Refactor analog

- Change from double to float where possible
- Fix Voltage/Current energy calculation
This commit is contained in:
Theo Arends 2024-07-28 14:15:35 +02:00
parent a9651e1bf1
commit a4e592c776
1 changed files with 88 additions and 87 deletions

View File

@ -46,12 +46,12 @@
#define ANALOG_PERCENT ((ANALOG_RANGE + 50) / 100) // approximation to 1% ADC range #define ANALOG_PERCENT ((ANALOG_RANGE + 50) / 100) // approximation to 1% ADC range
#endif // ESP32 #endif // ESP32
#define TO_CELSIUS(x) ((x) - 273.15) #define TO_CELSIUS(x) ((x) - 273.15f)
#define TO_KELVIN(x) ((x) + 273.15) #define TO_KELVIN(x) ((x) + 273.15f)
// Parameters for equation // Parameters for equation
#define ANALOG_V33 3.3 // ESP8266 / ESP32 Analog voltage #define ANALOG_V33 3.3f // ESP8266 / ESP32 Analog voltage
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celsius in Kelvin (= 298.15) #define ANALOG_T0 TO_KELVIN(25.0f) // 25 degrees Celsius in Kelvin (= 298.15)
// Mode 0 : Shelly 2.5 NTC Thermistor // Mode 0 : Shelly 2.5 NTC Thermistor
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd // 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
@ -71,7 +71,7 @@
// ADC0 // ADC0
#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor #define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental #define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental #define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050f // Experimental
// CT Based Apparrent Power Measurement Parameters // CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd // 3V3 --- R1 ----v--- R1 --- Gnd
@ -110,18 +110,18 @@
#define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance #define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance
// pH scale minimum and maximum values // pH scale minimum and maximum values
#define ANALOG_PH_MAX 14.0 #define ANALOG_PH_MAX 14.0f
#define ANALOG_PH_MIN 0.0 #define ANALOG_PH_MIN 0.0f
// Default values for calibration solution with lower PH // Default values for calibration solution with lower PH
#define ANALOG_PH_CALSOLUTION_LOW_PH 4.0 #define ANALOG_PH_CALSOLUTION_LOW_PH 4.0f
#define ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE 282 #define ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE 282
// Default values for calibration solution with higher PH // Default values for calibration solution with higher PH
#define ANALOG_PH_CALSOLUTION_HIGH_PH 9.18 #define ANALOG_PH_CALSOLUTION_HIGH_PH 9.18f
#define ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE 435 #define ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE 435
// Multiplier used to store pH with 2 decimal places in a non decimal datatype // Multiplier used to store pH with 2 decimal places in a non decimal datatype
#define ANALOG_PH_DECIMAL_MULTIPLIER 100.0 #define ANALOG_PH_DECIMAL_MULTIPLIER 100.0f
// MQ-X sensor (MQ-02, MQ-03, MQ-04, MQ-05, MQ-06, MQ-07, MQ-08, MQ-09, MQ-131, MQ-135) // MQ-X sensor (MQ-02, MQ-03, MQ-04, MQ-05, MQ-06, MQ-07, MQ-08, MQ-09, MQ-131, MQ-135)
// //
@ -135,9 +135,9 @@
//means mq type (ex for mq-02 use 2, mq-131 use 131) //means mq type (ex for mq-02 use 2, mq-131 use 131)
#define ANALOG_MQ_TYPE 2 #define ANALOG_MQ_TYPE 2
//exponential regression a params //exponential regression a params
#define ANALOG_MQ_A 574.25 #define ANALOG_MQ_A 574.25f
//exponential regression b params //exponential regression b params
#define ANALOG_MQ_B -2.222 #define ANALOG_MQ_B -2.222f
/* /*
Exponential regression: Exponential regression:
Gas | a | b Gas | a | b
@ -152,9 +152,9 @@
O3 | 23.943 | -1.11 O3 | 23.943 | -1.11
*/ */
//ratio for alarm, NOT USED yet (RS / R0 = 15 ppm) //ratio for alarm, NOT USED yet (RS / R0 = 15 ppm)
