Merge pull request #9933 from s-hadinger/zigbee_data_persistence

Zigbee persistence of device/sensir data in EEPROM (only ZBBridge)
This commit is contained in:
s-hadinger 2020-11-21 10:49:01 +01:00 committed by GitHub
commit 90bb0292ed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 591 additions and 55 deletions

View File

@ -6,6 +6,7 @@ All notable changes to this project will be documented in this file.
## [9.1.0.2]
### Added
- KNX read reply for Power (#9236, #9891)
- Zigbee persistence of device/sensir data in EEPROM (only ZBBridge)
### Breaking Changed
- KNX DPT9 (16-bit float) to DPT14 (32-bit float) by Adrian Scillato (#9811, #9888)

View File

@ -89,6 +89,7 @@ public:
bool init_phase = true; // initialization phase, before accepting zigbee traffic
bool recv_until = false; // ignore all messages until the received frame fully matches
bool eeprom_present = false; // is the ZBBridge EEPROM present?
bool eeprom_ready = false; // is the ZBBridge EEPROM formatted and ready?
uint8_t on_error_goto = ZIGBEE_LABEL_ABORT; // on error goto label, 99 default to abort
uint8_t on_timeout_goto = ZIGBEE_LABEL_ABORT; // on timeout goto label, 99 default to abort

View File

@ -121,6 +121,7 @@ public:
const static uint32_t ZIGB_NAME1 = 0x3167697A; // 'zig1' little endian
const static uint32_t ZIGB_NAME2 = 0x3267697A; // 'zig2' little endian, v2
const static uint32_t ZIGB_DATA2 = 0x32746164; // 'dat2' little endian, v2
const static size_t Z_MAX_FLASH = z_block_len - sizeof(Z_Flashentry); // 2040
bool hibernateDeviceConfiguration(SBuffer & buf, const class Z_Data_Set & data, uint8_t endpoint) {
@ -318,7 +319,7 @@ void loadZigbeeDevices(bool dump_only = false) {
// parse what seems to be a valid entry
SBuffer buf(buf_len);
buf.addBuffer(z_dev_start + sizeof(Z_Flashentry), buf_len);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee devices data in Flash v%d (%d bytes)"), version, buf_len);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information in Flash (%d bytes)"), buf_len);
if (dump_only) {
size_t buf_len = buf.len();
@ -332,7 +333,7 @@ void loadZigbeeDevices(bool dump_only = false) {
zigbee_devices.clean(); // don't write back to Flash what we just loaded
}
} else {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No zigbee devices data in Flash"));
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information in Flash"));
}
#ifdef ESP32
free(spi_buffer);

