Add optional DS18x20 arithmetic mean

Add command ``SetOption126 1`` to enable DS18x20 arithmetic mean over teleperiod for JSON temperature based on ()
This commit is contained in:
Theo Arends 2021-04-02 11:43:31 +02:00
parent c93185172a
commit b0689af803
6 changed files with 92 additions and 60 deletions

View File

@ -8,6 +8,7 @@ All notable changes to this project will be documented in this file.
- Commands ``MqttKeepAlive 1..100`` to set Mqtt Keep Alive timer (default 30) and ``MqttTimeout 1..100`` to set Mqtt Socket Timeout (default 4) (#5341)
- Commands ``DisplayType`` to select sub-modules where implemented and ``DisplayInvert`` to select inverted display where implemented
- Command ``SerialBuffer 256..520`` to change hardware serial receive buffer size from default (256) to max local buffer size (520) (#11448)
- Command ``SetOption126 1`` to enable DS18x20 arithmetic mean over teleperiod for JSON temperature based on (#11472)
- Support for TM1638 seven segment display by Ajith Vasudevan (#11031)
- Support for MAX7219 seven segment display by Ajith Vasudevan (#11387)
- Support for Frequency monitoring and zero-cross detection on CSE7761 (Sonoff Dual R3)

View File

@ -82,6 +82,7 @@ The attached binaries can also be downloaded from http://ota.tasmota.com/tasmota
### Added
- Command ``Sensor80 1 <0..7>`` to control MFRC522 RFID antenna gain from 18dB (0) to 48dB (7) [#11073](https://github.com/arendst/Tasmota/issues/11073)
- Command ``SerialBuffer 256..520`` to change hardware serial receive buffer size from default (256) to max local buffer size (520) [#11448](https://github.com/arendst/Tasmota/issues/11448)
- Command ``SetOption126 1`` to enable DS18x20 arithmetic mean over teleperiod for JSON temperature based on [#11472](https://github.com/arendst/Tasmota/issues/11472)
- Commands ``MqttKeepAlive 1..100`` to set Mqtt Keep Alive timer (default 30) and ``MqttTimeout 1..100`` to set Mqtt Socket Timeout (default 4) [#5341](https://github.com/arendst/Tasmota/issues/5341)
- Commands ``DisplayType`` to select sub-modules where implemented and ``DisplayInvert`` to select inverted display where implemented
- Support for SML VBUS [#11125](https://github.com/arendst/Tasmota/issues/11125)

View File

@ -151,7 +151,7 @@ typedef union { // Restricted by MISRA-C Rule 18.4 bu
uint32_t wiegand_hex_output : 1; // bit 9 (v9.3.1.1) - SetOption123 - (Wiegand) switch tag number output to hex format (1)
uint32_t wiegand_keypad_to_tag : 1; // bit 10 (v9.3.1.1) - SetOption124 - (Wiegand) send key pad stroke as single char (0) or one tag (ending char #) (1)
uint32_t zigbee_hide_bridge_topic : 1; // bit 11 (v9.3.1.1) - SetOption125 - (Zigbee) Hide bridge topic from zigbee topic (use with SetOption89) (1)
uint32_t spare12 : 1; // bit 12
uint32_t ds18x20_mean : 1; // bit 12 (v9.3.1.2) - SetOption126 - (DS18x20) Enable arithmetic mean over teleperiod for JSON temperature (1)
uint32_t spare13 : 1; // bit 13
uint32_t spare14 : 1; // bit 14
uint32_t spare15 : 1; // bit 15

