Some optimizations

Some optimizations
This commit is contained in:
Theo Arends 2018-08-27 16:07:23 +02:00
parent d4931f7b11
commit 9b54ab9038
1 changed files with 57 additions and 67 deletions

View File

@ -98,6 +98,16 @@ const char kTasmotaCommands[] PROGMEM =
const uint8_t kIFan02Speed[4][3] = {{6,6,6}, {7,6,6}, {7,7,6}, {7,6,7}}; const uint8_t kIFan02Speed[4][3] = {{6,6,6}, {7,6,6}, {7,7,6}, {7,6,7}};
// Global variables // Global variables
SerialConfig serial_config = SERIAL_8N1; // Serial interface configuration 8 data bits, No parity, 1 stop bit
#ifdef USE_MQTT_TLS
WiFiClientSecure EspClient; // Wifi Secure Client
#else
WiFiClient EspClient; // Wifi Client
#endif
WiFiUDP PortUdp; // UDP Syslog and Alexa
unsigned long feature_drv1; // Compiled driver feature map unsigned long feature_drv1; // Compiled driver feature map
unsigned long feature_drv2; // Compiled driver feature map unsigned long feature_drv2; // Compiled driver feature map
unsigned long feature_sns1; // Compiled sensor feature map unsigned long feature_sns1; // Compiled sensor feature map
@ -112,75 +122,53 @@ unsigned long blink_timer = 0; // Power cycle timer
unsigned long backlog_delay = 0; // Command backlog delay unsigned long backlog_delay = 0; // Command backlog delay
unsigned long button_debounce = 0; // Button debounce timer unsigned long button_debounce = 0; // Button debounce timer
unsigned long switch_debounce = 0; // Switch debounce timer unsigned long switch_debounce = 0; // Switch debounce timer
power_t power = 0; // Current copy of Settings.power power_t power = 0; // Current copy of Settings.power
int baudrate = APP_BAUDRATE; // Serial interface baud rate
SerialConfig serial_config = SERIAL_8N1; // Serial interface configuration 8 data bits, No parity, 1 stop bit
byte serial_in_byte; // Received byte
uint8_t serial_local = 0; // Handle serial locally;
int serial_in_byte_counter = 0; // Index in receive buffer
byte dual_hex_code = 0; // Sonoff dual input flag
uint16_t dual_button_code = 0; // Sonoff dual received code
int16_t save_data_counter; // Counter and flag for config save to Flash
uint8_t fallback_topic_flag = 0; // Use Topic or FallbackTopic
uint8_t state_250mS = 0; // State 250msecond per second flag
int ota_state_flag = 0; // OTA state flag
int ota_result = 0; // OTA result
byte ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter
char *ota_url; // OTA url string
int restart_flag = 0; // Sonoff restart flag
int wifi_state_flag = WIFI_RESTART; // Wifi state flag
uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year
boolean latest_uptime_flag = true; // Signal latest uptime
int tele_period = 0; // Tele period timer
byte web_log_index = 1; // Index in Web log buffer (should never be 0)
byte reset_web_log_flag = 0; // Reset web console log
byte devices_present = 0; // Max number of devices supported
int status_update_timer = 0; // Refresh initial status
uint16_t blink_counter = 0; // Number of blink cycles
power_t blink_power; // Blink power state power_t blink_power; // Blink power state
power_t blink_mask = 0; // Blink relay active mask power_t blink_mask = 0; // Blink relay active mask
power_t blink_powersave; // Blink start power save state power_t blink_powersave; // Blink start power save state
uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command
power_t latching_power = 0; // Power state at latching start power_t latching_power = 0; // Power state at latching start
power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off))
int baudrate = APP_BAUDRATE; // Serial interface baud rate
int serial_in_byte_counter = 0; // Index in receive buffer
int ota_state_flag = 0; // OTA state flag
int ota_result = 0; // OTA result
int restart_flag = 0; // Sonoff restart flag
int wifi_state_flag = WIFI_RESTART; // Wifi state flag
int tele_period = 0; // Tele period timer
int status_update_timer = 0; // Refresh initial status
int blinks = 201; // Number of LED blinks
uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year
uint32_t global_update = 0; // Timestamp of last global temperature and humidity update
