Merge pull request #7988 from Staars/hm10_PR

Update HM10
This commit is contained in:
Theo Arends 2020-03-24 13:48:14 +01:00 committed by GitHub
commit 9888a77a15
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 171 additions and 76 deletions

View File

@ -20,6 +20,9 @@
--------------------------------------------------------------------------------------------
Version yyyymmdd Action Description
--------------------------------------------------------------------------------------------
0.9.3.0 20200322 added - multi page web view, command HM10PAGE, polling for MJ_HT_V1,
more stable readings, internal refactoring
---
0.9.2.0 20200317 added - MiBeacon-support, add Flora, MJ_HT_V1 and CGD1, add dew point,
add AUTO(-scan), RULES-message
---
@ -42,11 +45,12 @@ TasmotaSerial *HM10Serial;
#define HM10_MAX_TASK_NUMBER 12
uint8_t HM10_TASK_LIST[HM10_MAX_TASK_NUMBER+1][2]; // first value: kind of task - second value: delay in x * 100ms
#define HM10_MAX_RX_BUF 160
#define HM10_MAX_RX_BUF 64
struct {
uint8_t current_task_delay; // number of 100ms-cycles
uint8_t last_command;
uint16_t perPage = 4;
uint16_t firmware;
uint32_t period; // set manually in addition to TELE-period, is set to TELE-period after start
uint32_t serialSpeed;
@ -71,24 +75,24 @@ struct {
} HM10;
#pragma pack(1) // byte-aligned structures to read the sensor data
struct {
uint16_t temp;
uint8_t hum;
} LYWSD0x_HT;
struct {
uint8_t spare;
uint16_t temp;
uint16_t hum;
} CGD1_HT;
struct {
uint16_t temp;
uint8_t hum;
} LYWSD0x_HT;
struct {
uint8_t spare;
uint16_t temp;
uint16_t hum;
} CGD1_HT;
struct {
uint16_t temp;
uint8_t spare;
uint32_t lux;
uint8_t moist;
uint16_t fert;
} Flora_TLMF; // temperature, lux, moisture, fertility
struct {
uint16_t temp;
uint8_t spare;
uint32_t lux;
uint8_t moist;
uint16_t fert;
} Flora_TLMF; // temeprature, lux, moisture, fertility
struct mi_beacon_t{
uint16_t frame;
@ -118,7 +122,7 @@ struct mi_sensor_t{
uint8_t type; //Flora = 1; MI-HT_V1=2; LYWSD02=3; LYWSD03=4; CGG1=5; CGD1=6
uint8_t serial[6];
uint8_t showedUp;
float temp; //Flora, MJ_HT_V1, LYWSD0x
float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx
union {
struct {
float moisture;
@ -129,7 +133,7 @@ struct mi_sensor_t{
float hum;
}; // MJ_HT_V1, LYWSD0x
};
uint8_t bat;
uint8_t bat; // all sensors
};
std::vector<mi_sensor_t> MIBLEsensors;
@ -142,7 +146,7 @@ std::vector<mi_sensor_t> MIBLEsensors;
const char S_JSON_HM10_COMMAND_NVALUE[] PROGMEM = "{\"" D_CMND_HM10 "%s\":%d}";
const char S_JSON_HM10_COMMAND[] PROGMEM = "{\"" D_CMND_HM10 "%s%s\"}";
const char kHM10_Commands[] PROGMEM = "Scan|AT|Period|Baud|Time|Auto";
const char kHM10_Commands[] PROGMEM = "Scan|AT|Period|Baud|Time|Auto|Page";
#define FLORA 1
#define MJ_HT_V1 2
@ -177,7 +181,8 @@ enum HM10_Commands { // commands useable in console or rules
CMND_HM10_PERIOD, // set period like TELE-period in seconds between read-cycles
CMND_HM10_BAUD, // serial speed of ESP8266 (<-> HM10), does not change baud rate of HM10
CMND_HM10_TIME, // set LYWSD02-Time from ESP8266-time
CMND_HM10_AUTO // do discovery scans permanently to receive MiBeacons in seconds between read-cycles
CMND_HM10_AUTO, // do discovery scans permanently to receive MiBeacons in seconds between read-cycles
CMND_HM10_PAGE // sensor entries per web page, which will be shown alternated
};
enum HM10_awaitData: uint8_t {
@ -186,7 +191,8 @@ enum HM10_awaitData: uint8_t {
TLMF = 2,
bat = 3,
tempHumCGD1 = 4,
discScan = 5
discScan = 5,