View File

@ -47,11 +47,13 @@ const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850";
uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID };
struct DS18X20STRUCT {
struct {
float temperature;
float temp_sum;
uint16_t numread;
uint8_t address[8];
uint8_t index;
uint8_t valid;
float temperature;
} ds18x20_sensor[DS18X20_MAX_SENSORS];
struct {
@ -351,6 +353,7 @@ void Ds18x20Convert(void) {
}
bool Ds18x20Read(uint8_t sensor) {
float temperature;
uint8_t data[9];
int8_t sign = 1;
@ -367,10 +370,8 @@ bool Ds18x20Read(uint8_t sensor) {
switch(ds18x20_sensor[index].address[0]) {
case DS18S20_CHIPID: {
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
ds18x20_sensor[index].temperature = ConvertTemp(tempS * 0.0625 - 0.250);
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
temperature = ConvertTemp(tempS * 0.0625 - 0.250);
break;
}
case DS1822_CHIPID:
case DS18B20_CHIPID: {
@ -393,17 +394,24 @@ bool Ds18x20Read(uint8_t sensor) {
temp12 = (~temp12) +1;
sign = -1;
}
ds18x20_sensor[index].temperature = ConvertTemp(sign * temp12 * 0.0625); // Divide by 16
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
temperature = ConvertTemp(sign * temp12 * 0.0625); // Divide by 16
break;
}
case MAX31850_CHIPID: {
int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC);
ds18x20_sensor[index].temperature = ConvertTemp(temp14 * 0.0625); // Divide by 16
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
temperature = ConvertTemp(temp14 * 0.0625); // Divide by 16
break;
}
}
ds18x20_sensor[index].temperature = temperature;
if (Settings.flag5.ds18x20_mean) {
if (ds18x20_sensor[index].numread++ == 0) {
ds18x20_sensor[index].temp_sum = 0;
}
ds18x20_sensor[index].temp_sum += temperature;
}
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR));
@ -475,6 +483,12 @@ void Ds18x20Show(bool json) {
Ds18x20Name(i);
if (json) {
if (Settings.flag5.ds18x20_mean) {
if ((0 == TasmotaGlobal.tele_period) && ds18x20_sensor[index].numread) {
ds18x20_sensor[index].temperature = ds18x20_sensor[index].temp_sum / ds18x20_sensor[index].numread;
ds18x20_sensor[index].numread = 0;
}
}
char address[17];
for (uint32_t j = 0; j < 6; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[index].address[6-j]); // Skip sensor type and crc

