Initial generic modbus energy driver

This commit is contained in:
Theo Arends 2022-10-06 23:17:04 +02:00
parent 7f0852dca5
commit a1420e06fd
1 changed files with 340 additions and 0 deletions

View File

@ -0,0 +1,340 @@
/*
xnrg_29_modbus.ino - Generic Modbus energy meter support for Tasmota
Copyright (C) 2022 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_MODBUS_ENERGY
/*********************************************************************************************\
* Generic Modbus energy meter - experimental (but works on my SDM230)
*
* Using a rule file called modbus allows to easy configure modbus energy monitor devices.
* See examples below
*
* Works:
* rule3 on file#modbus do {"name":"SDM230","baud":2400,"config":8N1","address":1,"function":4,"voltage":0,"current":6,"active_power":12,"apparent_power":18,"reactive_power":24,"power_factor":30,"frequency":70,"import_active_energy":342} endon
*
* Test set:
* rule3 on file#modbus do {"name":"SDM230 test1","baud":2400,"config":8N1","address":1,"function":4,"voltage":[0,0,0],"current":[6,6,6],"active_power":[12,12,12],"apparent_power":[18,18,18],"reactive_power":[24,24,24],"power_factor":[30,30,30],"frequency":[70,70,70],"import_active_energy":[342,342,342]} endon
* rule3 on file#modbus do {"name":"SDM230 test2","baud":2400,"config":8N1","address":1,"function":4,"voltage":[0,0,0],"current":[6,6,6],"active_power":[12,12,12],"apparent_power":[18,18,18],"reactive_power":[24,24,24],"power_factor":[30,30,30],"frequency":70,"import_active_energy":[342,342,342]} endon
\*********************************************************************************************/
#define XNRG_29 29
#define ENERGY_MODBUS_SPEED 9600 // default Modbus baudrate
#define ENERGY_MODBUS_CONFIG TS_SERIAL_8N1
#define ENERGY_MODBUS_ADDR 1 // default Modbus device_address
enum EnergyModbusRegisters { NRG_MBS_VOLTAGE,
NRG_MBS_CURRENT,
NRG_MBS_ACTIVE_POWER,
NRG_MBS_APPARENT_POWER,
NRG_MBS_REACTIVE_POWER,
NRG_MBS_POWER_FACTOR,
NRG_MBS_FREQUENCY,
NRG_MBS_IMPORT_ACTIVE_ENERGY,
NRG_MBS_EXPORT_ACTIVE_ENERGY,
NRG_MBS_MAX_REGS };
const char kEnergyModbusValues[] PROGMEM = "voltage|"
"current|"
"active_power|"
"apparent_power|"
"reactive_power|"
"power_factor|"
"frequency|"
"import_active_energy|"
"export_active_energy";
#include <TasmotaModbus.h>
TasmotaModbus *EnergyModbus;
struct NRGMODBUS {
/*
uint16_t voltage[ENERGY_MAX_PHASES];
uint16_t current[ENERGY_MAX_PHASES];
uint16_t active_power[ENERGY_MAX_PHASES];
uint16_t apparent_power[ENERGY_MAX_PHASES];
uint16_t reactive_power[ENERGY_MAX_PHASES];
uint16_t power_factor[ENERGY_MAX_PHASES];
uint16_t frequency[ENERGY_MAX_PHASES];
uint16_t import_active[ENERGY_MAX_PHASES];
uint16_t export_active[ENERGY_MAX_PHASES];
*/
uint16_t register_address[NRG_MBS_MAX_REGS][ENERGY_MAX_PHASES];
uint32_t serial_bps;
uint32_t serial_config;
uint8_t device_address;
uint8_t function;
uint8_t phase;
uint8_t state;
uint8_t retry;
} *NrgModbus = nullptr;
/*********************************************************************************************/
void EnergyModbusLoop(void) {
bool data_ready = EnergyModbus->ReceiveReady();
if (data_ready) {
uint8_t buffer[14]; // At least 5 + (2 * 2) = 9
uint32_t error = EnergyModbus->ReceiveBuffer(buffer, 2);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Modbus register %d, phase %d, rcvd %*_H"),
NrgModbus->state, NrgModbus->phase, EnergyModbus->ReceiveCount(), buffer);
