Remove obsolete SDM120 and SDM630 drivers

This commit is contained in:
Theo Arends 2019-10-18 12:31:56 +02:00
parent 5ab85a9825
commit b361d0cc46
2 changed files with 0 additions and 759 deletions

View File

@ -1,397 +0,0 @@
/*
xsns_23_sdm120.ino - Eastron SDM120-Modbus energy meter support for Sonoff-Tasmota
Copyright (C) 2019 Gennaro Tortone
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SDM120
/*********************************************************************************************\
* Eastron SDM120-Modbus energy meter
*
* Based on: https://github.com/reaper7/SDM_Energy_Meter
\*********************************************************************************************/
#define XSNS_23 23
// can be user defined in my_user_config.h
#ifndef SDM120_SPEED
#define SDM120_SPEED 2400 // default SDM120 Modbus address
#endif
// can be user defined in my_user_config.h
#ifndef SDM120_ADDR
#define SDM120_ADDR 1 // default SDM120 Modbus address
#endif
#include <TasmotaSerial.h>
enum SDM120_Error {SDM120_ERR_NO_ERROR=0, SDM120_ERR_CRC_ERROR, SDM120_ERR_WRONG_BYTES, SDM120_ERR_NOT_ENOUGHT_BYTES};
TasmotaSerial *SDM120Serial;
uint8_t sdm120_type = 1;
//uint8_t sdm120_state = 0;
float sdm120_voltage = 0;
float sdm120_current = 0;
float sdm120_active_power = 0;
float sdm120_apparent_power = 0;
float sdm120_reactive_power = 0;
float sdm120_power_factor = 0;
float sdm120_frequency = 0;
float sdm120_energy_total = 0;
float sdm120_phase_angle = 0;
float sdm120_import_active = 0;
float sdm120_export_active = 0;
float sdm120_import_reactive = 0;
float sdm120_export_reactive = 0;
float sdm120_total_reactive = 0;
bool SDM120_ModbusReceiveReady(void)
{
return (SDM120Serial->available() > 1);
}
void SDM120_ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count)
{
uint8_t frame[8];
frame[0] = SDM120_ADDR;
frame[1] = function_code;
frame[2] = (uint8_t)(start_address >> 8);
frame[3] = (uint8_t)(start_address);
frame[4] = (uint8_t)(register_count >> 8);
frame[5] = (uint8_t)(register_count);
uint16_t crc = SDM120_calculateCRC(frame, 6); // calculate out crc only from first 6 bytes
frame[6] = lowByte(crc);
frame[7] = highByte(crc);
while (SDM120Serial->available() > 0) { // read serial if any old data is available
SDM120Serial->read();
}
SDM120Serial->flush();
SDM120Serial->write(frame, sizeof(frame));
}
uint8_t SDM120_ModbusReceive(float *value)
{
uint8_t buffer[9];
*value = NAN;
uint8_t len = 0;
while (SDM120Serial->available() > 0) {
buffer[len++] = (uint8_t)SDM120Serial->read();
}
if (len < 9) {
return SDM120_ERR_NOT_ENOUGHT_BYTES;
}
if (9 == len) {
if (0x01 == buffer[0] && 0x04 == buffer[1] && 4 == buffer[2]) { // check node number, op code and reply bytes count
if((SDM120_calculateCRC(buffer, 7)) == ((buffer[8] << 8) | buffer[7])) { //calculate crc from first 7 bytes and compare with received crc (bytes 7 & 8)
((uint8_t*)value)[3] = buffer[3];
((uint8_t*)value)[2] = buffer[4];
((uint8_t*)value)[1] = buffer[5];
((uint8_t*)value)[0] = buffer[6];
} else {
return SDM120_ERR_CRC_ERROR;
}
} else {
return SDM120_ERR_WRONG_BYTES;
}
}
return SDM120_ERR_NO_ERROR;
}
uint16_t SDM120_calculateCRC(uint8_t *frame, uint8_t num)
{
uint16_t crc, flag;
crc = 0xFFFF;
for (uint32_t i = 0; i < num; i++) {
crc ^= frame[i];
for (uint32_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
/*********************************************************************************************/