tempHumMJ = 6
};
/*********************************************************************************************\
@ -222,7 +228,10 @@ enum HM10_awaitData: uint8_t {
#define TASK_HM10_UN_HT_CGD1 26 // unsubscribe service handle 4b
#define TASK_HM10_READ_B_CGD1 27 // read service handle 11
#define TASK_HM10_DELAY_SUB_CGD1 28 // start reading from subscription delayed
#define TASK_HM10_STATUS_EVENT 29 // process status for RULES
#define TASK_HM10_READ_B_MJ 29 // read service handle 18
#define TASK_HM10_SUB_HT_MJ 30 // subscribe to service handle 0f
#define TASK_HM10_STATUS_EVENT 32 // process status for RULES
#define TASK_HM10_DONE 99 // used, if there was a task in the slot or just to wait
@ -314,6 +323,14 @@ void HM10_Read_CGD1(void) {
HM10_Launchtask(TASK_HM10_DISCONN,5,5); // disconnect
}
void HM10_Read_MJ_HT_V1(void) {
HM10_Launchtask(TASK_HM10_CONN,0,1); // connect
HM10_Launchtask(TASK_HM10_FEEDBACK,1,35); // get OK+CONN
HM10_Launchtask(TASK_HM10_READ_B_MJ,2,20); // battery
HM10_Launchtask(TASK_HM10_SUB_HT_MJ,3,10); // temp hum
HM10_Launchtask(TASK_HM10_DISCONN,4,5); // disconnect
}
/**
* @brief Return the slot number of a known sensor or return create new sensor slot
*
@ -354,17 +371,17 @@ uint32_t MIBLEgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){
memcpy(_newSensor.serial,_serial, sizeof(_serial));
_newSensor.type = _type;
_newSensor.showedUp = 1;
_newSensor.temp =-1000.0f;
_newSensor.temp =NAN;
_newSensor.bat=0x00;
switch (_type)
{
case 1:
_newSensor.moisture =-1000.0f;
_newSensor.fertility =-1000.0f;
_newSensor.moisture =NAN;
_newSensor.fertility =NAN;
_newSensor.lux = 0x00ffffff;
break;
case 2: case 3: case 4: case 5: case 6:
_newSensor.hum=-1.0f;
_newSensor.hum=NAN;
break;
default:
break;
@ -536,6 +553,7 @@ void HM10ParseResponse(char *buf, uint16_t bufsize) {
void HM10readHT_LY(char *_buf){
DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
if(_buf[0]==0x4f && _buf[1]==0x4b && _buf[2]==0x2b) return; // "OK+"
if(_buf[0] != 0 && _buf[1] != 0){
memcpy(&LYWSD0x_HT,(void *)_buf,3);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 100: %u, H: %u"),D_CMND_HM10,LYWSD0x_HT.temp,LYWSD0x_HT.hum);
@ -559,7 +577,8 @@ void HM10readHT_LY(char *_buf){
}
void HM10readHT_CGD1(char *_buf){
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
if(_buf[0]==0x4f && _buf[1]==0x4b && _buf[2]==0x2b) return; // "OK+"
if(_buf[0] == 0){
if(_buf[1]==0 && _buf[2]==0 && _buf[3]==0 && _buf[4]==0) return;
memcpy(&CGD1_HT,(void *)_buf,5);
@ -583,8 +602,35 @@ void HM10readHT_CGD1(char *_buf){
}
}
void HM10readHT_MJ_HT_V1(char *_buf){
DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
if(_buf[0]!=0x54 && _buf[1]!=0x3d) return; //"T="
// T=22.7 H=42.2 (response as ASCII)
// 0123456789012
uint32_t _temp = (atoi(_buf+2) * 10) + atoi(_buf+5);
uint32_t _hum = (atoi(_buf+9) * 10) + atoi(_buf+12);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 10: %u, H * 10: %u"),D_CMND_HM10,_temp,_hum);
uint32_t _slot = HM10.state.sensor;
DEBUG_SENSOR_LOG(PSTR("MIBLE: Sensor slot: %u"), _slot);
static float _tempFloat;
_tempFloat=(float)_temp/10.0f;
if(_tempFloat<60){
MIBLEsensors.at(_slot).temp=_tempFloat;
HM10.mode.awaiting = none;
HM10.current_task_delay = 0;
MIBLEsensors.at(_slot).showedUp=255; // this sensor is real
}
_tempFloat=(float)_hum/10.0f;
if(_tempFloat<100){
MIBLEsensors.at(_slot).hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1: hum updated"));
}
}
void HM10readTLMF(char *_buf){
DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