View File

@ -0,0 +1,456 @@
/*
xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - nano filesystem for EEPROM, with anti-weavering
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#include <memory>
#define Z_EEPROM_DEBUG
// The EEPROM is 64KB in size with individually writable bytes.
// They are conveniently organized in pages of 128 bytes to accelerate
// data transfer, but unlike flash memory, you don't need to erase an entire page.
// The chip spec says it supports over 2 million writes per byte.
// EEPROM LAYOUT:
// ==============
// 64KB EEPROM is divided in 256 block of 256 bytes.
// The internal page size is 128 bytes, so we're grouping 2 pages in one block
// The advantage is that any pointer to a block is a single byte
//
// Block 0, 1 and 255 are reserved.
//
// BLock 0 contains the directory of files
// Block 1 contains the linked list of blocks for each file
// Block 255 contains the bitmap of block and ageing information
// File structure
// Each file has :
// - a name of 4 chars (no extension) that conveniently fit in uint32_t.
// - a length in bytes, encoded with 16 bits (uint16_t)
// - 1 byte indicating the first block of the file
// - 1 byte reserved
//
// Then blocks are a linked-list of content. The next block is indicated in Block 1
//
// Note: the linked list could cause a circular reference loop and potentially an infinite loop.
// This is why the content lenght is used to check that the block count does not exceed
// the content length hence cannot cause an infinite loop.
// Any pointer to blocks 1 or 255 is considered invalid and means a corruption of the file system.
// Signature entry:
// - 4 bytes of signature, currently 'Tasm'. Any other entry indicates that the EEPROM was not formatted
// - 1 byte version number, currently 0x00
// - all other bytes (5..7) are reserved and filled with 0s
// DIRECTORY
// =========
// Block 0 is the directory. There is no support for folders.
// Each file entry is 8 bytes.
// First entry is a signature marker and version
// Entries 1..30 are for files
// Entry 31 (last entry) is reserved and filled with 0s
// BITMAP
// ==========
// Block 255:
// Each byte represents a block, remember there are 256 blocks in total
// Each byte is set as follows:
// bit 7 - block is used (1) or free (0) - note that blocks 0, 1 and 255 are always used
// bit 6 - block is damaged - not implemented yet but may be useful
// bit 0..5 - generation number for anti-weavering
//
// Caveat: this bitmap system may lead to wasted blocked marked as used but actually unused
// Periodical garbage collection and sanity checks can occur, for ex at boot.
//
// If the generation number overflows, all blocks start at generation `0`
// meaning that the entire bitmap block is overwritten.
// Version 0:
// Many features are not yet implemented.
// We start with hardcoded values:
// - the two entries for files 'zig2' and 'dat2' are predefined
// - the starting block for each file is fixed.
// 'Zig2' uses 32 blocks (8kb max) - starting at block 32
// 'Dat2' uses 32 blocks (8kb max) - starting at block 64
// - the bitmap marks those blocks as used
// - version number only uses first entry that doesn't get re-written
// - only file size actually changes
/*********************************************************************************************\
*
* Constants
*
\*********************************************************************************************/
const size_t ZFS_BLOCK_SIZE = 256;
const size_t ZFS_ENTRY_SIZE = 8; // each entry is 32 bytes
const size_t ZFS_ENTRIES = 30;
const uint32_t ZFS_SIGNATURE = 0x6D736154; // 'Tasm'
/*********************************************************************************************\