if (error) {
/* Return codes from TasmotaModbus.h:
* 0 = No error
* 1 = Illegal Function,
* 2 = Illegal Data Address,
* 3 = Illegal Data Value,
* 4 = Slave Error
* 5 = Acknowledge but not finished (no error)
* 6 = Slave Busy
* 7 = Not enough minimal data received
* 8 = Memory Parity error
* 9 = Crc error
* 10 = Gateway Path Unavailable
* 11 = Gateway Target device failed to respond
* 12 = Wrong number of registers
* 13 = Register data not specified
* 14 = To many registers
*/
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Modbus error %d"), error);
} else {
Energy.data_valid[NrgModbus->phase] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
float value;
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
switch(NrgModbus->state) {
case NRG_MBS_VOLTAGE:
Energy.voltage[NrgModbus->phase] = value; // 230.2 V
break;
case NRG_MBS_CURRENT:
Energy.current[NrgModbus->phase] = value; // 1.260 A
break;
case NRG_MBS_ACTIVE_POWER:
Energy.active_power[NrgModbus->phase] = value; // -196.3 W
break;
case NRG_MBS_APPARENT_POWER:
Energy.apparent_power[NrgModbus->phase] = value; // 223.4 VA
break;
case NRG_MBS_REACTIVE_POWER:
Energy.reactive_power[NrgModbus->phase] = value; // 92.2
break;
case NRG_MBS_POWER_FACTOR:
Energy.power_factor[NrgModbus->phase] = value; // -0.91
break;
case NRG_MBS_FREQUENCY:
Energy.frequency[NrgModbus->phase] = value; // 50.0 Hz
break;
case NRG_MBS_IMPORT_ACTIVE_ENERGY:
Energy.import_active[NrgModbus->phase] = value; // 6.216 kWh => used in EnergyUpdateTotal()
break;
case NRG_MBS_EXPORT_ACTIVE_ENERGY:
Energy.export_active[NrgModbus->phase] = value; // 478.492 kWh
break;
}
do {
NrgModbus->phase++;
if (NrgModbus->phase == Energy.phase_count) {
NrgModbus->phase = 0;
NrgModbus->state++;
if (NrgModbus->state == NRG_MBS_MAX_REGS) {
NrgModbus->state = 0;
NrgModbus->phase = 0;
EnergyUpdateTotal(); // update every cycle after all registers have been read
break;
}
}
} while (NrgModbus->register_address[NrgModbus->state][NrgModbus->phase] == 1);
}
} // end data ready
if (0 == NrgModbus->retry || data_ready) {
NrgModbus->retry = 5;
EnergyModbus->Send(NrgModbus->device_address, NrgModbus->function, NrgModbus->register_address[NrgModbus->state][NrgModbus->phase], 2);
} else {
NrgModbus->retry--;
}
}
bool EnergyModbusReadRegisters(void) {
#ifdef USE_RULES
String modbus = RuleLoadFile("MODBUS");
if (!modbus.length()) { return false; }
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: File '%s'"), modbus.c_str());
// rule3 on file#modbus do {"name":"SDM230","baud":2400,"config":8N1","address":1,"function":4,"voltage":0,"current":6,"active_power":12,"apparent_power":18,"reactive_power":24,"power_factor":30,"frequency":70,"import_active_energy":342} endon
// rule3 on file#modbus do {"name":"SDM230 test1","baud":2400,"config":8N1","address":1,"function":4,"voltage":[0,0,0],"current":[6,6,6],"active_power":[12,12,12],"apparent_power":[18,18,18],"reactive_power":[24,24,24],"power_factor":[30,30,30],"frequency":[70,70,70],"import_active_energy":[342,342,342]} endon
// rule3 on file#modbus do {"name":"SDM230 test2","baud":2400,"config":8N1","address":1,"function":4,"voltage":[0,0,0],"current":[6,6,6],"active_power":[12,12,12],"apparent_power":[18,18,18],"reactive_power":[24,24,24],"power_factor":[30,30,30],"frequency":70,"import_active_energy":[342,342,342]} endon
const char* json = modbus.c_str();