if(_buf[0]==0x4f && _buf[1]==0x4b && _buf[2]==0x2b) return; // "OK+"
if(_buf[0] != 0 || _buf[1] != 0){ // this will lose 0.0 degree, but it is not possible to measure a successful reading
memcpy(&Flora_TLMF,(void *)_buf,10);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 10: %u, L: %u, M: %u, F: %u"),D_CMND_HM10,Flora_TLMF.temp,Flora_TLMF.lux,Flora_TLMF.moist,Flora_TLMF.fert);
@ -612,6 +658,7 @@ void HM10readTLMF(char *_buf){
bool HM10readBat(char *_buf){
DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
if(_buf[0]==0x4f && _buf[1]==0x4b && _buf[2]==0x2b) return false; // "OK+"
if(_buf[0] != 0){
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: Battery: %u"),D_CMND_HM10,_buf[0]);
uint32_t _slot = HM10.state.sensor;
@ -662,12 +709,15 @@ bool HM10SerialHandleFeedback(){ // every 50 milliseconds
break;
case TLMF:
if (HM10.mode.connected) HM10readTLMF(ret);
break;
break;
case discScan:
if(success) {
HM10ParseResponse(ret,i);
}
break;
case tempHumMJ:
if (HM10.mode.connected) HM10readHT_MJ_HT_V1(ret);
break;
case none:
if(success) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: response: %s"),D_CMND_HM10, (char *)ret);
@ -875,6 +925,23 @@ void HM10_TaskEvery100ms(){
runningTaskLoop = false;
HM10Serial->write("AT+SCAN9");
break;
case TASK_HM10_READ_B_MJ:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 0x18"),D_CMND_HM10);
HM10.current_task_delay = 2; // set task delay
HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i);
runningTaskLoop = false;
HM10Serial->write("AT+READDATA0018?");
HM10.mode.awaiting = bat;
break;
case TASK_HM10_SUB_HT_MJ:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: subscribe to 0x0f"),D_CMND_HM10);
HM10.current_task_delay = 10; // set task delay
HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i);
runningTaskLoop = false;
HM10.mode.awaiting = none;
HM10Serial->write("AT+NOTIFY_ON000F");
HM10.mode.awaiting = tempHumMJ;
break;
case TASK_HM10_FEEDBACK:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: get response"),D_CMND_HM10);
HM10SerialHandleFeedback();
@ -941,11 +1008,17 @@ void HM10StatusInfo(){
*
*/
void HM10EverySecond(){
void HM10EverySecond(bool restart){
static uint32_t _counter = 0;
static uint32_t _nextSensorSlot = 0;
static uint32_t _lastDiscovery = 0;
if(restart){
_counter = 0;
_lastDiscovery = 0;
return;
}
if(HM10.firmware == 0) return;
if(HM10.mode.pending_task == 1) return;
if(MIBLEsensors.size()==0 && !HM10.mode.autoScan) return;
@ -965,14 +1038,17 @@ void HM10EverySecond(){
_nextSensorSlot++;
HM10.mode.pending_task = 1;
switch(MIBLEsensors.at(HM10.state.sensor).type){
case LYWSD03MMC:
HM10_Read_LYWSD03();
case FLORA:
HM10_Read_Flora();
break;
case MJ_HT_V1:
HM10_Read_MJ_HT_V1();
break;
case LYWSD02:
HM10_Read_LYWSD02();
break;
case FLORA:
HM10_Read_Flora();
case LYWSD03MMC:
HM10_Read_LYWSD03();
break;
case CGD1:
HM10_Read_CGD1();
@ -1007,7 +1083,13 @@ bool HM10Cmd(void) {
switch (command_code) {
case CMND_HM10_PERIOD:
if (XdrvMailbox.data_len > 0) {
HM10.period = XdrvMailbox.payload;
if (XdrvMailbox.payload==1) {
HM10EverySecond(true);
XdrvMailbox.payload = HM10.period;
}
else {
HM10.period = XdrvMailbox.payload;
}
}
else {
XdrvMailbox.payload = HM10.period;
@ -1051,6 +1133,14 @@ bool HM10Cmd(void) {
}
Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload);
break;
case CMND_HM10_PAGE:
if (XdrvMailbox.data_len > 0) {
if (XdrvMailbox.payload == 0) XdrvMailbox.payload = HM10.perPage; // ignore 0