* Specific to v2 (limited support)
\*********************************************************************************************/
const size_t ZFS_FILE_BLOCKS = 31; // 31 blocks
/*********************************************************************************************\
* ZFS_File_Entry
\*********************************************************************************************/
class ZFS_File_Entry {
public:
uint32_t name; // file name representing 4 chars, 0x00000000 means empty entry
uint16_t length; // length of file in bytes
uint8_t blk_start;
uint8_t reserved; // reserved for future use
ZFS_File_Entry() :
name(0),
length(0),
blk_start(0),
reserved(0)
{}
inline static bool validIdx(uint8_t blk_start) { return ((blk_start != 0x00) && (blk_start != 0x01) && (blk_start != 0xFF)); };
static uint16_t getAddress(uint8_t entry_idx);
void read(uint8_t entry_idx);
void write(uint8_t entry_idx) const ;
};
/*********************************************************************************************\
* ZFS_File_Entry
\*********************************************************************************************/
class ZFS_Root_Entry {
public:
uint32_t signature; // Signature that the block is correctly formatted
uint8_t version; // version of file system structure
uint8_t reserved[3];
ZFS_Root_Entry() :
signature(ZFS_SIGNATURE), // 'Tasm'
version(0),
reserved{}
{};
};
/*********************************************************************************************\
* ZFS_File_Entry
\*********************************************************************************************/
class ZFS_Dir_Block {
public:
ZFS_Root_Entry b0; // signature entry
ZFS_File_Entry e[ZFS_ENTRIES]; // 7 entries for files
ZFS_File_Entry reserved; // reserved for future use
void format(void); // prepare default values for formatting
};
/*********************************************************************************************\
* ZFS_Bitmap at block 0xFF
\*********************************************************************************************/
// Individual block
union ZFS_Bitmap_Entry {
uint8_t raw;
struct {
uint8_t gen : 6;
bool damaged : 1;
bool used : 1;
};
};
class ZFS_Bitmap {
public:
ZFS_Bitmap_Entry block[ZFS_BLOCK_SIZE];
void format(void);
};
/*********************************************************************************************\
* ZFS_Map, linked list of blocks, at block 1
\*********************************************************************************************/
class ZFS_Map {
public:
uint8_t next_blk[ZFS_BLOCK_SIZE];
void format(void);
};
/*********************************************************************************************\
*
* Formatting implementations
*
\*********************************************************************************************/
void ZFS_Dir_Block::format(void) {
// entry 0 - 'zig2'
e[0].name = ZIGB_NAME2;
e[0].length = 0;
e[0].blk_start = 2; // start at block 2 to 32
// entry 1 - 'dat2'
e[1].name = ZIGB_DATA2;
e[1].length = 0;
e[1].blk_start = 2 + 31; // start at block 33 to 63
}
void ZFS_Bitmap::format(void) {
ZFS_Bitmap_Entry val_used;
val_used.gen = 0;
val_used.damaged = false;
val_used.used = true;
// block 0, 1, 255
// block[0x00] = val_used; // already in loop
// block[0x01] = val_used;
block[0xFF] = val_used;
// reserve block 32->63 for file 0 and 64->95 for file 1
for (uint32_t i = 0; i < 64; i++) {
block[i] = val_used;
}
}
void ZFS_Map::format(void) {
// map a linear linked list for v1
for (uint32_t i = 2; i < ZFS_BLOCK_SIZE - 2; i++) {
next_blk[i] = i+1;
}
}
/*********************************************************************************************\
*
* Writing a file
*
\*********************************************************************************************/
