Merge branch 'development' into pre-release

This commit is contained in:
Theo Arends 2020-05-11 16:00:23 +02:00
commit ae7193d72c
17 changed files with 296 additions and 117 deletions

View File

@ -147,6 +147,7 @@ People helping to keep the show on the road:
- Christian Staars for NRF24L01 and HM-10 Bluetooth sensor support - Christian Staars for NRF24L01 and HM-10 Bluetooth sensor support
- Paul Diem for UDP Group communication support - Paul Diem for UDP Group communication support
- Jörg Schüler-Maroldt for his initial ESP32 port - Jörg Schüler-Maroldt for his initial ESP32 port
- Javier Arigita for his thermostat driver
- Many more providing Tips, Wips, Pocs, PRs and Donations - Many more providing Tips, Wips, Pocs, PRs and Donations
## License ## License

View File

@ -364,8 +364,12 @@ const unsigned char lut_partial_update[] =
#define PIN_OUT_SET 0x60000304 #define PIN_OUT_SET 0x60000304
#define PIN_OUT_CLEAR 0x60000308 #define PIN_OUT_CLEAR 0x60000308
#define PWRITE xdigitalWrite #ifdef ESP32
#define SSPI_USEANYPIN 1
#define PWRITE digitalWrite
#else
#define PWRITE ydigitalWrite
#endif
#ifndef SSPI_USEANYPIN #ifndef SSPI_USEANYPIN
// uses about 2.75 usecs, 365 kb /sec // uses about 2.75 usecs, 365 kb /sec
@ -388,6 +392,7 @@ void ICACHE_RAM_ATTR Epd::fastSPIwrite(uint8_t d,uint8_t dc) {
} }
#else #else
#ifndef ESP32
extern void ICACHE_RAM_ATTR xdigitalWrite(uint8_t pin, uint8_t val) { extern void ICACHE_RAM_ATTR xdigitalWrite(uint8_t pin, uint8_t val) {
//stopWaveform(pin); //stopWaveform(pin);
if(pin < 16){ if(pin < 16){
@ -398,6 +403,7 @@ extern void ICACHE_RAM_ATTR xdigitalWrite(uint8_t pin, uint8_t val) {
else GP16O &= ~1; else GP16O &= ~1;
} }
} }
#endif
// about 13 us => 76 kb / sec // about 13 us => 76 kb / sec
// can use any pin // can use any pin

View File

@ -502,12 +502,15 @@ const unsigned char lut_wb_quick[] PROGMEM =
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}; };
#define PIN_OUT_SET 0x60000304 #define PIN_OUT_SET 0x60000304
#define PIN_OUT_CLEAR 0x60000308 #define PIN_OUT_CLEAR 0x60000308
#ifdef ESP32
#define SSPI_USEANYPIN 1
#define PWRITE digitalWrite
#else
#define PWRITE ydigitalWrite #define PWRITE ydigitalWrite
#endif
#ifndef SSPI_USEANYPIN #ifndef SSPI_USEANYPIN
// uses about 2.75 usecs, 365 kb /sec // uses about 2.75 usecs, 365 kb /sec
@ -530,6 +533,7 @@ void ICACHE_RAM_ATTR Epd42::fastSPIwrite(uint8_t d,uint8_t dc) {
} }
#else #else
#ifndef ESP32
extern void ICACHE_RAM_ATTR ydigitalWrite(uint8_t pin, uint8_t val) { extern void ICACHE_RAM_ATTR ydigitalWrite(uint8_t pin, uint8_t val) {
//stopWaveform(pin); //stopWaveform(pin);
if(pin < 16){ if(pin < 16){
@ -540,6 +544,7 @@ extern void ICACHE_RAM_ATTR ydigitalWrite(uint8_t pin, uint8_t val) {
else GP16O &= ~1; else GP16O &= ~1;
} }
} }
#endif
// about 13 us => 76 kb / sec // about 13 us => 76 kb / sec
// can use any pin // can use any pin
void Epd42::fastSPIwrite(uint8_t d,uint8_t dc) { void Epd42::fastSPIwrite(uint8_t d,uint8_t dc) {

View File

@ -20,6 +20,7 @@
- Change default PWM Frequency to 977 Hz from 223 Hz - Change default PWM Frequency to 977 Hz from 223 Hz
- Change minimum PWM Frequency from 100 Hz to 40 Hz - Change minimum PWM Frequency from 100 Hz to 40 Hz
- Change PWM updated to the latest version of Arduino PR #7231 - Change PWM updated to the latest version of Arduino PR #7231
- Change Philips Hue emulation now exposes modelId and manufacturerId
### 8.2.0.5 20200425 ### 8.2.0.5 20200425

