here since its rather specific to Arduino bootloader
*/
class SimpleHexParse {
public:
SimpleHexParse(void);
uint8_t parseLine(char *hexline);
uint8_t ptr_l = 0;
uint8_t ptr_h = 0;
bool PageIsReady = false;
bool firstrun = true;
bool EndOfFile = false;
uint8_t FlashPage[128];
uint8_t FlashPageIdx = 0;
uint8_t layoverBuffer[16];
uint8_t layoverIdx = 0;
uint8_t getByte(char *hexline, uint8_t idx);
};
SimpleHexParse::SimpleHexParse(void)
{
}
uint8_t SimpleHexParse::parseLine(char *hexline)
{
if (layoverIdx) {
memcpy(&FlashPage[0], &layoverBuffer[0], layoverIdx);
FlashPageIdx = layoverIdx;
layoverIdx = 0;
}
uint8_t len = getByte(hexline, 1);
uint8_t addr_h = getByte(hexline, 2);
uint8_t addr_l = getByte(hexline, 3);
uint8_t rectype = getByte(hexline, 4);
for (uint8_t idx = 0; idx < len; idx++) {
if (FlashPageIdx < 128) {
FlashPage[FlashPageIdx] = getByte(hexline, idx+5);
FlashPageIdx++;
} else { // We have layover bytes
layoverBuffer[layoverIdx] = getByte(hexline, idx+5);
layoverIdx++;
}
}
if (1 == rectype) {
EndOfFile = true;
while (FlashPageIdx < 128) {
FlashPage[FlashPageIdx] = 0xFF;
FlashPageIdx++;
}
}
if (FlashPageIdx == 128) {
if (firstrun) {
firstrun = false;
} else {
ptr_l += 0x40;
if (ptr_l == 0) {
ptr_l = 0;
ptr_h++;
}
}
firstrun = false;
PageIsReady = true;
}
return 0;
}
uint8_t SimpleHexParse::getByte(char* hexline, uint8_t idx)
{
char buff[3];
buff[3] = '\0';
memcpy(&buff, &hexline[(idx*2)-1], 2);
return strtol(buff, 0, 16);
}
/*
* End of embedded class SimpleHexParse
*/
struct TSLAVE {
uint32_t spi_hex_size = 0; uint32_t spi_hex_size = 0;
uint32_t spi_sector_counter = 0; uint32_t spi_sector_counter = 0;
uint8_t spi_sector_cursor = 0; uint8_t spi_sector_cursor = 0;
uint8_t inverted = LOW;
bool type = false; bool type = false;
bool flashing = false; bool flashing = false;
} ASlave; bool SerialEnabled = false;
uint8_t waitstate = 0; // We use this so that features detection does not slow down other stuff on startup
} TSlave;
TasmotaSerial *ArduinoSlave_Serial; typedef union {
uint16_t data;
struct {
uint16_t json : 1;
uint16_t spare1 : 1;
uint16_t spare2 : 1;
uint16_t spare3 : 1;
uint16_t spare4 : 1;
uint16_t spare5 : 1;
uint16_t spare6 : 1;
uint16_t spare7 : 1;
uint16_t spare8 : 1;
uint16_t spare9 : 1;
uint16_t spare10 : 1;
uint16_t spare11 : 1;
uint16_t spare12 : 1;
uint16_t spare13 : 1;
uint16_t spare14 : 1;
uint16_t spare15 : 1;
};
} TSlaveFeatureCfg;
uint32_t ArduinoSlaveFlashStart(void) /*
* The structure below must remain 4 byte aligned to be compatible with
* Tasmota as master
*/
struct FEATURES {
uint32_t features_version;
TSlaveFeatureCfg features;
uint16_t spare4;
} TSlaveSettings;
struct COMMAND {
uint8_t command;
uint8_t parameter;
uint8_t unused2;
uint8_t unused3;
} Command;
TasmotaSerial *TasmotaSlave_Serial;
uint32_t TasmotaSlave_FlashStart(void)
{ {
return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side
} }
uint8_t ArduinoSlave_UpdateInit(void) uint8_t TasmotaSlave_UpdateInit(void)
{ {
ASlave.spi_hex_size = 0; TSlave.spi_hex_size = 0;
ASlave.spi_sector_counter = ArduinoSlaveFlashStart(); // Reset the pre-defined write address where firmware will temporarily be stored TSlave.spi_sector_counter = TasmotaSlave_FlashStart(); // Reset the pre-defined write address where firmware will temporarily be stored