class ZFS_Write_File {
public:
// file info
uint32_t name;
uint16_t cursor;
uint16_t length;
uint8_t blk_start; // if 0x00 then file does not exist
uint8_t entry_idx; // entry number in the directory
ZFS_Write_File(uint32_t _name) : name(_name), cursor(0), length(0), blk_start(0) { findOrCreate(); }
inline bool valid(void) const { return blk_start != 0; } // does the file exist?
int32_t addBytes(void* buffer, size_t buffer_len);
int32_t close(void);
protected:
void findOrCreate(void);
};
/*********************************************************************************************\
*
* Check that the EEPROM is formatted
*
\*********************************************************************************************/
// Main class for the Zigbee filesystem
class ZFS {
public:
static void initOrFormat(void); // <0 means error
static void format(void); // format EEPROM
static int32_t getLength(uint32_t name);
static bool findFileEntry(uint32_t name, ZFS_File_Entry & entry, uint8_t * entry_idx);
static void erase(void); // erase EEPROM
// read file
static int32_t readBytes(uint32_t name, uint8_t* buffer, size_t buffer_len, uint16_t start, uint16_t len);
};
/*********************************************************************************************\
*
* Check that the EEPROM is formatted
*
\*********************************************************************************************/
bool ZFS::findFileEntry(uint32_t name, ZFS_File_Entry & entry, uint8_t * _entry_idx) {
if (!zigbee.eeprom_ready) { return false; }
for (uint32_t entry_idx = 0; entry_idx < ZFS_ENTRIES; entry_idx++) {
// read entry from EEPROM
uint16_t entry_addr = 0x0000 + sizeof(ZFS_Root_Entry) + sizeof(ZFS_File_Entry) * entry_idx;
zigbee.eeprom.readBytes(entry_addr, sizeof(ZFS_File_Entry), (byte*)&entry);
#ifdef Z_EEPROM_DEBUG
// {
// char hex_char[(sizeof(ZFS_File_Entry) * 2) + 2];
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Read entry %d at address 0x%04X contains %s"), entry_idx, entry_addr, ToHex_P((uint8_t*)&entry, sizeof(entry), hex_char, sizeof(hex_char)));
// }
#endif
if (entry.name == name) {
if (_entry_idx) { *_entry_idx = entry_idx; }
return true;
}
}
return false;
}
int32_t ZFS::getLength(uint32_t name) {
ZFS_File_Entry entry;
if (ZFS::findFileEntry(name, entry, nullptr)) {
return entry.length;
}
return -1;
}
void ZFS::erase(void) {
if (!zigbee.eeprom_present) { return; }
uint32_t zero = 0;
zigbee.eeprom.writeBytes(0x0000, sizeof(zero), (byte*)&zero);
}
/*********************************************************************************************\
*
* Reading a file
*
\*********************************************************************************************/
int32_t ZFS::readBytes(uint32_t name, uint8_t* buffer, size_t buffer_len, uint16_t read_start, uint16_t read_len) {
if (!zigbee.eeprom_ready) { return -1; }
#ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "readBytes name=%08X, buffer_len=%d, read_start=0x%04X, read_len=%d"), name, buffer_len, read_start, read_len);
#endif
if (name == 0x00000000) { return -1; }
if (buffer_len == 0) { return 0; }
// look for file
ZFS_File_Entry entry;
uint8_t entry_idx;
if (!findFileEntry(name, entry, &entry_idx)) { return -1; } // file not found
if (read_start >= entry.length) { return 0; } // start of read is beyond end of file, return nothing
uint16_t max_read_len = entry.length - read_start; // we know it's > 0
if (read_len > max_read_len) { read_len = max_read_len; }
if (read_len > buffer_len) { read_len = buffer_len; }
// we know read_len is the correct max value now
// compute the start block for the file
// V1 it's the first one
uint8_t blk = entry.blk_start;