#define ANALOG_MQ_RatioMQCleanAir 15.0 #define ANALOG_MQ_RatioMQCleanAir 15.0f
// Multiplier used to store pH with 2 decimal places in a non decimal datatype // Multiplier used to store pH with 2 decimal places in a non decimal datatype
#define ANALOG_MQ_DECIMAL_MULTIPLIER 100.0 #define ANALOG_MQ_DECIMAL_MULTIPLIER 100.0f
// lenght of filter // lenght of filter
#define ANALOG_MQ_SAMPLES 60 #define ANALOG_MQ_SAMPLES 60
@ -354,7 +354,7 @@ bool AdcPin(uint32_t pin) {
uint16_t AdcRead1(uint32_t pin) { uint16_t AdcRead1(uint32_t pin) {
#ifdef ESP32 #ifdef ESP32
return analogReadMilliVolts(pin) / (ANALOG_V33*1000) * ANALOG_RANGE; // go back from mV to ADC return analogReadMilliVolts(pin) / (ANALOG_V33 * 1000) * ANALOG_RANGE; // Go back from mV to ADC
#else #else
return analogRead(pin); return analogRead(pin);
#endif #endif
@ -380,7 +380,7 @@ uint16_t AdcRead(uint32_t pin, uint32_t factor) {
} }
analog >>= factor; analog >>= factor;
#ifdef ESP32 #ifdef ESP32
analog = analog/(ANALOG_V33*1000) * ANALOG_RANGE; // go back from mV to ADC analog = analog / (ANALOG_V33 * 1000) * ANALOG_RANGE; // Go back from mV to ADC
#endif #endif
return analog; return analog;
} }
@ -511,8 +511,8 @@ float AdcGetRange(uint32_t idx) {
// Example: 514, 632, 236, 0, 100 // Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> ) // int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
int adc = AdcRead(Adc[idx].pin, 5); int adc = AdcRead(Adc[idx].pin, 5);
double adcrange = ( ((double)Adc[idx].param2 - (double)adc) / ( ((double)Adc[idx].param2 - (double)Adc[idx].param1)) * ((double)Adc[idx].param3 - (double)Adc[idx].param4) + (double)Adc[idx].param4 ); float adcrange = ( ((float)Adc[idx].param2 - (float)adc) / ( ((float)Adc[idx].param2 - (float)Adc[idx].param1)) * ((float)Adc[idx].param3 - (float)Adc[idx].param4) + (float)Adc[idx].param4 );
return (float)adcrange; return adcrange;
} }
void AdcGetCurrentPower(uint8_t idx, uint8_t factor) { void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
@ -596,11 +596,11 @@ void AdcEverySecond(void) {
#ifdef USE_ENERGY_SENSOR #ifdef USE_ENERGY_SENSOR
else if (ADC_VOLTAGE == Adc[idx].type) { else if (ADC_VOLTAGE == Adc[idx].type) {
Energy->voltage_available = true; Energy->voltage_available = true;
Energy->voltage[voltage_index++] = AdcGetRange(idx) / 10000; Energy->voltage[voltage_index++] = AdcGetRange(idx) / 10000; // Volt
} }
else if (ADC_CURRENT == Adc[idx].type) { else if (ADC_CURRENT == Adc[idx].type) {
Energy->current_available = true; Energy->current_available = true;
Energy->current[current_index++] = AdcGetRange(idx) / 10000; Energy->current[current_index++] = AdcGetRange(idx) / 10000; // Ampere
} }
#endif // USE_ENERGY_SENSOR #endif // USE_ENERGY_SENSOR
} }
@ -608,8 +608,8 @@ void AdcEverySecond(void) {
if (voltage_index && current_index) { if (voltage_index && current_index) {
for (uint32_t phase = 0; phase < current_index; phase++) { for (uint32_t phase = 0; phase < current_index; phase++) {
uint32_t voltage_phase = (voltage_index == current_index) ? phase : 0; uint32_t voltage_phase = (voltage_index == current_index) ? phase : 0;
Energy->active_power[phase] = Energy->voltage[voltage_phase] * Energy->current[phase]; Energy->active_power[phase] = Energy->voltage[voltage_phase] * Energy->current[phase]; // Watt
Energy->kWhtoday_delta[phase] += (uint32_t)(Energy->active_power[phase] * 1) / 36; Energy->kWhtoday_delta[phase] += (uint32_t)(Energy->active_power[phase] * 1000) / 36; // deca_microWh
} }
EnergyUpdateToday(); EnergyUpdateToday();
} }
@ -802,6 +802,15 @@ const char kAdcCommands[] PROGMEM = "|" // No prefix
void (* const AdcCommand[])(void) PROGMEM = { void (* const AdcCommand[])(void) PROGMEM = {