HM10.perPage = XdrvMailbox.payload;
}
else XdrvMailbox.payload = HM10.perPage;
Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload);
break;
case CMND_HM10_AT:
HM10Serial->write("AT"); // without an argument this will disconnect
if (strlen(XdrvMailbox.data)!=0) {
@ -1080,7 +1170,7 @@ bool HM10Cmd(void) {
* Presentation
\*********************************************************************************************/
const char HTTP_HM10[] PROGMEM = "{s}HM10" " Firmware " "{m}%u{e}";
const char HTTP_HM10[] PROGMEM = "{s}HM10 V%u{m}%u%s / %u{e}";
const char HTTP_HM10_SERIAL[] PROGMEM = "{s}%s %s{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}";
const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u%%{e}";
const char HTTP_HM10_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%sus/cm{e}";
@ -1092,18 +1182,17 @@ void HM10Show(bool json)
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
char slave[33];
sprintf_P(slave,"%s-%02x%02x%02x",kHM10SlaveType[MIBLEsensors.at(i).type-1],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[5]);
char temperature[FLOATSZ]; // all sensors have temperature
dtostrfd(MIBLEsensors.at(i).temp, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR(",\"%s\":{"),slave);
if(MIBLEsensors.at(i).temp!=-1000.0f){ // this is the error code -> no temperature
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature);
}
else {
ResponseAppend_P(PSTR("}"));
continue;
}
if (MIBLEsensors.at(i).type==FLORA){
if(!isnan(MIBLEsensors.at(i).temp)){ // this is the error code -> no temperature
char temperature[FLOATSZ]; // all sensors have temperature
dtostrfd(MIBLEsensors.at(i).temp, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature);
}
else {
ResponseAppend_P(PSTR("}"));
continue;
}
char lux[FLOATSZ];
char moisture[FLOATSZ];
char fertility[FLOATSZ];
@ -1113,23 +1202,16 @@ void HM10Show(bool json)
if(MIBLEsensors.at(i).lux!=0x0ffffff){ // this is the error code -> no temperature
ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%s"), lux);
}
if(MIBLEsensors.at(i).moisture!=-1000.0f){ // this is the error code -> no moisture
if(!isnan(MIBLEsensors.at(i).moisture)){ // this is the error code -> no moisture
ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%s"), moisture);
}
if(MIBLEsensors.at(i).fertility!=-1000.0f){ // this is the error code -> no fertility
if(!isnan(MIBLEsensors.at(i).fertility)){ // this is the error code -> no fertility
ResponseAppend_P(PSTR(",\"Fertility\":%s"), fertility);
}
}
if (MIBLEsensors.at(i).type>FLORA){
char humidity[FLOATSZ];
dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity);
if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity
ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
}
if(MIBLEsensors.at(i).hum!=-1.0f && MIBLEsensors.at(i).temp!=-1000.0f){ // this is the error code -> no humidity nor temp
char dewpoint[FLOATSZ];
dtostrfd(CalcTempHumToDew(MIBLEsensors.at(i).temp, MIBLEsensors.at(i).hum), Settings.flag2.temperature_resolution, dewpoint);
ResponseAppend_P(PSTR(",\"" D_JSON_DEWPOINT "\":%s"), dewpoint);
if(!isnan(MIBLEsensors.at(i).hum) && !isnan(MIBLEsensors.at(i).temp)){ // this is the error code -> no humidity nor temp
ResponseAppendTHD(MIBLEsensors.at(i).temp, MIBLEsensors.at(i).hum);
}
}
if(MIBLEsensors.at(i).bat!=0x00){ // this is the error code -> no battery
@ -1139,44 +1221,57 @@ void HM10Show(bool json)
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_HM10, HM10.firmware);