ASlave.spi_sector_cursor = 0; TSlave.spi_sector_cursor = 0;
return 0; return 0;
} }
void ArduinoSlave_Reset(void) void TasmotaSlave_Reset(void)
{ {
if (ASlave.type) { if (TSlave.SerialEnabled) {
digitalWrite(pin[GPIO_ARDUINO_RST], !ASlave.inverted); digitalWrite(pin[GPIO_TASMOTASLAVE_RST], LOW);
delay(1); delay(1);
digitalWrite(pin[GPIO_ARDUINO_RST], ASlave.inverted); digitalWrite(pin[GPIO_TASMOTASLAVE_RST], HIGH);
delay(1);
digitalWrite(pin[GPIO_ARDUINO_RST], !ASlave.inverted);
delay(5); delay(5);
} }
} }
uint8_t ArduinoSlave_waitForSerialData(int dataCount, int timeout) uint8_t TasmotaSlave_waitForSerialData(int dataCount, int timeout)
{ {
int timer = 0; int timer = 0;
while (timer < timeout) { while (timer < timeout) {
if (ArduinoSlave_Serial->available() >= dataCount) { if (TasmotaSlave_Serial->available() >= dataCount) {
return 1; return 1;
} }
delay(1); delay(1);
@ -86,25 +218,25 @@ uint8_t ArduinoSlave_waitForSerialData(int dataCount, int timeout)
return 0; return 0;
} }
uint8_t ArduinoSlave_sendBytes(uint8_t* bytes, int count) uint8_t TasmotaSlave_sendBytes(uint8_t* bytes, int count)
{ {
ArduinoSlave_Serial->write(bytes, count); TasmotaSlave_Serial->write(bytes, count);
ArduinoSlave_waitForSerialData(2, 1000); TasmotaSlave_waitForSerialData(2, 1000);
uint8_t sync = ArduinoSlave_Serial->read(); uint8_t sync = TasmotaSlave_Serial->read();
uint8_t ok = ArduinoSlave_Serial->read(); uint8_t ok = TasmotaSlave_Serial->read();
if (sync == 0x14 && ok == 0x10) { if ((sync == 0x14) && (ok == 0x10)) {
return 1; return 1;
} }
return 0; return 0;
} }
uint8_t ArduinoSlave_execCmd(uint8_t cmd) uint8_t TasmotaSlave_execCmd(uint8_t cmd)
{ {
uint8_t bytes[] = { cmd, CONST_STK_CRC_EOP }; uint8_t bytes[] = { cmd, CONST_STK_CRC_EOP };
return ArduinoSlave_sendBytes(bytes, 2); return TasmotaSlave_sendBytes(bytes, 2);
} }
uint8_t ArduinoSlave_execParam(uint8_t cmd, uint8_t* params, int count) uint8_t TasmotaSlave_execParam(uint8_t cmd, uint8_t* params, int count)
{ {
uint8_t bytes[32]; uint8_t bytes[32];
bytes[0] = cmd; bytes[0] = cmd;
@ -114,50 +246,87 @@ uint8_t ArduinoSlave_execParam(uint8_t cmd, uint8_t* params, int count)
i++; i++;
} }
bytes[i + 1] = CONST_STK_CRC_EOP; bytes[i + 1] = CONST_STK_CRC_EOP;
return ArduinoSlave_sendBytes(bytes, i + 2); return TasmotaSlave_sendBytes(bytes, i + 2);
} }
uint8_t ArduinoSlave_exitProgMode(void) uint8_t TasmotaSlave_exitProgMode(void)
{ {
return ArduinoSlave_execCmd(CMND_STK_LEAVE_PROGMODE); // Exit programming mode return TasmotaSlave_execCmd(CMND_STK_LEAVE_PROGMODE); // Exit programming mode
} }
void ArduinoSlave_SetupFlash(void) void TasmotaSlave_SetupFlash(void)
{ {
uint8_t ProgParams[] = {0x86,0x00,0x00,0x01,0x01,0x01,0x01,0x03,0xff,0xff,0xff,0xff,0x00,0x80,0x04,0x00,0x00,0x00,0x80,0x00}; uint8_t ProgParams[] = {0x86, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0xff, 0xff, 0xff, 0xff, 0x00, 0x80, 0x04, 0x00, 0x00, 0x00, 0x80, 0x00};
uint8_t ExtProgParams[] = {0x05,0x04,0xd7,0xc2,0x00}; uint8_t ExtProgParams[] = {0x05, 0x04, 0xd7, 0xc2, 0x00};
ArduinoSlave_Serial->begin(USE_ARDUINO_FLASH_SPEED); TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_FLASH_SPEED);
if (ArduinoSlave_Serial->hardwareSerial()) { if (TasmotaSlave_Serial->hardwareSerial()) {