float global_temperature = 0; // Provide a global temperature to be used by some sensors
float global_humidity = 0; // Provide a global humidity to be used by some sensors
char *ota_url; // OTA url string pointer
uint16_t dual_button_code = 0; // Sonoff dual received code
uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command
uint16_t blink_counter = 0; // Number of blink cycles
uint16_t seriallog_timer = 0; // Timer to disable Seriallog
uint16_t syslog_timer = 0; // Timer to re-enable syslog_level
uint16_t holdbutton[MAX_KEYS] = { 0 }; // Timer for button hold
int16_t save_data_counter; // Counter and flag for config save to Flash
RulesBitfield rules_flag; // Rule state flags (16 bits)
uint8_t serial_local = 0; // Handle serial locally;
uint8_t fallback_topic_flag = 0; // Use Topic or FallbackTopic
uint8_t state_250mS = 0; // State 250msecond per second flag
uint8_t latching_relay_pulse = 0; // Latching relay pulse timer uint8_t latching_relay_pulse = 0; // Latching relay pulse timer
uint8_t backlog_index = 0; // Command backlog index uint8_t backlog_index = 0; // Command backlog index
uint8_t backlog_pointer = 0; // Command backlog pointer uint8_t backlog_pointer = 0; // Command backlog pointer
uint8_t backlog_mutex = 0; // Command backlog pending uint8_t backlog_mutex = 0; // Command backlog pending
uint8_t interlock_mutex = 0; // Interlock power command pending uint8_t interlock_mutex = 0; // Interlock power command pending
#ifdef USE_MQTT_TLS
WiFiClientSecure EspClient; // Wifi Secure Client
#else
WiFiClient EspClient; // Wifi Client
#endif
WiFiUDP PortUdp; // UDP Syslog and Alexa
byte syslog_level; // Current copy of Settings.syslog_level
uint16_t syslog_timer = 0; // Timer to re-enable syslog_level
byte seriallog_level; // Current copy of Settings.seriallog_level
uint16_t seriallog_timer = 0; // Timer to disable Seriallog
uint8_t sleep; // Current copy of Settings.sleep uint8_t sleep; // Current copy of Settings.sleep
uint8_t stop_flash_rotate = 0; // Allow flash configuration rotation uint8_t stop_flash_rotate = 0; // Allow flash configuration rotation
int blinks = 201; // Number of LED blinks
uint8_t blinkstate = 0; // LED state uint8_t blinkstate = 0; // LED state
uint8_t blinkspeed = 1; // LED blink rate uint8_t blinkspeed = 1; // LED blink rate
uint8_t blockgpio0 = 4; // Block GPIO0 for 4 seconds after poweron to workaround Wemos D1 RTS circuit
uint8_t lastbutton[MAX_KEYS] = { NOT_PRESSED, NOT_PRESSED, NOT_PRESSED, NOT_PRESSED }; // Last button states uint8_t lastbutton[MAX_KEYS] = { NOT_PRESSED, NOT_PRESSED, NOT_PRESSED, NOT_PRESSED }; // Last button states
uint16_t holdbutton[MAX_KEYS] = { 0 }; // Timer for button hold
uint8_t multiwindow[MAX_KEYS] = { 0 }; // Max time between button presses to record press count uint8_t multiwindow[MAX_KEYS] = { 0 }; // Max time between button presses to record press count
uint8_t multipress[MAX_KEYS] = { 0 }; // Number of button presses within multiwindow uint8_t multipress[MAX_KEYS] = { 0 }; // Number of button presses within multiwindow
uint8_t lastwallswitch[MAX_SWITCHES]; // Last wall switch states uint8_t lastwallswitch[MAX_SWITCHES]; // Last wall switch states
uint8_t holdwallswitch[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold uint8_t holdwallswitch[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold
uint8_t virtualswitch[MAX_SWITCHES]; // Virtual switch states uint8_t virtualswitch[MAX_SWITCHES]; // Virtual switch states
mytmplt my_module; // Active copy of Module name and GPIOs
uint8_t pin[GPIO_MAX]; // Possible pin configurations uint8_t pin[GPIO_MAX]; // Possible pin configurations
power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off))
uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted) uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted)
uint8_t counter_no_pullup = 0; // Counter input pullup flag (1 = No pullup) uint8_t counter_no_pullup = 0; // Counter input pullup flag (1 = No pullup)
@ -189,16 +177,20 @@ uint8_t energy_flg = 1; // Energy monitor configured
uint8_t i2c_flg = 0; // I2C configured uint8_t i2c_flg = 0; // I2C configured