View File

@ -675,13 +675,12 @@
#define THERMOSTAT_SENSOR_NAME "DS18B20" // Name of the local sensor to be used #define THERMOSTAT_SENSOR_NAME "DS18B20" // Name of the local sensor to be used
#define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number for the first controller (+i for following ones) #define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number for the first controller (+i for following ones)
#define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number for the first controller (+i for following ones) #define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number for the first controller (+i for following ones)
#define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes #define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time after last target update to allow ramp-up controller phase in minutes
#define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes #define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes
#define THERMOSTAT_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds #define THERMOSTAT_TIME_RAMPUP_CYCLE 30 // Default time ramp-up cycle in minutes
#define THERMOSTAT_TIME_SENS_LOST 30 // Maximum time w/o sensor update to set it as lost in minutes #define THERMOSTAT_TIME_SENS_LOST 30 // Maximum time w/o sensor update to set it as lost in minutes
#define THERMOSTAT_TEMP_SENS_NUMBER 1 // Default temperature sensor number #define THERMOSTAT_TEMP_SENS_NUMBER 1 // Default temperature sensor number
#define THERMOSTAT_TIME_MANUAL_TO_AUTO 60 // Default time without input switch active to change from manual to automatic in minutes #define THERMOSTAT_TIME_MANUAL_TO_AUTO 60 // Default time without input switch active to change from manual to automatic in minutes
#define THERMOSTAT_TIME_ON_LIMIT 120 // Default maximum time with output active in minutes
#define THERMOSTAT_TIME_RESET 12000 // Default reset time of the PI controller in seconds #define THERMOSTAT_TIME_RESET 12000 // Default reset time of the PI controller in seconds
#define THERMOSTAT_TIME_PI_CYCLE 30 // Default cycle time for the thermostat controller in minutes #define THERMOSTAT_TIME_PI_CYCLE 30 // Default cycle time for the thermostat controller in minutes
#define THERMOSTAT_TIME_MAX_ACTION 20 // Default maximum thermostat time per cycle in minutes #define THERMOSTAT_TIME_MAX_ACTION 20 // Default maximum thermostat time per cycle in minutes

View File

@ -638,7 +638,7 @@ float ConvertHumidity(float h)
float CalcTempHumToDew(float t, float h) float CalcTempHumToDew(float t, float h)
{ {
if (isnan(h) || isnan(t)) { return 0.0; } if (isnan(h) || isnan(t)) { return NAN; }
if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
t = (t - 32) / 1.8; // Celsius t = (t - 32) / 1.8; // Celsius
@ -1863,3 +1863,62 @@ void AddLogBufferSize(uint32_t loglevel, uint8_t *buffer, uint32_t count, uint32
} }
AddLog(loglevel); AddLog(loglevel);
} }
/*********************************************************************************************\
* JSON parsing
\*********************************************************************************************/
// does the character needs to be escaped, and if so with which character
char escapeJSONChar(char c) {
if ((c == '\"') || (c == '\\')) {
return c;
}
if (c == '\n') { return 'n'; }
if (c == '\t') { return 't'; }
if (c == '\r') { return 'r'; }
if (c == '\f') { return 'f'; }
if (c == '\b') { return 'b'; }
return 0;
}
String escapeJSONString(const char *str) {
String r("");
if (nullptr == str) { return r; }
bool needs_escape = false;
size_t len_out = 1;
const char * c = str;
while (*c) {
if (escapeJSONChar(*c)) {
len_out++;
needs_escape = true;
}
c++;
len_out++;
}
if (needs_escape) {
// we need to escape some chars
// allocate target buffer
r.reserve(len_out);
c = str;
char *d = r.begin();
while (*c) {
char c2 = escapeJSONChar(*c);
if (c2) {
c++;
*d++ = '\\';
*d++ = c2;
} else {
*d++ = *c++;
}
}
*d = 0; // add NULL terminator
r = (char*) r.begin(); // assign the buffer to the string
} else {
r = str;
}
return r;
}

View File

@ -1227,6 +1227,17 @@ void SerialInput(void)
delay(0); delay(0);
serial_in_byte = Serial.read(); serial_in_byte = Serial.read();
if (0 == serial_in_byte_counter) {
serial_buffer_overrun = false;
}
else if ((serial_in_byte_counter == INPUT_BUFFER_SIZE)
#ifdef ESP8266
// || Serial.hasOverrun() // Default ESP8266 Serial buffer size is 256. Tasmota increases to INPUT_BUFFER_SIZE
#endif
) {
serial_buffer_overrun = true;
}
#ifdef ESP8266 #ifdef ESP8266
/*-------------------------------------------------------------------------------------------*\ /*-------------------------------------------------------------------------------------------*\
* Sonoff dual and ch4 19200 baud serial interface * Sonoff dual and ch4 19200 baud serial interface
@ -1255,7 +1266,7 @@ void SerialInput(void)
if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte; serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
} else { } else {
serial_in_byte_counter = 0; serial_buffer_overrun = true; // Signal overrun but continue reading input to flush until '\n' (EOL)
} }
} }
} else { } else {
@ -1292,8 +1303,12 @@ void SerialInput(void)
if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) { // CMND_SERIALSEND and CMND_SERIALLOG if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) { // CMND_SERIALSEND and CMND_SERIALLOG
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level; seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level;
if (serial_buffer_overrun) {
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "Serial buffer overrun"));
} else {
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer);
ExecuteCommand(serial_in_buffer, SRC_SERIAL); ExecuteCommand(serial_in_buffer, SRC_SERIAL);
}
serial_in_byte_counter = 0; serial_in_byte_counter = 0;
serial_polling_window = 0; serial_polling_window = 0;
Serial.flush(); Serial.flush();