ClaimSerial(); ClaimSerial();
} }
ArduinoSlave_Reset(); TasmotaSlave_Reset();
ArduinoSlave_execCmd(CMND_STK_GET_SYNC);
ArduinoSlave_execParam(CMND_STK_SET_DEVICE, ProgParams, sizeof(ProgParams)); // Set programming parameters uint8_t timer = 0;
ArduinoSlave_execParam(CMND_STK_SET_DEVICE_EXT, ExtProgParams, sizeof(ExtProgParams)); // Set extended programming parameters bool no_error = false;
ArduinoSlave_execCmd(CMND_STK_ENTER_PROGMODE); // Enter programming mode while (200 > timer) {
if (TasmotaSlave_execCmd(CMND_STK_GET_SYNC)) {
timer = 200;
no_error = true;
}
delay(1);
}
if (no_error) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Found bootloader"));
} else {
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Bootloader could not be found"));
}
if (no_error) {
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE, ProgParams, sizeof(ProgParams))) {
} else {
no_error = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (1)"));
}
}
if (no_error) {
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE_EXT, ExtProgParams, sizeof(ExtProgParams))) {
} else {
no_error = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (2)"));
}
}
if (no_error) {
if (TasmotaSlave_execCmd(CMND_STK_ENTER_PROGMODE)) {
} else {
no_error = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Failed to put bootloader into programming mode"));
}
}
} }
uint8_t ArduinoSlave_loadAddress(uint8_t adrHi, uint8_t adrLo) uint8_t TasmotaSlave_loadAddress(uint8_t adrHi, uint8_t adrLo)
{ {
uint8_t params[] = { adrHi, adrLo }; uint8_t params[] = { adrLo, adrHi };
return ArduinoSlave_execParam(CMND_STK_LOAD_ADDRESS, params, sizeof(params)); return TasmotaSlave_execParam(CMND_STK_LOAD_ADDRESS, params, sizeof(params));
} }
void ArduinoSlave_FlashPage(uint8_t* address, uint8_t* data) void TasmotaSlave_FlashPage(uint8_t addr_h, uint8_t addr_l, uint8_t* data)
{ {
uint8_t Header[] = {CMND_STK_PROG_PAGE, 0x00, 0x80, 0x46}; uint8_t Header[] = {CMND_STK_PROG_PAGE, 0x00, 0x80, 0x46};
ArduinoSlave_loadAddress(address[1], address[0]); TasmotaSlave_loadAddress(addr_h, addr_l);
ArduinoSlave_Serial->write(Header, 4); TasmotaSlave_Serial->write(Header, 4);
for (int i = 0; i < 128; i++) { for (int i = 0; i < 128; i++) {
ArduinoSlave_Serial->write(data[i]); TasmotaSlave_Serial->write(data[i]);
} }
ArduinoSlave_Serial->write(CONST_STK_CRC_EOP); TasmotaSlave_Serial->write(CONST_STK_CRC_EOP);
ArduinoSlave_waitForSerialData(2, 1000); TasmotaSlave_waitForSerialData(2, 1000);
ArduinoSlave_Serial->read(); TasmotaSlave_Serial->read();
ArduinoSlave_Serial->read(); TasmotaSlave_Serial->read();
} }
void ArduinoSlave_Flash(void) void TasmotaSlave_Flash(void)
{ {
bool reading = true; bool reading = true;
uint32_t read = 0; uint32_t read = 0;
@ -165,31 +334,31 @@ void ArduinoSlave_Flash(void)
char thishexline[50]; char thishexline[50];
uint8_t position = 0; uint8_t position = 0;
char* flash_buffer; char* flash_buffer;
ArduinoHexParse hexParse = ArduinoHexParse(); SimpleHexParse hexParse = SimpleHexParse();
ArduinoSlave_SetupFlash(); TasmotaSlave_SetupFlash();
flash_buffer = new char[SPI_FLASH_SEC_SIZE]; flash_buffer = new char[SPI_FLASH_SEC_SIZE];