uint8_t spi_flg = 0; // SPI configured uint8_t spi_flg = 0; // SPI configured
uint8_t light_type = 0; // Light types uint8_t light_type = 0; // Light types
bool pwm_present = false; // Any PWM channel configured with SetOption15 0
boolean mdns_begun = false;
uint8_t ntp_force_sync = 0; // Force NTP sync uint8_t ntp_force_sync = 0; // Force NTP sync
StateBitfield global_state; byte serial_in_byte; // Received byte
RulesBitfield rules_flag; byte dual_hex_code = 0; // Sonoff dual input flag
byte ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter
uint32_t global_update = 0; byte web_log_index = 1; // Index in Web log buffer (should never be 0)
float global_temperature = 0; byte reset_web_log_flag = 0; // Reset web console log
float global_humidity = 0; byte devices_present = 0; // Max number of devices supported
byte seriallog_level; // Current copy of Settings.seriallog_level
byte syslog_level; // Current copy of Settings.syslog_level
boolean latest_uptime_flag = true; // Signal latest uptime
boolean pwm_present = false; // Any PWM channel configured with SetOption15 0
boolean mdns_begun = false; // mDNS active
mytmplt my_module; // Active copy of Module name and GPIOs (23 x 8 bits)
StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits)
char my_version[33]; // Composed version string char my_version[33]; // Composed version string
char my_hostname[33]; // Composed Wifi hostname char my_hostname[33]; // Composed Wifi hostname
char mqtt_client[33]; // Composed MQTT Clientname char mqtt_client[33]; // Composed MQTT Clientname
@ -1581,8 +1573,6 @@ void PerformEverySecond()
SetDevicePower(power, SRC_RETRY); // Set required power on state SetDevicePower(power, SRC_RETRY); // Set required power on state
} }
if (blockgpio0) blockgpio0--;
if (seriallog_timer) { if (seriallog_timer) {
seriallog_timer--; seriallog_timer--;
if (!seriallog_timer) { if (!seriallog_timer) {
@ -1678,9 +1668,11 @@ void ButtonHandler()
dual_button_code = 0; dual_button_code = 0;
} }
} else { } else {
if ((pin[GPIO_KEY1 +button_index] < 99) && !blockgpio0) { if (pin[GPIO_KEY1 +button_index] < 99) {
button_present = 1; if (!((uptime < 4) && (0 == pin[GPIO_KEY1 +button_index]))) { // Block GPIO0 for 4 seconds after poweron to workaround Wemos D1 RTS circuit
button = digitalRead(pin[GPIO_KEY1 +button_index]); button_present = 1;
button = digitalRead(pin[GPIO_KEY1 +button_index]);
}
} }
} }
@ -1811,7 +1803,9 @@ void SwitchHandler(byte mode)
if (mode) { if (mode) {
button = virtualswitch[i]; button = virtualswitch[i];
} else { } else {
button = digitalRead(pin[GPIO_SWT1 +i]); if (!((uptime < 4) && (0 == pin[GPIO_SWT1 +i]))) { // Block GPIO0 for 4 seconds after poweron to workaround Wemos D1 RTS circuit
button = digitalRead(pin[GPIO_SWT1 +i]);
}
} }
if (button != lastwallswitch[i]) { if (button != lastwallswitch[i]) {
@ -2629,25 +2623,21 @@ void loop()
SetNextTimeInterval(button_debounce, Settings.button_debounce); SetNextTimeInterval(button_debounce, Settings.button_debounce);
ButtonHandler(); ButtonHandler();
} }
if (TimeReached(switch_debounce)) { if (TimeReached(switch_debounce)) {
SetNextTimeInterval(switch_debounce, Settings.switch_debounce); SetNextTimeInterval(switch_debounce, Settings.switch_debounce);
SwitchHandler(0); SwitchHandler(0);
} }
if (TimeReached(state_50msecond)) { if (TimeReached(state_50msecond)) {
SetNextTimeInterval(state_50msecond, 50); SetNextTimeInterval(state_50msecond, 50);
XdrvCall(FUNC_EVERY_50_MSECOND); XdrvCall(FUNC_EVERY_50_MSECOND);
XsnsCall(FUNC_EVERY_50_MSECOND); XsnsCall(FUNC_EVERY_50_MSECOND);
} }
if (TimeReached(state_100msecond)) { if (TimeReached(state_100msecond)) {
SetNextTimeInterval(state_100msecond, 100); SetNextTimeInterval(state_100msecond, 100);
Every100mSeconds(); Every100mSeconds();
XdrvCall(FUNC_EVERY_100_MSECOND); XdrvCall(FUNC_EVERY_100_MSECOND);
XsnsCall(FUNC_EVERY_100_MSECOND); XsnsCall(FUNC_EVERY_100_MSECOND);
} }
if (TimeReached(state_250msecond)) { if (TimeReached(state_250msecond)) {
SetNextTimeInterval(state_250msecond, 250); SetNextTimeInterval(state_250msecond, 250);
Every250mSeconds(); Every250mSeconds();