uint32_t len = strlen(json) +1;
if (len < 7) { return false; }
char json_buffer[len];
memcpy(json_buffer, json, len); // Keep original safe
JsonParser parser(json_buffer);
JsonParserObject root = parser.getRootObject();
if (!root) { return false; }
NrgModbus = (NRGMODBUS *)calloc(sizeof(struct NRGMODBUS), 1);
if (NrgModbus == nullptr) { return false; }
// Init defaults
NrgModbus->serial_bps = ENERGY_MODBUS_SPEED;
NrgModbus->serial_config = ENERGY_MODBUS_CONFIG;
NrgModbus->device_address = ENERGY_MODBUS_ADDR;
NrgModbus->function = 0x04;
for (uint32_t i = 0; i < 9; i++) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgModbus->register_address[i][j] = 1; // Not used
}
}
JsonParserToken val;
val = root[PSTR("baud")];
if (val) {
NrgModbus->serial_bps = val.getInt(); // 2400
}
val = root[PSTR("config")];
if (val) {
const char *serial_config = val.getStr(); // 8N1
NrgModbus->serial_config = ConvertSerialConfig(ParseSerialConfig(serial_config));
}
val = root[PSTR("address")];
if (val) {
NrgModbus->device_address = val.getInt(); // 1
}
val = root[PSTR("function")];
if (val) {
NrgModbus->function = val.getInt(); // 4
}
char register_name[32];
uint32_t phase;
Energy.voltage_available = false; // Disable voltage is measured
Energy.current_available = false; // Disable current is measured
for (uint32_t names = 0; names < NRG_MBS_MAX_REGS; names++) {
phase = 0;
val = root[GetTextIndexed(register_name, sizeof(register_name), names, kEnergyModbusValues)];
if (val.isArray()) {
JsonParserArray arr = val.getArray();
for (auto value : arr) {
NrgModbus->register_address[names][phase] = value.getUInt();
phase++;
if (phase == ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
NrgModbus->register_address[names][phase] = val.getUInt();
phase++;
}
if (phase) {
switch(names) {
case NRG_MBS_VOLTAGE:
Energy.voltage_available = true; // Enable if voltage is measured
Energy.phase_count = phase;
if (1 == phase) {
Energy.voltage_common = true; // Use common voltage
}
break;
case NRG_MBS_CURRENT:
Energy.current_available = true; // Enable if current is measured
break;
case NRG_MBS_FREQUENCY:
if (1 == phase) {
Energy.frequency_common = true; // Use common frequency
}
break;
}
}
}
// NrgModbus->state = 0; // Set by calloc()
// NrgModbus->phase = 0;
return true;
#endif // USE_RULES
return false;
}
bool EnergyModbusRegisters(void) {
if (EnergyModbusReadRegisters()) {
return true;
}
AddLog(LOG_LEVEL_INFO, PSTR("NRG: No valid modbus data"));
return false;
}
void EnergyModbusSnsInit(void) {
if (EnergyModbusRegisters()) {
EnergyModbus = new TasmotaModbus(Pin(GPIO_NRG_MBS_RX), Pin(GPIO_NRG_MBS_TX));
uint8_t result = EnergyModbus->Begin(NrgModbus->serial_bps, NrgModbus->serial_config);
if (result) {
if (2 == result) { ClaimSerial(); }
return;
}
}
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
void EnergyModbusDrvInit(void) {
if (PinUsed(GPIO_NRG_MBS_RX) && PinUsed(GPIO_NRG_MBS_TX)) {
TasmotaGlobal.energy_driver = XNRG_29;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg29(uint8_t function) {
bool result = false;
switch (function) {
// case FUNC_EVERY_250_MSECOND:
case FUNC_EVERY_200_MSECOND:
EnergyModbusLoop();
break;
case FUNC_ENERGY_RESET:
// EnergyModbusReset();
break;
case FUNC_INIT:
EnergyModbusSnsInit();
break;
case FUNC_PRE_INIT:
EnergyModbusDrvInit();
break;
}
return result;
}
#endif // USE_MODBUS_ENERGY
#endif // USE_ENERGY_SENSOR