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
static uint16_t _page = 0;
static uint16_t _counter = 0;
int32_t i = _page * HM10.perPage;
uint32_t j = i + HM10.perPage;
if (j+1>MIBLEsensors.size()){
j = MIBLEsensors.size();
}
char stemp[5] ={0};
if (MIBLEsensors.size()-(_page*HM10.perPage)>1 && HM10.perPage!=1) {
sprintf_P(stemp,"-%u",j);
}
if (MIBLEsensors.size()==0) i=-1; // only for the GUI
WSContentSend_PD(HTTP_HM10, HM10.firmware, i+1,stemp,MIBLEsensors.size());
for (i; i<j; i++) {
WSContentSend_PD(HTTP_HM10_HL);
WSContentSend_PD(HTTP_HM10_SERIAL, kHM10SlaveType[MIBLEsensors.at(i).type-1], D_MAC_ADDRESS, MIBLEsensors.at(i).serial[0], MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[5]);
if(MIBLEsensors.at(i).temp!=-1000.0f){
char temperature[FLOATSZ];
dtostrfd(MIBLEsensors.at(i).temp, Settings.flag2.temperature_resolution, temperature);
WSContentSend_PD(HTTP_SNS_TEMP, kHM10SlaveType[MIBLEsensors.at(i).type-1], temperature, TempUnit());
}
if (MIBLEsensors.at(i).type==FLORA){
if(!isnan(MIBLEsensors.at(i).temp)){
char temperature[FLOATSZ];
dtostrfd(MIBLEsensors.at(i).temp, Settings.flag2.temperature_resolution, temperature);
WSContentSend_PD(HTTP_SNS_TEMP, kHM10SlaveType[MIBLEsensors.at(i).type-1], temperature, TempUnit());
}
if(MIBLEsensors.at(i).lux!=0x00ffffff){ // this is the error code -> no valid value
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, kHM10SlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).lux);
}
if(MIBLEsensors.at(i).moisture!=-1000.0f){ // this is the error code -> no valid value
if(!isnan(MIBLEsensors.at(i).moisture)){ // this is the error code -> no valid value
WSContentSend_PD(HTTP_SNS_MOISTURE, kHM10SlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).moisture);
}
if(MIBLEsensors.at(i).fertility!=-1000.0f){ // this is the error code -> no valid value
if(!isnan(MIBLEsensors.at(i).fertility)){ // this is the error code -> no valid value
char fertility[FLOATSZ];
dtostrfd(MIBLEsensors.at(i).fertility, 0, fertility);
WSContentSend_PD(HTTP_HM10_FLORA_DATA, kHM10SlaveType[MIBLEsensors.at(i).type-1], fertility);
}
}
if (MIBLEsensors.at(i).type>FLORA){ // everything "above" Flora
if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity
char humidity[FLOATSZ];
dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity);
WSContentSend_PD(HTTP_SNS_HUM, kHM10SlaveType[MIBLEsensors.at(i).type-1], humidity);
}
if(MIBLEsensors.at(i).hum!=-1.0f && MIBLEsensors.at(i).temp!=-1000.0f){ // this is the error code -> no humidity nor temp
char dewpoint[FLOATSZ];
dtostrfd(CalcTempHumToDew(MIBLEsensors.at(i).temp, MIBLEsensors.at(i).hum), Settings.flag2.temperature_resolution, dewpoint);
WSContentSend_PD(HTTP_SNS_DEW, kHM10SlaveType[MIBLEsensors.at(i).type-1], dewpoint, TempUnit());
if(!isnan(MIBLEsensors.at(i).hum) && !isnan(MIBLEsensors.at(i).temp)){
WSContentSend_THD(kHM10SlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).temp, MIBLEsensors.at(i).hum);
}
}
if(MIBLEsensors.at(i).bat!=0x00){
WSContentSend_PD(HTTP_BATTERY, kHM10SlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).bat);
}
}
_counter++;
if(_counter>3) {
_page++;
_counter=0;
}
if(MIBLEsensors.size()%HM10.perPage==0 && _page==MIBLEsensors.size()/HM10.perPage) _page=0;
if(_page>MIBLEsensors.size()/HM10.perPage) _page=0;
#endif // USE_WEBSERVER
}
}
@ -1203,7 +1298,7 @@ bool Xsns62(uint8_t function)
}
break;
case FUNC_EVERY_SECOND:
HM10EverySecond();
HM10EverySecond(false);
break;
case FUNC_COMMAND:
result = HM10Cmd();