View File

@ -42,11 +42,18 @@ const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850";
uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID };
uint8_t ds18x20_address[DS18X20_MAX_SENSORS][8];
uint8_t ds18x20_index[DS18X20_MAX_SENSORS];
uint8_t ds18x20_valid[DS18X20_MAX_SENSORS];
uint8_t ds18x20_sensors = 0;
char ds18x20_types[17];
struct {
float temp_sum;
uint16_t numread;
uint8_t address[8];
uint8_t index;
uint8_t valid;
} ds18x20_sensor[DS18X20_MAX_SENSORS];
struct {
char name[17];
uint8_t sensors = 0;
} DS18X20Data;
/********************************************************************************************/
@ -58,7 +65,7 @@ void Ds18x20Init(void) {
ds = new OneWire(Pin(GPIO_DSB));
Ds18x20Search();
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), ds18x20_sensors);
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors);
}
void Ds18x20Search(void) {
@ -67,30 +74,30 @@ void Ds18x20Search(void) {
ds->reset_search();
for (num_sensors = 0; num_sensors < DS18X20_MAX_SENSORS; num_sensors) {
if (!ds->search(ds18x20_address[num_sensors])) {
if (!ds->search(ds18x20_sensor[num_sensors].address)) {
ds->reset_search();
break;
}
// If CRC Ok and Type DS18S20, DS1822, DS18B20 or MAX31850
if ((OneWire::crc8(ds18x20_address[num_sensors], 7) == ds18x20_address[num_sensors][7]) &&
((ds18x20_address[num_sensors][0]==DS18S20_CHIPID) ||
(ds18x20_address[num_sensors][0]==DS1822_CHIPID) ||
(ds18x20_address[num_sensors][0]==DS18B20_CHIPID) ||
(ds18x20_address[num_sensors][0]==MAX31850_CHIPID))) {
if ((OneWire::crc8(ds18x20_sensor[num_sensors].address, 7) == ds18x20_sensor[num_sensors].address[7]) &&
((ds18x20_sensor[num_sensors].address[0] == DS18S20_CHIPID) ||
(ds18x20_sensor[num_sensors].address[0] == DS1822_CHIPID) ||
(ds18x20_sensor[num_sensors].address[0] == DS18B20_CHIPID) ||
(ds18x20_sensor[num_sensors].address[0] == MAX31850_CHIPID))) {
num_sensors++;
}
}
for (uint32_t i = 0; i < num_sensors; i++) {
ds18x20_index[i] = i;
ds18x20_sensor[i].index = i;
}
for (uint32_t i = 0; i < num_sensors; i++) {
for (uint32_t j = i + 1; j < num_sensors; j++) {
if (uint32_t(ds18x20_address[ds18x20_index[i]]) > uint32_t(ds18x20_address[ds18x20_index[j]])) {
std::swap(ds18x20_index[i], ds18x20_index[j]);
if (uint32_t(ds18x20_sensor[ds18x20_sensor[i].index].address) > uint32_t(ds18x20_sensor[ds18x20_sensor[j].index].address)) {
std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index);
}
}
}
ds18x20_sensors = num_sensors;
DS18X20Data.sensors = num_sensors;
}
void Ds18x20Convert(void) {
@ -100,29 +107,28 @@ void Ds18x20Convert(void) {
// delay(750); // 750ms should be enough for 12bit conv
}
bool Ds18x20Read(uint8_t sensor, float &t)
{
bool Ds18x20Read(uint8_t sensor, float &t) {
uint8_t data[12];
int8_t sign = 1;
t = NAN;
uint8_t index = ds18x20_index[sensor];
if (ds18x20_valid[index]) { ds18x20_valid[index]--; }
uint8_t index = ds18x20_sensor[sensor].index;
if (ds18x20_sensor[index].valid) { ds18x20_sensor[index].valid--; }
ds->reset();
ds->select(ds18x20_address[index]);
ds->select(ds18x20_sensor[index].address);
ds->write(W1_READ_SCRATCHPAD); // Read Scratchpad
for (uint32_t i = 0; i < 9; i++) {
data[i] = ds->read();
}
if (OneWire::crc8(data, 8) == data[8]) {
switch(ds18x20_address[index][0]) {
switch(ds18x20_sensor[index].address[0]) {
case DS18S20_CHIPID: {
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
t = ConvertTemp(tempS * 0.0625 - 0.250);
ds18x20_valid[index] = SENSOR_MAX_MISS;
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
case DS1822_CHIPID:
@ -133,13 +139,13 @@ bool Ds18x20Read(uint8_t sensor, float &t)
sign = -1;
}
t = ConvertTemp(sign * temp12 * 0.0625); // Divide by 16
ds18x20_valid[index] = SENSOR_MAX_MISS;
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
case MAX31850_CHIPID: {
int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC);
t = ConvertTemp(temp14 * 0.0625); // Divide by 16
ds18x20_valid[index] = SENSOR_MAX_MISS;
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
}