zigbee.eeprom.readBytes((blk << 8) + read_start, read_len, (byte*) buffer);
return read_len;
}
/*********************************************************************************************\
*
* Check that the EEPROM is formatted
*
\*********************************************************************************************/
void ZFS::initOrFormat(void) {
if (!zigbee.eeprom_present) { return; }
#ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "sizeof(ZFS_Bitmap)=%d sizeof(ZFS_File_Entry)=%d sizeof(ZFS_Root_Entry)=%d sizeof(ZFS_Dir_Block)=%d"), sizeof(ZFS_Bitmap), sizeof(ZFS_File_Entry), sizeof(ZFS_Root_Entry), sizeof(ZFS_Dir_Block));
{
byte map[256];
char hex_char[(256 * 2) + 2];
zigbee.eeprom.readBytes(0x0000, 256, map);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 00 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char)));
zigbee.eeprom.readBytes(0x0100, 256, map);
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 01 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char)));
// zigbee.eeprom.readBytes(0x0200, 256, map);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 02 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char)));
zigbee.eeprom.readBytes(0x2100, 256, map);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 21 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char)));
// zigbee.eeprom.readBytes(0xFF00, 256, map);
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK FF %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char)));
}
#endif
ZFS_Dir_Block * dir = new ZFS_Dir_Block();
zigbee.eeprom.readBytes(0, sizeof(ZFS_Dir_Block), (byte*) dir);
if (dir->b0.signature == ZFS_SIGNATURE) {
// Good
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "EEPROM signature 0x%08X is correct"), dir->b0.signature);
} else {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "EEPROM signature 0x%08X is incorrect, formatting"), dir->b0.signature);
format();
}
delete dir;
zigbee.eeprom_ready = true;
}
//
// Format EEPROM
//
void ZFS::format(void) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Formatting EEPROM"));
// First write the bitmap
ZFS_Bitmap * bitmap = new ZFS_Bitmap();
bitmap->format();
zigbee.eeprom.writeBytes(0xFF00, 256, (byte*) bitmap);
delete bitmap;
// Map
ZFS_Map * map = new ZFS_Map();
map->format();
zigbee.eeprom.writeBytes(0x0100, 256, (byte*) map);
delete map;
// Dir
ZFS_Dir_Block * dir = new ZFS_Dir_Block();
dir->format();
zigbee.eeprom.writeBytes(0x0000, 256, (byte*) dir);
delete dir;
}
uint16_t ZFS_File_Entry::getAddress(uint8_t entry_idx) {
return sizeof(ZFS_Root_Entry) + sizeof(ZFS_File_Entry) * entry_idx;
}
void ZFS_File_Entry::read(uint8_t entry_idx) {
if (!zigbee.eeprom_ready) { return; }
zigbee.eeprom.readBytes(getAddress(entry_idx), sizeof(ZFS_File_Entry), (byte*)this);
}
void ZFS_Write_File::findOrCreate(void) {
ZFS_File_Entry entry;
if (ZFS::findFileEntry(name, entry, &entry_idx)) {
blk_start = entry.blk_start;
}
};
int32_t ZFS_Write_File::addBytes(void* buffer, size_t buffer_len) {
if (!zigbee.eeprom_ready) { return -1; }
if ((buffer == nullptr) || (buffer_len == 0)) { return 0; }
if (length + buffer_len > ZFS_FILE_BLOCKS * 256) { return -1; } // exceeded max size
// #ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "eeprom.writeBytes address=0x%04X, len=%d"), (blk_start << 8) + length, buffer_len);
// #endif
zigbee.eeprom.writeBytes((blk_start << 8) + length, buffer_len, (byte*)buffer);
length += buffer_len;
return length;
}
int32_t ZFS_Write_File::close(void) {
if (!zigbee.eeprom_ready) { return -1; }
// write the final length
uint16_t address = ZFS_File_Entry::getAddress(entry_idx);
zigbee.eeprom.writeBytes(address + sizeof(name), 2, (byte*)&length);
return length;
}
#endif // USE_ZIGBEE