uint32_t flash_start = ArduinoSlaveFlashStart() * SPI_FLASH_SEC_SIZE; uint32_t flash_start = TasmotaSlave_FlashStart() * SPI_FLASH_SEC_SIZE;
while (reading) { while (reading) {
ESP.flashRead(flash_start + read, (uint32_t*)flash_buffer, SPI_FLASH_SEC_SIZE); ESP.flashRead(flash_start + read, (uint32_t*)flash_buffer, SPI_FLASH_SEC_SIZE);
read = read + SPI_FLASH_SEC_SIZE; read = read + SPI_FLASH_SEC_SIZE;
if (read >= ASlave.spi_hex_size) { if (read >= TSlave.spi_hex_size) {
reading = false; reading = false;
} }
for (uint32_t ca = 0; ca < SPI_FLASH_SEC_SIZE; ca++) { for (uint32_t ca = 0; ca < SPI_FLASH_SEC_SIZE; ca++) {
processed++; processed++;
if (processed <= ASlave.spi_hex_size) { if ((processed <= TSlave.spi_hex_size) && (!hexParse.EndOfFile)) {
if (':' == flash_buffer[ca]) { if (':' == flash_buffer[ca]) {
position = 0; position = 0;
} }
if (0x0D == flash_buffer[ca]) { if (0x0D == flash_buffer[ca]) {
thishexline[position] = 0; thishexline[position] = 0;
hexParse.ParseLine((uint8_t*)thishexline); hexParse.parseLine(thishexline);
if (hexParse.IsFlashPageReady()) { if (hexParse.PageIsReady) {
uint8_t* page = hexParse.GetFlashPage(); TasmotaSlave_FlashPage(hexParse.ptr_h, hexParse.ptr_l, hexParse.FlashPage);
uint8_t* address = hexParse.GetLoadAddress(); hexParse.PageIsReady = false;
ArduinoSlave_FlashPage(address, page); hexParse.FlashPageIdx = 0;
} }
} else { } else {
if (0x0A != flash_buffer[ca]) { if (0x0A != flash_buffer[ca]) {
@ -200,72 +369,93 @@ void ArduinoSlave_Flash(void)
} }
} }
} }
ASlave.flashing = false; TasmotaSlave_exitProgMode();
ArduinoSlave_exitProgMode(); TSlave.flashing = false;
restart_flag = 2; restart_flag = 2;
} }
void ArduinoSlave_SetFlagFlashing(bool value) void TasmotaSlave_SetFlagFlashing(bool value)
{ {
ASlave.flashing = value; TSlave.flashing = value;
} }
bool ArduinoSlave_GetFlagFlashing(void) bool TasmotaSlave_GetFlagFlashing(void)
{ {
return ASlave.flashing ; return TSlave.flashing;
} }
void ArduinoSlave_WriteBuffer(uint8_t *buf, size_t size) void TasmotaSlave_WriteBuffer(uint8_t *buf, size_t size)
{ {
if (0 == ASlave.spi_sector_cursor) { // Starting a new sector write so we need to erase it first if (0 == TSlave.spi_sector_cursor) { // Starting a new sector write so we need to erase it first
ESP.flashEraseSector(ASlave.spi_sector_counter); ESP.flashEraseSector(TSlave.spi_sector_counter);
} }
ASlave.spi_sector_cursor++; TSlave.spi_sector_cursor++;
ESP.flashWrite((ASlave.spi_sector_counter * SPI_FLASH_SEC_SIZE) + ((ASlave.spi_sector_cursor-1)*2048), (uint32_t*)buf, size); ESP.flashWrite((TSlave.spi_sector_counter * SPI_FLASH_SEC_SIZE) + ((TSlave.spi_sector_cursor-1)*2048), (uint32_t*)buf, size);
ASlave.spi_hex_size = ASlave.spi_hex_size + size; TSlave.spi_hex_size = TSlave.spi_hex_size + size;
if (2 == ASlave.spi_sector_cursor) { // The web upload sends 2048 bytes at a time so keep track of the cursor position to reset it for the next flash sector erase if (2 == TSlave.spi_sector_cursor) { // The web upload sends 2048 bytes at a time so keep track of the cursor position to reset it for the next flash sector erase
ASlave.spi_sector_cursor = 0; TSlave.spi_sector_cursor = 0;
ASlave.spi_sector_counter++; TSlave.spi_sector_counter++;
} }
} }
void ArduinoSlave_Init(void) void TasmotaSlave_Init(void)
{ {
if (ASlave.type) { if (TSlave.type) {