@ -148,34 +154,32 @@ bool Ds18x20Read(uint8_t sensor, float &t)
return false;
}
void Ds18x20Name(uint8_t sensor)
{
void Ds18x20Name(uint8_t sensor) {
uint8_t index = sizeof(ds18x20_chipids);
while (index) {
if (ds18x20_address[ds18x20_index[sensor]][0] == ds18x20_chipids[index]) {
if (ds18x20_sensor[ds18x20_sensor[sensor].index].address[0] == ds18x20_chipids[index]) {
break;
}
index--;
}
GetTextIndexed(ds18x20_types, sizeof(ds18x20_types), index, kDs18x20Types);
if (ds18x20_sensors > 1) {
GetTextIndexed(DS18X20Data.name, sizeof(DS18X20Data.name), index, kDs18x20Types);
if (DS18X20Data.sensors > 1) {
#ifdef DS18x20_USE_ID_AS_NAME
char address[17];
for (uint32_t j = 0; j < 3; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[sensor].index].address[3-j]); // Only last 3 bytes
}
snprintf_P(ds18x20_types, sizeof(ds18x20_types), PSTR("%s%c%s"), ds18x20_types, IndexSeparator(), address);
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%s"), DS18X20Data.name, IndexSeparator(), address);
#else
snprintf_P(ds18x20_types, sizeof(ds18x20_types), PSTR("%s%c%d"), ds18x20_types, IndexSeparator(), sensor +1);
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%d"), DS18X20Data.name, IndexSeparator(), sensor +1);
#endif
}
}
/********************************************************************************************/
void Ds18x20EverySecond(void)
{
if (!ds18x20_sensors) { return; }
void Ds18x20EverySecond(void) {
if (!DS18X20Data.sensors) { return; }
if (TasmotaGlobal.uptime & 1) {
// 2mS
@ -183,32 +187,44 @@ void Ds18x20EverySecond(void)
Ds18x20Convert(); // Start Conversion, takes up to one second
} else {
float t;
for (uint32_t i = 0; i < ds18x20_sensors; i++) {
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
// 12mS per device
if (!Ds18x20Read(i, t)) { // Read temperature
if (Ds18x20Read(i, t)) { // Read temperature
if (Settings.flag5.ds18x20_mean) {
if (ds18x20_sensor[i].numread++ == 0) {
ds18x20_sensor[i].temp_sum = 0;
}
ds18x20_sensor[i].temp_sum += t;
}
} else {
Ds18x20Name(i);
AddLogMissed(ds18x20_types, ds18x20_valid[ds18x20_index[i]]);
AddLogMissed(DS18X20Data.name, ds18x20_sensor[ds18x20_sensor[i].index].valid);
}
}
}
}
void Ds18x20Show(bool json)
{
void Ds18x20Show(bool json) {
float t;
uint8_t dsxflg = 0;
for (uint32_t i = 0; i < ds18x20_sensors; i++) {
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
if (Ds18x20Read(i, t)) { // Check if read failed
Ds18x20Name(i);
if (json) {
if (Settings.flag5.ds18x20_mean) {
if ((0 == TasmotaGlobal.tele_period) && ds18x20_sensor[i].numread) {
t = ds18x20_sensor[i].temp_sum / ds18x20_sensor[i].numread;
ds18x20_sensor[i].numread = 0;
}
}
char address[17];
for (uint32_t j = 0; j < 6; j++) {
sprintf(address+2*j, "%02X", ds18x20_address[ds18x20_index[i]][6-j]); // Skip sensor type and crc
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[6-j]); // Skip sensor type and crc
}
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"),
ds18x20_types, address, Settings.flag2.temperature_resolution, &t);
DS18X20Data.name, address, Settings.flag2.temperature_resolution, &t);
dsxflg++;
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) {
@ -222,7 +238,7 @@ void Ds18x20Show(bool json)
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp(ds18x20_types, t);
WSContentSend_Temp(DS18X20Data.name, t);
#endif // USE_WEBSERVER
}
}
@ -233,8 +249,7 @@ void Ds18x20Show(bool json)
* Interface
\*********************************************************************************************/
bool Xsns05(uint8_t function)
{
bool Xsns05(uint8_t function) {
bool result = false;
if (PinUsed(GPIO_DSB)) {

View File

@ -180,7 +180,8 @@ a_setoption = [[
"(Wiegand) switch tag number output to hex format (1)",
"(Wiegand) send key pad stroke as single char (0) or one tag (ending char #) (1)",
"(Zigbee) Hide bridge topic from zigbee topic (use with SetOption89) (1)",
"","","","",
"(DS18x20) Enable arithmetic mean over teleperiod for JSON temperature (1)",
"","","",
"","","","",
"","","","",
"","","","",