View File

@ -24,10 +24,7 @@
// ZbData v1
// File structure:
//
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record (excluding the length byte)
// uint16 - short address
//
@ -40,17 +37,6 @@
// uint8[] - list of data
//
void dumpZigbeeDevicesData(void) {
#ifdef USE_ZIGBEE_EZSP
if (zigbee.eeprom_present) {
SBuffer buf(192);
zigbee.eeprom.readBytes(64, 192, buf.getBuffer());
AddLogBuffer(LOG_LEVEL_INFO, buf.getBuffer(), 192);
}
#endif // USE_ZIGBEE_EZSP
}
// returns the lenght of consumed buffer, or -1 if error
int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
size_t segment_len = buf.get8(start);
@ -70,10 +56,16 @@ bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t star
int32_t ret = hydrateDeviceWideData(device, buf, start, len);
if (ret < 0) { return false; }
size_t offset = 0 + ret;
size_t offset = ret;
while (offset + 5 <= len) { // each entry is at least 5 bytes
uint8_t data_len = buf.get8(start + offset);
Z_Data & data_elt = device.data.createFromBuffer(buf, offset + 1, data_len);
// #ifdef Z_EEPROM_DEBUG
// {
// char hex_char[((data_len+1) * 2) + 2];
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateDeviceData data_len=%d contains %s"), data_len, ToHex_P(buf.buf(start+offset+1), data_len, hex_char, sizeof(hex_char)));
// }
// #endif
Z_Data & data_elt = device.data.createFromBuffer(buf, start + offset + 1, data_len);
(void)data_elt; // avoid compiler warning
offset += data_len + 1;
}
@ -94,7 +86,14 @@ int32_t hydrateSingleDevice(const class SBuffer & buf, size_t start, size_t len)
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr);
return -1;
}
#ifdef Z_EEPROM_DEBUG
{
if (segment_len > 3) {
char hex_char[((segment_len+1) * 2) + 2];
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%s"), shortaddr, ToHex_P(buf.buf(start+3), segment_len+1-3, hex_char, sizeof(hex_char)));
}
}
#endif
// check if the device exists, if not skip the record
Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
if (&device != nullptr) {
@ -107,28 +106,53 @@ int32_t hydrateSingleDevice(const class SBuffer & buf, size_t start, size_t len)
return segment_len + 1;
}
/*********************************************************************************************\
*
* Hydrate data from the EEPROM
*
\*********************************************************************************************/
// Parse the entire blob
// return true if ok
bool hydrateDevicesDataBlob(const class SBuffer & buf, size_t start, size_t len) {
// read number of devices
uint8_t num_devices = buf.get8(start);
if (num_devices > 0x80) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "wrong number of devices=%d"), num_devices);
bool hydrateDevicesDataFromEEPROM(void) {
if (!zigbee.eeprom_ready) { return false; }
int32_t file_length = ZFS::getLength(ZIGB_DATA2);
if (file_length > 0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in EEPROM (%d bytes)"), file_length);
} else {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in EEPROM"));
return false;
}
size_t offset = 0;
for (uint32_t cur_dev_num = 0; (cur_dev_num < num_devices) && (offset + 4 <= len); cur_dev_num++) {
int32_t segment_len = hydrateSingleDevice(buf, offset, len);
const uint16_t READ_BUFFER = 192;
uint16_t cursor = 0x0000; // cursor in the file
bool read_more = true;
// advance buffer
if (segment_len <= 0) { return false; }
offset += segment_len;
SBuffer buf(READ_BUFFER);
while (read_more) {
buf.setLen(buf.size()); // set to max size and fill with zeros
int32_t bytes_read = ZFS::readBytes(ZIGB_DATA2, buf.getBuffer(), buf.size(), cursor, READ_BUFFER);
// #ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "readBytes buffer_len=%d, read_start=%d, read_len=%d, actual_read=%d"), buf.size(), cursor, length, bytes_read);
// #endif
if (bytes_read > 0) {
buf.setLen(bytes_read); // adjust to actual size
int32_t segment_len = hydrateSingleDevice(buf, 0, buf.len());
// #ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateSingleDevice segment_len=%d"), segment_len);
// #endif
if (segment_len <= 0) { return false; }
cursor += segment_len;
} else {
read_more = false;
}
}
return true;
}
class SBuffer hibernateDeviceData(const struct Z_Device & device, bool log = false) {
class SBuffer hibernateDeviceData(const struct Z_Device & device, bool mqtt = false) {
SBuffer buf(192);
// If we have zero information about the device, just skip ir
@ -155,33 +179,48 @@ class SBuffer hibernateDeviceData(const struct Z_Device & device, bool log = fal
// update overall length
buf.set8(0, buf.len() - 1);
if (log) {
{
size_t buf_len = buf.len() - 3;
char hex[2*buf_len + 1];
// skip first 3 bytes
ToHex_P(buf.buf(3), buf_len, hex, sizeof(hex));
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%s\"}"), device.shortaddr, hex);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
if (mqtt) {
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%s\"}"), device.shortaddr, hex);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
} else {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%s"), device.shortaddr, hex);
}
}
}
return buf;
}
/*********************************************************************************************\
*
* Hibernate data to the EEPROM
*
\*********************************************************************************************/
void hibernateAllData(void) {
if (!zigbee.eeprom_ready) { return; }
ZFS_Write_File write_data(ZIGB_DATA2);
// first prefix is number of devices
uint8_t device_num = zigbee_devices.devicesSize();
for (const auto & device : zigbee_devices.getDevices()) {
// allocte a buffer for a single device
SBuffer buf = hibernateDeviceData(device, true); // log
SBuffer buf = hibernateDeviceData(device, false); // simple log, no mqtt
if (buf.len() > 0) {
// TODO store in EEPROM
write_data.addBytes(buf.getBuffer(), buf.len());
}
}
int32_t ret = write_data.close();
#ifdef Z_EEPROM_DEBUG
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to EEPROM"), ret);
#endif
}
#endif // USE_ZIGBEE