const uint16_t sdm120_start_addresses[] {
0x0000, // SDM120C_VOLTAGE [V]
0x0006, // SDM120C_CURRENT [A]
0x000C, // SDM120C_POWER [W]
0x0012, // SDM120C_APPARENT_POWER [VA]
0x0018, // SDM120C_REACTIVE_POWER [VAR]
0x001E, // SDM120C_POWER_FACTOR
0x0046, // SDM120C_FREQUENCY [Hz]
#ifdef USE_SDM220
0x0156, // SDM120C_TOTAL_ACTIVE_ENERGY [Wh]
0X0024, // SDM220_PHASE_ANGLE [Degre]
0X0048, // SDM220_IMPORT_ACTIVE [kWh]
0X004A, // SDM220_EXPORT_ACTIVE [kWh]
0X004C, // SDM220_IMPORT_REACTIVE [kVArh]
0X004E, // SDM220_EXPORT_REACTIVE [kVArh]
0X0158 // SDM220 TOTAL_REACTIVE [kVArh]
#else // USE_SDM220
0x0156 // SDM120C_TOTAL_ACTIVE_ENERGY [Wh]
#endif // USE_SDM220
};
uint8_t sdm120_read_state = 0;
uint8_t sdm120_send_retry = 0;
uint8_t sdm120_nodata_count = 0;
void SDM120250ms(void) // Every 250 mSec
{
// sdm120_state++;
// if (6 == sdm120_state) { // Every 300 mSec
// sdm120_state = 0;
float value = 0;
bool data_ready = SDM120_ModbusReceiveReady();
if (data_ready) {
sdm120_nodata_count = 0;
uint8_t error = SDM120_ModbusReceive(&value);
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "SDM120 response error %d"), error);
} else {
switch(sdm120_read_state) {
case 0:
sdm120_voltage = value;
break;
case 1:
sdm120_current = value;
break;
case 2:
sdm120_active_power = value;
break;
case 3:
sdm120_apparent_power = value;
break;
case 4:
sdm120_reactive_power = value;
break;
case 5:
sdm120_power_factor = value;
break;
case 6:
sdm120_frequency = value;
break;
case 7:
sdm120_energy_total = value;
break;
#ifdef USE_SDM220
case 8:
sdm120_phase_angle = value;
break;
case 9:
sdm120_import_active = value;
break;
case 10:
sdm120_export_active = value;
break;
case 11:
sdm120_import_reactive = value;
break;
case 12:
sdm120_export_reactive = value;
break;
case 13:
sdm120_total_reactive = value;
break;
#endif // USE_SDM220
} // end switch
sdm120_read_state++;
if (sizeof(sdm120_start_addresses)/2 == sdm120_read_state) {
sdm120_read_state = 0;
}
}
} // end data ready
else {
if (sdm120_nodata_count <= (1000/250) * 4) { // max. 4 sec without data
sdm120_nodata_count++;
} else if (sdm120_nodata_count != 255) {
// no data from modbus, reset values to 0
sdm120_nodata_count = 255;
sdm120_voltage = sdm120_current = sdm120_active_power = sdm120_apparent_power = sdm120_reactive_power = sdm120_power_factor = sdm120_frequency = sdm120_energy_total = 0;
#ifdef USE_SDM220
sdm120_phase_angle = sdm120_import_active = sdm120_export_active = sdm120_import_reactive = sdm120_export_reactive = sdm120_total_reactive = 0;
#endif
}
}
if (0 == sdm120_send_retry || data_ready) {
sdm120_send_retry = 5;
SDM120_ModbusSend(0x04, sdm120_start_addresses[sdm120_read_state], 2);
} else {
sdm120_send_retry--;
}
// } // end 300 ms
}
void SDM120Init(void)
{
sdm120_type = 0;
if ((pin[GPIO_SDM120_RX] < 99) && (pin[GPIO_SDM120_TX] < 99)) {
SDM120Serial = new TasmotaSerial(pin[GPIO_SDM120_RX], pin[GPIO_SDM120_TX], 1);
if (SDM120Serial->begin(SDM120_SPEED)) {
if (SDM120Serial->hardwareSerial()) { ClaimSerial(); }
sdm120_type = 1;
}
}
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_SDM120_DATA[] PROGMEM =
"{s}SDM120 " D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}SDM120 " D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}SDM120 " D_POWERUSAGE_ACTIVE "{m}%s " D_UNIT_WATT "{e}"
"{s}SDM120 " D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}"
"{s}SDM120 " D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}"
"{s}SDM120 " D_POWER_FACTOR "{m}%s{e}"