View File

@ -124,7 +124,7 @@ const uint16_t SYSLOG_TIMER = 600; // Seconds to restore syslog_level
const uint16_t SERIALLOG_TIMER = 600; // Seconds to disable SerialLog const uint16_t SERIALLOG_TIMER = 600; // Seconds to disable SerialLog
const uint8_t OTA_ATTEMPTS = 5; // Number of times to try fetching the new firmware const uint8_t OTA_ATTEMPTS = 5; // Number of times to try fetching the new firmware
const uint16_t INPUT_BUFFER_SIZE = 520; // Max number of characters in (serial and http) command buffer const uint16_t INPUT_BUFFER_SIZE = 520; // Max number of characters in serial command buffer
const uint16_t FLOATSZ = 16; // Max number of characters in float result from dtostrfd (max 32) const uint16_t FLOATSZ = 16; // Max number of characters in float result from dtostrfd (max 32)
const uint16_t CMDSZ = 24; // Max number of characters in command const uint16_t CMDSZ = 24; // Max number of characters in command
const uint16_t TOPSZ = 151; // Max number of characters in topic string const uint16_t TOPSZ = 151; // Max number of characters in topic string

View File

@ -156,7 +156,8 @@ uint8_t last_source = 0; // Last command source
uint8_t shutters_present = 0; // Number of actual define shutters uint8_t shutters_present = 0; // Number of actual define shutters
uint8_t prepped_loglevel = 0; // Delayed log level message uint8_t prepped_loglevel = 0; // Delayed log level message
//uint8_t mdns_delayed_start = 0; // mDNS delayed start //uint8_t mdns_delayed_start = 0; // mDNS delayed start
bool serial_local = false; // Handle serial locally; bool serial_local = false; // Handle serial locally
bool serial_buffer_overrun = false; // Serial buffer overrun
bool fallback_topic_flag = false; // Use Topic or FallbackTopic bool fallback_topic_flag = false; // Use Topic or FallbackTopic
bool backlog_mutex = false; // Command backlog pending bool backlog_mutex = false; // Command backlog pending
bool interlock_mutex = false; // Interlock power command pending bool interlock_mutex = false; // Interlock power command pending
@ -215,6 +216,7 @@ void setup(void)
RtcRebootSave(); RtcRebootSave();
Serial.begin(APP_BAUDRATE); Serial.begin(APP_BAUDRATE);
Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars
seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded
snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0 snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0

View File

@ -1992,12 +1992,21 @@ void CmndRule(void)
} }
Rules.triggers[index -1] = 0; // Reset once flag Rules.triggers[index -1] = 0; // Reset once flag
} }
String rule = GetRule(index - 1);
size_t rule_len = rule.length();
if (rule_len >= MAX_RULE_SIZE) {
// we need to split the rule in chunks
rule = rule.substring(0, MAX_RULE_SIZE);
rule += F("...");
}
// snprintf_P (mqtt_data, sizeof(mqtt_data), PSTR("{\"%s%d\":\"%s\",\"Once\":\"%s\",\"StopOnError\":\"%s\",\"Free\":%d,\"Rules\":\"%s\"}"), // snprintf_P (mqtt_data, sizeof(mqtt_data), PSTR("{\"%s%d\":\"%s\",\"Once\":\"%s\",\"StopOnError\":\"%s\",\"Free\":%d,\"Rules\":\"%s\"}"),
// XdrvMailbox.command, index, GetStateText(bitRead(Settings.rule_enabled, index -1)), GetStateText(bitRead(Settings.rule_once, index -1)), // XdrvMailbox.command, index, GetStateText(bitRead(Settings.rule_enabled, index -1)), GetStateText(bitRead(Settings.rule_once, index -1)),
// GetStateText(bitRead(Settings.rule_stop, index -1)), sizeof(Settings.rules[index -1]) - strlen(Settings.rules[index -1]) -1, Settings.rules[index -1]); // GetStateText(bitRead(Settings.rule_stop, index -1)), sizeof(Settings.rules[index -1]) - strlen(Settings.rules[index -1]) -1, Settings.rules[index -1]);
snprintf_P (mqtt_data, sizeof(mqtt_data), PSTR("{\"%s%d\":\"%s\",\"Once\":\"%s\",\"StopOnError\":\"%s\",\"Free\":%d,\"Rules\":\"%s\"}"), snprintf_P (mqtt_data, sizeof(mqtt_data), PSTR("{\"%s%d\":\"%s\",\"Once\":\"%s\",\"StopOnError\":\"%s\",\"Length\":%d,\"Free\":%d,\"Rules\":\"%s\"}"),
XdrvMailbox.command, index, GetStateText(bitRead(Settings.rule_enabled, index -1)), GetStateText(bitRead(Settings.rule_once, index -1)), XdrvMailbox.command, index, GetStateText(bitRead(Settings.rule_enabled, index -1)), GetStateText(bitRead(Settings.rule_once, index -1)),
GetStateText(bitRead(Settings.rule_stop, index -1)), sizeof(Settings.rules[0]) - GetRuleLenStorage(index - 1), GetRule(index - 1).c_str()); GetStateText(bitRead(Settings.rule_stop, index -1)),
rule_len, MAX_RULE_SIZE - GetRuleLenStorage(index - 1),
escapeJSONString(rule.c_str()).c_str());
} }
} }