&CmndAdcParam }; &CmndAdcParam };
uint32_t Decimals(int value) {
uint32_t decimals;
for (decimals = 4; decimals > 0; decimals--) {
if (value % 10) { break; }
value /= 10;
}
return decimals;
}
void CmndAdcParam(void) { void CmndAdcParam(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) {
uint8_t idx = XdrvMailbox.index -1; uint8_t idx = XdrvMailbox.index -1;
@ -820,75 +829,70 @@ void CmndAdcParam(void) {
// AdcParam 8, 1000, 0, 0 // AdcParam 8, 1000, 0, 0
// AdcParam 9, ADC_PH // AdcParam 9, ADC_PH
// AdcParam 10, ADC_MQ // AdcParam 10, ADC_MQ
// AdcParam 11, 0, ANALOG_RANGE, 0, 33000 ADC_VOLTAGE // AdcParam 11, 0, ANALOG_RANGE, 0, 3.3 ADC_VOLTAGE
// AdcParam 12, 0, ANALOG_RANGE, 0, 33000 ADC_CURRENT // AdcParam 12, 0, ANALOG_RANGE, 0, 3.3 ADC_CURRENT
Adc[idx].type = XdrvMailbox.payload; Adc[idx].type = XdrvMailbox.payload;
Adc[idx].param1 = strtol(ArgV(argument, 2), nullptr, 10); Adc[idx].param1 = strtol(ArgV(argument, 2), nullptr, 10); // param1 = int
Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10); Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int
if (ADC_RANGE == XdrvMailbox.payload) { if (ADC_RANGE == XdrvMailbox.payload) {
Adc[idx].param3 = abs(strtol(ArgV(argument, 4), nullptr, 10)); Adc[idx].param3 = abs(strtol(ArgV(argument, 4), nullptr, 10)); // param3 = abs(int)
Adc[idx].param4 = abs(strtol(ArgV(argument, 5), nullptr, 10)); Adc[idx].param4 = abs(strtol(ArgV(argument, 5), nullptr, 10)); // param4 = abs(int)
} else { } else {
Adc[idx].param3 = (int)(CharToFloat(ArgV(argument, 4)) * 10000); Adc[idx].param3 = (int)(CharToFloat(ArgV(argument, 4)) * 10000); // param3 = float
if (ArgC() > 4) { if (ArgC() > 4) {
Adc[idx].param4 = (int)(CharToFloat(ArgV(argument, 5)) * 10000); Adc[idx].param4 = (int)(CharToFloat(ArgV(argument, 5)) * 10000); // param4 = float
} }
else{ else{
Adc[idx].param4 = 0; Adc[idx].param4 = 0; // param4 = fixed 0
} }
} }
if (ADC_PH == XdrvMailbox.payload) { if (ADC_PH == XdrvMailbox.payload) {
float phLow = CharToFloat(ArgV(argument, 2)); float phLow = CharToFloat(ArgV(argument, 2));
Adc[idx].param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER; // param1 = float
// Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int
float phHigh = CharToFloat(ArgV(argument, 4)); float phHigh = CharToFloat(ArgV(argument, 4));
Adc[idx].param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER; Adc[idx].param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER; // param3 = float
Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10); Adc[idx].param4 = strtol(ArgV(argument, 5), nullptr, 10); // param4 = int
Adc[idx].param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER;
Adc[idx].param4 = strtol(ArgV(argument, 5), nullptr, 10);
// AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[idx].param2, &phHigh, Adc[idx].param4); // AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[idx].param2, &phHigh, Adc[idx].param4);
} }
if (ADC_CT_POWER == XdrvMailbox.payload) { if (ADC_CT_POWER == XdrvMailbox.payload) {
if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) { if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) { // param1 = int
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) { for (uint32_t idx = 0; idx < Adcs.present; idx++) {
Adc[idx].energy = 0; Adc[idx].energy = 0;
} }
Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
} }
} }
if (ADC_MQ == XdrvMailbox.payload) { if (ADC_MQ == XdrvMailbox.payload) {
float a = CharToFloat(ArgV(argument, 3)); float a = CharToFloat(ArgV(argument, 3)); // param2 = float
float b = CharToFloat(ArgV(argument, 4)); float b = CharToFloat(ArgV(argument, 4)); // param3 = float
float ratioMQCleanAir = CharToFloat(ArgV(argument, 5)); float ratioMQCleanAir = CharToFloat(ArgV(argument, 5)); // param4 = float