return; return;
} }
if ((pin[GPIO_ARDUINO_RXD] < 99) && (pin[GPIO_ARDUINO_TXD] < 99) && if (10 > TSlave.waitstate) {
((pin[GPIO_ARDUINO_RST] < 99) || (pin[GPIO_ARDUINO_RST_INV] < 99))) { TSlave.waitstate++;
ArduinoSlave_Serial = new TasmotaSerial(pin[GPIO_ARDUINO_RXD], pin[GPIO_ARDUINO_TXD], 1, 0, 200); return;
if (ArduinoSlave_Serial->begin(USE_ARDUINO_SERIAL_SPEED)) { }
if (ArduinoSlave_Serial->hardwareSerial()) { if (!TSlave.SerialEnabled) {
ClaimSerial(); if ((pin[GPIO_TASMOTASLAVE_RXD] < 99) && (pin[GPIO_TASMOTASLAVE_TXD] < 99) && (pin[GPIO_TASMOTASLAVE_RST] < 99)) {
TasmotaSlave_Serial = new TasmotaSerial(pin[GPIO_TASMOTASLAVE_RXD], pin[GPIO_TASMOTASLAVE_TXD], 1, 0, 200);
if (TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_SERIAL_SPEED)) {
if (TasmotaSlave_Serial->hardwareSerial()) {
ClaimSerial();
}
pinMode(pin[GPIO_TASMOTASLAVE_RST], OUTPUT);
TasmotaSlave_Reset();
TSlave.SerialEnabled = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Enabled"));
} }
if (pin[GPIO_ARDUINO_RST_INV] < 99) { }
pin[GPIO_ARDUINO_RST] = pin[GPIO_ARDUINO_RST_INV]; }
pin[GPIO_ARDUINO_RST_INV] = 99; if (TSlave.SerialEnabled) { // All go for hardware now we need to detect features if there are any
ASlave.inverted = HIGH; TasmotaSlave_sendCmnd(CMND_FEATURES, 0);
} char buffer[32];
pinMode(pin[GPIO_ARDUINO_RST], OUTPUT); TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer));
ASlave.type = true; uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer));
ArduinoSlave_Reset(); memcpy(&TSlaveSettings, &buffer, sizeof(TSlaveSettings));
AddLog_P2(LOG_LEVEL_INFO, PSTR("Arduino Slave Enabled")); if (20191026 <= TSlaveSettings.features_version) {
TSlave.type = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Version %u"), TSlaveSettings.features_version);
} }
} }
} }
void ArduinoSlave_Show(bool json) void TasmotaSlave_Show(void)
{ {
if (ASlave.type) { if ((TSlave.type) && (TSlaveSettings.features.json)) {
ArduinoSlave_Serial->flush();
ArduinoSlave_Serial->print("JSON");
ArduinoSlave_Serial->find(char(0xFE));
char buffer[100]; char buffer[100];
uint16_t haveread = ArduinoSlave_Serial->readBytesUntil(char(0xFF), buffer, sizeof(buffer)-1); TasmotaSlave_sendCmnd(CMND_JSON, 0);
buffer[haveread] = '\0'; TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer)-1);
if (json) { uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer)-1);
ResponseAppend_P(PSTR(",\"ArduinoSlave\":%s"), buffer); buffer[len] = '\0';
} ResponseAppend_P(PSTR(",\"TasmotaSlave\":%s"), buffer);
}
}
void TasmotaSlave_sendCmnd(uint8_t cmnd, uint8_t param)
{
Command.command = cmnd;
Command.parameter = param;
char buffer[sizeof(Command)+2];
buffer[0] = CMND_START;
memcpy(&buffer[1], &Command, sizeof(Command));
buffer[sizeof(Command)+1] = CMND_END;
for (uint8_t ca = 0; ca < sizeof(buffer); ca++) {
TasmotaSlave_Serial->write(buffer[ca]);
} }
} }
@ -279,13 +469,13 @@ bool Xdrv31(uint8_t function)
switch (function) { switch (function) {
case FUNC_EVERY_SECOND: case FUNC_EVERY_SECOND:
ArduinoSlave_Init(); TasmotaSlave_Init();
break; break;
case FUNC_JSON_APPEND: case FUNC_JSON_APPEND:
ArduinoSlave_Show(1); TasmotaSlave_Show();
break; break;
} }
return result; return result;
} }
#endif // USE_ARDUINO_SLAVE #endif // USE_TASMOTA_SLAVE