View File

@ -1879,6 +1879,19 @@ chknext:
len=0; len=0;
goto strexit; goto strexit;
} }
#ifdef ESP32
if (!strncmp(vname,"sf(",3)) {
lp+=2;
lp=GetNumericResult(lp,OPER_EQU,&fvar,0);
if (fvar<80) fvar=80;
if (fvar>240) fvar=240;
setCpuFrequencyMhz(fvar);
fvar=getCpuFrequencyMhz();
lp++;
len=0;
goto exit;
}
#endif
#if defined(USE_TIMERS) && defined(USE_SUNRISE) #if defined(USE_TIMERS) && defined(USE_SUNRISE)
if (!strncmp(vname,"sunrise",7)) { if (!strncmp(vname,"sunrise",7)) {
fvar=SunMinutes(0); fvar=SunMinutes(0);
@ -2093,7 +2106,7 @@ chknext:
len=0; len=0;
goto exit; goto exit;
} }
#endif #endif //ESP32, USE_WEBCAM
if (!strncmp(vname,"wday",4)) { if (!strncmp(vname,"wday",4)) {
fvar=RtcTime.day_of_week; fvar=RtcTime.day_of_week;
goto exit; goto exit;
@ -2692,11 +2705,13 @@ int16_t Run_Scripter(const char *type, int8_t tlen, char *js) {
return -99; return -99;
} }
JsonObject *jo=0;
if (js) {
DynamicJsonBuffer jsonBuffer; // on heap DynamicJsonBuffer jsonBuffer; // on heap
JsonObject &jobj=jsonBuffer.parseObject(js); JsonObject &jobj=jsonBuffer.parseObject(js);
JsonObject *jo; jo=&jobj;
if (js) jo=&jobj; }
else jo=0;
char *lp=glob_script_mem.scriptptr; char *lp=glob_script_mem.scriptptr;
@ -5119,6 +5134,8 @@ bool RulesProcessEvent(char *json_event) {
#ifdef USE_SCRIPT_TASK #ifdef USE_SCRIPT_TASK
uint16_t task_timer1; uint16_t task_timer1;
uint16_t task_timer2; uint16_t task_timer2;
TaskHandle_t task_t1;
TaskHandle_t task_t2;
void script_task1(void *arg) { void script_task1(void *arg) {
while (1) { while (1) {
@ -5146,10 +5163,12 @@ uint32_t scripter_create_task(uint32_t num, uint32_t time, uint32_t core) {
BaseType_t res = 0; BaseType_t res = 0;
if (core > 1) { core = 1; } if (core > 1) { core = 1; }
if (num == 1) { if (num == 1) {
res = xTaskCreatePinnedToCore(script_task1, "T 1", STASK_STACK, NULL, STASK_PRIO, NULL, core); if (task_t1) { vTaskDelete(task_t1); }
res = xTaskCreatePinnedToCore(script_task1, "T1", STASK_STACK, NULL, STASK_PRIO, &task_t1, core);
task_timer1 = time; task_timer1 = time;
} else { } else {
res = xTaskCreatePinnedToCore(script_task2, "T 2", STASK_STACK, NULL, STASK_PRIO, NULL, core); if (task_t2) { vTaskDelete(task_t2); }
res = xTaskCreatePinnedToCore(script_task2, "T2", STASK_STACK, NULL, STASK_PRIO, &task_t2, core);
task_timer2 = time; task_timer2 = time;
} }
return res; return res;