View File

@ -867,7 +867,9 @@ static const Zigbee_Instruction zb_prog[] PROGMEM = {
ZI_MQTT_STATE(ZIGBEE_STATUS_OK, kStarted)
ZI_LOG(LOG_LEVEL_INFO, kZigbeeStarted)
ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_CALL(&Z_Prepare_EEPROM, 0)
ZI_CALL(&Z_Load_Devices, 0)
ZI_CALL(&Z_Load_Data, 0)
ZI_CALL(&Z_Query_Bulbs, 0)
ZI_LABEL(ZIGBEE_LABEL_MAIN_LOOP)

View File

@ -1850,6 +1850,14 @@ int32_t ZNP_Recv_Default(int32_t res, const class SBuffer &buf) {
* Functions called by State Machine
\*********************************************************************************************/
//
// Callback for loading preparing EEPROM, called by the state machine
//
int32_t Z_Prepare_EEPROM(uint8_t value) {
ZFS::initOrFormat();
return 0; // continue
}
//
// Callback for loading Zigbee configuration from Flash, called by the state machine
//
@ -1859,6 +1867,14 @@ int32_t Z_Load_Devices(uint8_t value) {
return 0; // continue
}
//
// Callback for loading Zigbee data from EEPROM, called by the state machine
//
int32_t Z_Load_Data(uint8_t value) {
hydrateDevicesDataFromEEPROM();
return 0; // continue
}
//
// Query the state of a bulb (light) if its type allows it
//

View File

@ -1250,9 +1250,16 @@ void CmndZbSave(void) {
case -1: // dump configuration
loadZigbeeDevices(true); // dump only
break;
case -2: // dump data
dumpZigbeeDevicesData();
case -2:
hydrateDevicesDataFromEEPROM();
break;
#ifdef Z_EEPROM_DEBUG
case -10:
{ // reinit EEPROM
ZFS::erase();
break;
}
#endif
default:
saveZigbeeDevices();
break;
@ -1456,24 +1463,32 @@ void CmndZbStatus(void) {
//
void CmndZbData(void) {
if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; }
RemoveSpace(XdrvMailbox.data);
// check if parameters contain a comma ','
char *p;
strtok_r(XdrvMailbox.data, ",", &p);
// parse first part, <device_id>
Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered
if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
if (p) {
// set ZbData
const SBuffer buf = SBuffer::SBufferFromHex(p, strlen(p));
hydrateDeviceData(device, buf, 0, buf.len());
if (strlen(XdrvMailbox.data) == 0) {
// if empty, log values for all devices
for (const auto & device : zigbee_devices.getDevices()) {
hibernateDeviceData(device, true); // simple log, no mqtt
}
} else {
// non-JSON, export current data
// ZbData 0x1234
// ZbData Device_Name
hibernateDeviceData(device, true); // log
// check if parameters contain a comma ','
char *p;
strtok_r(XdrvMailbox.data, ",", &p);
// parse first part, <device_id>
Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered
if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; }
if (p) {
// set ZbData
const SBuffer buf = SBuffer::SBufferFromHex(p, strlen(p));
hydrateDeviceData(device, buf, 0, buf.len());
} else {
// non-JSON, export current data
// ZbData 0x1234
// ZbData Device_Name
hibernateDeviceData(device, true); // mqtt
}
}
ResponseCmndDone();
@ -1839,6 +1854,11 @@ bool Xdrv23(uint8_t function)
case FUNC_COMMAND:
result = DecodeCommand(kZbCommands, ZigbeeCommand);
break;
#ifdef USE_ZIGBEE_EZSP
case FUNC_SAVE_BEFORE_RESTART:
hibernateAllData();
break;
#endif // USE_ZIGBEE_EZSP
}
}
return result;