if (a==0 && b==0 && ratioMQCleanAir==0) if ((0 == a) && (0 == b) && (0 == ratioMQCleanAir)) {
{ if (2 == Adc[idx].param1) { // param1 = int
if (Adc[idx].param1==2) a = 574.25;
{ b = -2.222;
a=574.25; ratioMQCleanAir = 9.83;
b=-2.222;
ratioMQCleanAir=9.83;
} }
if (Adc[idx].param1==4) else if (4 == Adc[idx].param1) {
{ a = 1012.7;
a=1012.7; b = -2.786;
b=-2.786; ratioMQCleanAir = 4.4;
ratioMQCleanAir=4.4;
} }
if (Adc[idx].param1==7) else if (7 == Adc[idx].param1) {
{ a = 99.042;
a=99.042; b = -1.518;
b=-1.518; ratioMQCleanAir = 27.5;
ratioMQCleanAir=27.5;
} }
if (Adc[idx].param1==131) if (131 == Adc[idx].param1) {
{ a = 23.943;
a=23.943; b = -1.11;
b=-1.11; ratioMQCleanAir = 15;
ratioMQCleanAir=15;
} }
} }
Adc[idx].param2 = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param2 = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
Adc[idx].param3 = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param3 = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
Adc[idx].param4 = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[idx].param4 = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
// AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[idx].param1, &a, &b, &ratioMQCleanAir); // AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[idx].param1, &a, &b, &ratioMQCleanAir);
} }
@ -910,23 +914,20 @@ void CmndAdcParam(void) {
// AdcParam // AdcParam
AdcGetSettings(idx); AdcGetSettings(idx);
Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2); Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2);
if ((ADC_RANGE == Adc[idx].type) || (ADC_MQ == Adc[idx].type)){ if ((ADC_RANGE == Adc[idx].type) || (ADC_MQ == Adc[idx].type)) {
ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4); ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4); // param3 = int, param4 = int
} else { }
int value = Adc[idx].param3; else {
uint8_t precision; float param = (float)Adc[idx].param3 / 10000;
for (precision = 4; precision > 0; precision--) { ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[idx].param3), &param); // param3 = float
if (value % 10) { break; } if ((ADC_CT_POWER == Adc[idx].type) ||
value /= 10; (ADC_VOLTAGE == Adc[idx].type) ||
(ADC_CURRENT == Adc[idx].type)) {
param = (float)Adc[idx].param4 / 10000;
ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[idx].param4), &param); // param4 = float
} }
char param3[FLOATSZ]; else {
dtostrfd(((double)Adc[idx].param3)/10000, precision, param3); ResponseAppend_P(PSTR(",%d"), Adc[idx].param4); // param4 = int
if (ADC_CT_POWER == Adc[idx].type) {
char param4[FLOATSZ];
dtostrfd(((double)Adc[idx].param4)/10000, 3, param4);
ResponseAppend_P(PSTR(",%s,%s"), param3, param4);
} else {
ResponseAppend_P(PSTR(",%s,%d"), param3, Adc[idx].param4);
} }
} }
ResponseAppend_P(PSTR("]}")); ResponseAppend_P(PSTR("]}"));
@ -950,10 +951,10 @@ bool Xnrg33(uint32_t function) {
} }
if (voltage_count || current_count) { if (voltage_count || current_count) {
Energy->type_dc = true; Energy->type_dc = true;
Energy->phase_count = (voltage_count > current_count) ? voltage_count : current_count;
Energy->current_available = false;
Energy->voltage_available = false;
Energy->voltage_common = (1 == voltage_count); Energy->voltage_common = (1 == voltage_count);
Energy->phase_count = (voltage_count > current_count) ? voltage_count : current_count;
Energy->voltage_available = false;
Energy->current_available = false;
Energy->use_overtemp = true; // Use global temperature for overtemp detection Energy->use_overtemp = true; // Use global temperature for overtemp detection
TasmotaGlobal.energy_driver = XNRG_33; TasmotaGlobal.energy_driver = XNRG_33;
} }