View File

@ -144,9 +144,9 @@ const char HUE_LIGHTS_STATUS_JSON1_SUFFIX[] PROGMEM =
const char HUE_LIGHTS_STATUS_JSON2[] PROGMEM = const char HUE_LIGHTS_STATUS_JSON2[] PROGMEM =
",\"type\":\"Extended color light\"," ",\"type\":\"Extended color light\","
"\"name\":\"%s\"," "\"name\":\"%s\","
"\"modelid\":\"LCT007\"," "\"modelid\":\"%s\","
"\"uniqueid\":\"%s\"," "\"manufacturername\":\"%s\","
"\"swversion\":\"5.50.1.19085\"}"; "\"uniqueid\":\"%s\"}";
const char HUE_GROUP0_STATUS_JSON[] PROGMEM = const char HUE_GROUP0_STATUS_JSON[] PROGMEM =
"{\"name\":\"Group 0\"," "{\"name\":\"Group 0\","
"\"lights\":[{l1]," "\"lights\":[{l1],"
@ -358,7 +358,7 @@ bool HueActive(uint8_t device) {
void HueLightStatus2(uint8_t device, String *response) void HueLightStatus2(uint8_t device, String *response)
{ {
const size_t buf_size = 192; const size_t buf_size = 300;
char * buf = (char*) malloc(buf_size); char * buf = (char*) malloc(buf_size);
const size_t max_name_len = 32; const size_t max_name_len = 32;
char fname[max_name_len + 1]; char fname[max_name_len + 1];
@ -376,7 +376,11 @@ void HueLightStatus2(uint8_t device, String *response)
} }
fname[fname_len] = 0x00; fname[fname_len] = 0x00;
} }
snprintf_P(buf, buf_size, HUE_LIGHTS_STATUS_JSON2, fname, GetHueDeviceId(device).c_str()); snprintf_P(buf, buf_size, HUE_LIGHTS_STATUS_JSON2,
escapeJSONString(fname).c_str(),
escapeJSONString(Settings.user_template_name).c_str(),
PSTR("Tasmota"),
GetHueDeviceId(device).c_str());
*response += buf; *response += buf;
free(buf); free(buf);
} }

View File

@ -127,6 +127,7 @@ public:
void setFriendlyName(uint16_t shortaddr, const char * str); void setFriendlyName(uint16_t shortaddr, const char * str);
const char * getFriendlyName(uint16_t shortaddr) const; const char * getFriendlyName(uint16_t shortaddr) const;
const char * getModelId(uint16_t shortaddr) const; const char * getModelId(uint16_t shortaddr) const;
const char * getManufacturerId(uint16_t shortaddr) const;
void setReachable(uint16_t shortaddr, bool reachable); void setReachable(uint16_t shortaddr, bool reachable);
// get next sequence number for (increment at each all) // get next sequence number for (increment at each all)
@ -589,6 +590,15 @@ const char * Z_Devices::getModelId(uint16_t shortaddr) const {
return nullptr; return nullptr;
} }
const char * Z_Devices::getManufacturerId(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.manufacturerId;
}
return nullptr;
}
void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) { void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) {
Z_Device & device = getShortAddr(shortaddr); Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found if (&device == nullptr) { return; } // don't crash if not found

View File

@ -75,16 +75,21 @@ void HueLightStatus1Zigbee(uint16_t shortaddr, uint8_t local_light_subtype, Stri
void HueLightStatus2Zigbee(uint16_t shortaddr, String *response) void HueLightStatus2Zigbee(uint16_t shortaddr, String *response)
{ {
const size_t buf_size = 192; const size_t buf_size = 300;
char * buf = (char*) malloc(buf_size); char * buf = (char*) malloc(buf_size);
const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr); const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr);
const char * modelId = zigbee_devices.getModelId(shortaddr);
const char * manufacturerId = zigbee_devices.getManufacturerId(shortaddr);
char shortaddrname[8]; char shortaddrname[8];
snprintf_P(shortaddrname, sizeof(shortaddrname), PSTR("0x%04X"), shortaddr); snprintf_P(shortaddrname, sizeof(shortaddrname), PSTR("0x%04X"), shortaddr);
snprintf_P(buf, buf_size, HUE_LIGHTS_STATUS_JSON2, snprintf_P(buf, buf_size, HUE_LIGHTS_STATUS_JSON2,
(friendlyName) ? friendlyName : shortaddrname, (friendlyName) ? escapeJSONString(friendlyName).c_str() : shortaddrname,
(modelId) ? escapeJSONString(modelId).c_str() : PSTR("Unknown"),
(manufacturerId) ? escapeJSONString(manufacturerId).c_str() : PSTR("Tasmota"),
GetHueDeviceId(shortaddr).c_str()); GetHueDeviceId(shortaddr).c_str());
*response += buf; *response += buf;
free(buf); free(buf);
} }

View File

@ -134,18 +134,18 @@ const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CM
D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|" D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|"
D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|"
D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|"
D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TIMEONLIMITSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|"
D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|"
D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|"
D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|"
D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET; D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET;
void (* const ThermostatCommand[])(void) PROGMEM = { void (* const ThermostatCommand[])(void) PROGMEM = {
&CmndThermostatModeSet, &CmndClimateModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndThermostatModeSet, &CmndClimateModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet,
&CmndInputSwitchUse, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet, &CmndInputSwitchUse, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet,
&CmndTempTargetSet, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet, &CmndTempTargetSet, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet,
&CmndTimeOnLimitSet, &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet,
&CmndTempHystSet, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet,
&CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet,
&CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet }; &CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet };
@ -183,16 +183,15 @@ struct THERMOSTAT {
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
uint16_t time_rampup_max = THERMOSTAT_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes uint16_t time_rampup_max = THERMOSTAT_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes
uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in seconds uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in minutes
uint16_t time_allow_rampup = THERMOSTAT_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase uint16_t time_allow_rampup = THERMOSTAT_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase
uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost in minutes
uint16_t time_manual_to_auto = THERMOSTAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes uint16_t time_manual_to_auto = THERMOSTAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes
uint16_t time_on_limit = THERMOSTAT_TIME_ON_LIMIT; // Maximum time with output active in minutes
uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE; // Cycle time for the thermostat controller in seconds
uint32_t time_reset = THERMOSTAT_TIME_RESET; // Reset time of the PI controller in seconds uint32_t time_reset = THERMOSTAT_TIME_RESET; // Reset time of the PI controller in seconds
uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE; // Cycle time for the thermostat controller in minutes
uint16_t time_max_action = THERMOSTAT_TIME_MAX_ACTION; // Maximum thermostat time per cycle in minutes uint16_t time_max_action = THERMOSTAT_TIME_MAX_ACTION; // Maximum thermostat time per cycle in minutes
uint16_t time_min_action = THERMOSTAT_TIME_MIN_ACTION; // Minimum thermostat time per cycle in minutes uint16_t time_min_action = THERMOSTAT_TIME_MIN_ACTION; // Minimum thermostat time per cycle in minutes
uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will be held on uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will stay on
uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
@ -605,7 +604,7 @@ void ThermostatCalculatePI(uint8_t ctr_output)
// Antiwindup of the integrator // Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result // If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated]] // to the cycle time and error will not be cummulated
if (Thermostat[ctr_output].time_integral_pi > ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { if (Thermostat[ctr_output].time_integral_pi > ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) {
Thermostat[ctr_output].time_integral_pi = ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60); Thermostat[ctr_output].time_integral_pi = ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60);
} }
@ -616,7 +615,7 @@ void ThermostatCalculatePI(uint8_t ctr_output)
// Antiwindup of the output // Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted // If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated]] // to the cylce time minus safety time and error will not be cummulated
if (Thermostat[ctr_output].time_total_pi >= ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { if (Thermostat[ctr_output].time_total_pi >= ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) {
// Limit to cycle time //at least switch down a minimum time // Limit to cycle time //at least switch down a minimum time
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60); Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60);
@ -651,13 +650,13 @@ void ThermostatCalculatePI(uint8_t ctr_output)
} }
// Minimum action limiter // Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value]] // If result is less than the minimum action time, adjust to minimum value
if ((Thermostat[ctr_output].time_total_pi <= abs(((uint32_t)Thermostat[ctr_output].time_min_action * 60))) if ((Thermostat[ctr_output].time_total_pi <= abs(((uint32_t)Thermostat[ctr_output].time_min_action * 60)))
&& (Thermostat[ctr_output].time_total_pi != 0)) { && (Thermostat[ctr_output].time_total_pi != 0)) {
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60); Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60);
} }
// Maximum action limiter // Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value]] // If result is more than the maximum action time, adjust to maximum value
else if (Thermostat[ctr_output].time_total_pi > abs(((int32_t)Thermostat[ctr_output].time_max_action * 60))) { else if (Thermostat[ctr_output].time_total_pi > abs(((int32_t)Thermostat[ctr_output].time_max_action * 60))) {
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_max_action * 60); Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_max_action * 60);
} }
@ -747,7 +746,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
} }
// Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour // Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup); Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
// Set auxiliary variables // Set auxiliary variables
Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max); Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max);
@ -758,7 +757,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle // Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle)) // temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_cycle; temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_cycle;
uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * Thermostat[ctr_output].counter_rampup_cycles; uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60 * Thermostat[ctr_output].counter_rampup_cycles;
// Translate into gradient per hour (thousandths of ° per hour) // Translate into gradient per hour (thousandths of ° per hour)
Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup); Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup);
if ( ((Thermostat[ctr_output].temp_rampup_meas_gradient > 0) if ( ((Thermostat[ctr_output].temp_rampup_meas_gradient > 0)
@ -776,7 +775,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1 // y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
Thermostat[ctr_output].temp_rampup_output_off = (int16_t)(((int32_t)temp_delta_rampup * (int32_t)(Thermostat[ctr_output].time_ctr_changepoint - (uptime - (time_total_rampup)))) / (int32_t)(time_total_rampup * Thermostat[ctr_output].counter_rampup_cycles)) + Thermostat[ctr_output].temp_rampup_cycle; Thermostat[ctr_output].temp_rampup_output_off = (int16_t)(((int32_t)temp_delta_rampup * (int32_t)(Thermostat[ctr_output].time_ctr_changepoint - (uptime - (time_total_rampup)))) / (int32_t)(time_total_rampup * Thermostat[ctr_output].counter_rampup_cycles)) + Thermostat[ctr_output].temp_rampup_cycle;
// Set auxiliary variables // Set auxiliary variables
Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured;
// Reset period counter // Reset period counter
Thermostat[ctr_output].counter_rampup_cycles = 1; Thermostat[ctr_output].counter_rampup_cycles = 1;
@ -785,7 +784,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// Increase the period counter // Increase the period counter
Thermostat[ctr_output].counter_rampup_cycles++; Thermostat[ctr_output].counter_rampup_cycles++;
// Set another period // Set another period
Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
// Reset time_ctr_changepoint and temp_rampup_output_off // Reset time_ctr_changepoint and temp_rampup_output_off
Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup; Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup;
Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr; Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr;
@ -1256,7 +1255,7 @@ void CmndTempMeasuredGrdRead(void)
else { else {
value = Thermostat[ctr_output].temp_measured_gradient; value = Thermostat[ctr_output].temp_measured_gradient;
} }
ResponseCmndFloat((float)value / 10, 1); ResponseCmndFloat(((float)value) / 1000, 1);
} }
} }
@ -1280,25 +1279,11 @@ void CmndTimeManualToAutoSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_manual_to_auto = (uint16_t)(value / 60); Thermostat[ctr_output].time_manual_to_auto = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_manual_to_auto * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_manual_to_auto));
}
}
void CmndTimeOnLimitSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Thermostat[ctr_output].time_on_limit = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_on_limit * 60));
} }
} }
@ -1330,17 +1315,33 @@ void CmndTimeResetSet(void)
} }
} }
void CmndTimePiProportRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
ResponseCmndNumber((int)Thermostat[ctr_output].time_proportional_pi);
}
}
void CmndTimePiIntegrRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
ResponseCmndNumber((int)Thermostat[ctr_output].time_integral_pi);
}
}
void CmndTimePiCycleSet(void) void CmndTimePiCycleSet(void)
{ {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_pi_cycle = (uint16_t)(value / 60); Thermostat[ctr_output].time_pi_cycle = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_pi_cycle));
} }
} }
@ -1404,11 +1405,11 @@ void CmndTimeMaxActionSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_max_action = (uint16_t)(value / 60); Thermostat[ctr_output].time_max_action = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_max_action * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_max_action));
} }
} }
@ -1418,11 +1419,11 @@ void CmndTimeMinActionSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_min_action = (uint16_t)(value / 60); Thermostat[ctr_output].time_min_action = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_action * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_action));
} }
} }
@ -1432,11 +1433,11 @@ void CmndTimeSensLostSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_sens_lost = (uint16_t)(value / 60); Thermostat[ctr_output].time_sens_lost = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_sens_lost * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_sens_lost));
} }
} }
@ -1446,11 +1447,11 @@ void CmndTimeMinTurnoffActionSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_min_turnoff_action = (uint16_t)(value / 60); Thermostat[ctr_output].time_min_turnoff_action = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_turnoff_action * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_turnoff_action));
} }
} }
@ -1514,11 +1515,11 @@ void CmndTimeRampupMaxSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_rampup_max = (uint16_t)(value / 60); Thermostat[ctr_output].time_rampup_max = (uint16_t)value;
} }
} }
ResponseCmndNumber((int)(((uint32_t)Thermostat[ctr_output].time_rampup_max) * 60)); ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_rampup_max));
} }
} }
@ -1528,7 +1529,7 @@ void CmndTimeRampupCycleSet(void)
uint8_t ctr_output = XdrvMailbox.index - 1; uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload); uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 54000)) { if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_rampup_cycle = (uint16_t)value; Thermostat[ctr_output].time_rampup_cycle = (uint16_t)value;
} }
} }
@ -1563,22 +1564,6 @@ void CmndTempRampupPiAccErrSet(void)
} }
} }
void CmndTimePiProportRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
ResponseCmndNumber((int)Thermostat[ctr_output].time_proportional_pi);
}
}
void CmndTimePiIntegrRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
ResponseCmndNumber((int)Thermostat[ctr_output].time_integral_pi);
}
}
void CmndDiagnosticModeSet(void) void CmndDiagnosticModeSet(void)
{ {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {

View File

@ -354,8 +354,8 @@ uint32_t wc_get_jpeg(uint8_t **buff) {
_jpg_buf_len = wc_fb->len; _jpg_buf_len = wc_fb->len;
_jpg_buf = wc_fb->buf; _jpg_buf = wc_fb->buf;
} }
esp_camera_fb_return(wc_fb); esp_camera_fb_return(wc_fb); // This frees the buffer
*buff = _jpg_buf; *buff = _jpg_buf; // Buffer has been freed so this will cause exceptions
return _jpg_buf_len; return _jpg_buf_len;
} }
@ -447,7 +447,7 @@ void HandleImage(void) {
len = wc_get_jpeg(&buff); len = wc_get_jpeg(&buff);
if (len) { if (len) {
client.write(buff,len); client.write(buff,len);
free(buff); free(buff); // Buffer has been freed already in wc_get_jpeg so this will cause exceptions
} }
} else { } else {
bnum--; bnum--;
@ -475,6 +475,50 @@ void handleMjpeg(void) {
} }
} }
void HandleImageTheo(void) {
if (!HttpCheckPriviledgedAccess(true)) { return; }
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_HTTP "Capture image"));
if (Settings.webcam_config.stream) {
if (!CamServer) {
WcStreamControl();
}
}
camera_fb_t *wc_fb;
wc_fb = esp_camera_fb_get(); // Acquire frame
if (!wc_fb) {
AddLog_P2(WC_LOGLEVEL, PSTR("CAM: Frame buffer could not be acquired"));
return;
}
size_t _jpg_buf_len = 0;
uint8_t * _jpg_buf = NULL;
if (wc_fb->format != PIXFORMAT_JPEG) {
bool jpeg_converted = frame2jpg(wc_fb, 80, &_jpg_buf, &_jpg_buf_len);
if (!jpeg_converted) {
_jpg_buf_len = wc_fb->len;
_jpg_buf = wc_fb->buf;
}
} else {
_jpg_buf_len = wc_fb->len;
_jpg_buf = wc_fb->buf;
}
if (_jpg_buf_len) {
Webserver->client().flush();
WSHeaderSend();
Webserver->sendHeader(F("Content-disposition"), F("inline; filename=cap.jpg"));
Webserver->send_P(200, "image/jpeg", (char *)_jpg_buf, _jpg_buf_len);
Webserver->client().stop();
}
esp_camera_fb_return(wc_fb); // Free frame buffer
AddLog_P2(WC_LOGLEVEL, PSTR("CAM: Image sent"));
}
#ifdef USE_FACE_DETECT #ifdef USE_FACE_DETECT
static mtmn_config_t mtmn_config = {0}; static mtmn_config_t mtmn_config = {0};
@ -812,6 +856,8 @@ void wc_loop(void) {
void wc_pic_setup(void) { void wc_pic_setup(void) {
Webserver->on("/wc.jpg", HandleImage); Webserver->on("/wc.jpg", HandleImage);
Webserver->on("/wc.mjpeg", HandleImage); Webserver->on("/wc.mjpeg", HandleImage);
Webserver->on("/snapshot.jpg", HandleImageTheo);
} }
/* /*

View File

@ -59,13 +59,14 @@
#define D_CMND_I2CREAD "I2CRead" #define D_CMND_I2CREAD "I2CRead"
#define D_CMND_I2CSTRETCH "I2CStretch" #define D_CMND_I2CSTRETCH "I2CStretch"
#define D_CMND_I2CCLOCK "I2CClock" #define D_CMND_I2CCLOCK "I2CClock"
#define D_CMND_SERBUFF "SerBufSize"
const char kDebugCommands[] PROGMEM = "|" // No prefix const char kDebugCommands[] PROGMEM = "|" // No prefix
D_CMND_CFGDUMP "|" D_CMND_CFGPEEK "|" D_CMND_CFGPOKE "|" D_CMND_CFGDUMP "|" D_CMND_CFGPEEK "|" D_CMND_CFGPOKE "|"
#ifdef USE_WEBSERVER #ifdef USE_WEBSERVER
D_CMND_CFGXOR "|" D_CMND_CFGXOR "|"
#endif #endif
D_CMND_CPUCHECK "|" D_CMND_CPUCHECK "|" D_CMND_SERBUFF "|"
#ifdef DEBUG_THEO #ifdef DEBUG_THEO
D_CMND_EXCEPTION "|" D_CMND_EXCEPTION "|"
#endif #endif
@ -80,7 +81,7 @@ void (* const DebugCommand[])(void) PROGMEM = {
#ifdef USE_WEBSERVER #ifdef USE_WEBSERVER
&CmndCfgXor, &CmndCfgXor,
#endif #endif
&CmndCpuCheck, &CmndCpuCheck, &CmndSerBufSize,
#ifdef DEBUG_THEO #ifdef DEBUG_THEO
&CmndException, &CmndException,
#endif #endif
@ -479,6 +480,18 @@ void CmndCpuCheck(void)
ResponseCmndNumber(CPU_load_check); ResponseCmndNumber(CPU_load_check);
} }
void CmndSerBufSize(void)
{
if (XdrvMailbox.data_len > 0) {
Serial.setRxBufferSize(XdrvMailbox.payload);
}
#ifdef ESP8266
ResponseCmndNumber(Serial.getRxBufferSize());
#else
ResponseCmndDone();
#endif
}
void CmndFreemem(void) void CmndFreemem(void)
{ {
if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.data_len > 0) {