"{s}SDM120 " D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"
"{s}SDM120 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
#ifdef USE_SDM220
"{s}SDM120 " D_PHASE_ANGLE "{m}%s " D_UNIT_ANGLE "{e}"
"{s}SDM120 " D_IMPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}SDM120 " D_EXPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}SDM120 " D_IMPORT_REACTIVE "{m}%s " D_UNIT_KWARH "{e}"
"{s}SDM120 " D_EXPORT_REACTIVE "{m}%s " D_UNIT_KWARH "{e}"
"{s}SDM120 " D_TOTAL_REACTIVE "{m}%s " D_UNIT_KWARH "{e}"
#endif // USE_SDM220
;
#endif // USE_WEBSERVER
void SDM120Show(bool json)
{
char voltage[33];
dtostrfd(sdm120_voltage, Settings.flag2.voltage_resolution, voltage);
char current[33];
dtostrfd(sdm120_current, Settings.flag2.current_resolution, current);
char active_power[33];
dtostrfd(sdm120_active_power, Settings.flag2.wattage_resolution, active_power);
char apparent_power[33];
dtostrfd(sdm120_apparent_power, Settings.flag2.wattage_resolution, apparent_power);
char reactive_power[33];
dtostrfd(sdm120_reactive_power, Settings.flag2.wattage_resolution, reactive_power);
char power_factor[33];
dtostrfd(sdm120_power_factor, 2, power_factor);
char frequency[33];
dtostrfd(sdm120_frequency, Settings.flag2.frequency_resolution, frequency);
char energy_total[33];
dtostrfd(sdm120_energy_total, Settings.flag2.energy_resolution, energy_total);
#ifdef USE_SDM220
char phase_angle[33];
dtostrfd(sdm120_phase_angle, 2, phase_angle);
char import_active[33];
dtostrfd(sdm120_import_active, Settings.flag2.wattage_resolution, import_active);
char export_active[33];
dtostrfd(sdm120_export_active, Settings.flag2.wattage_resolution, export_active);
char import_reactive[33];
dtostrfd(sdm120_import_reactive,Settings.flag2.wattage_resolution, import_reactive);
char export_reactive[33];
dtostrfd(sdm120_export_reactive,Settings.flag2.wattage_resolution, export_reactive);
char total_reactive[33];
dtostrfd(sdm120_total_reactive, Settings.flag2.wattage_resolution, total_reactive);
#endif // USE_SDM220
if (json) {
#ifdef USE_SDM220
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_POWERFACTOR "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_PHASE_ANGLE "\":%s,\"" D_JSON_IMPORT_ACTIVE "\":%s,\"" D_JSON_EXPORT_ACTIVE "\":%s,\"" D_JSON_IMPORT_REACTIVE "\":%s,\"" D_JSON_EXPORT_REACTIVE "\":%s,\"" D_JSON_TOTAL_REACTIVE "\":%s}"),
energy_total, active_power, apparent_power, reactive_power, frequency, power_factor, voltage, current, phase_angle, import_active, export_active, import_reactive, export_reactive, total_reactive);
#else
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_POWERFACTOR "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
energy_total, active_power, apparent_power, reactive_power, frequency, power_factor, voltage, current);
#endif // USE_SDM220
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
char energy_total_chr[33];
dtostrfd(sdm120_energy_total * 1000, 1, energy_total_chr);
DomoticzSensor(DZ_VOLTAGE, voltage);
DomoticzSensor(DZ_CURRENT, current);
DomoticzSensorPowerEnergy((int)sdm120_active_power, energy_total_chr);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
#ifdef USE_SDM220
WSContentSend_PD(HTTP_SNS_SDM120_DATA, voltage, current, active_power, apparent_power, reactive_power, power_factor, frequency, energy_total, phase_angle,import_active,export_active,import_reactive,export_reactive,total_reactive);
#else
WSContentSend_PD(HTTP_SNS_SDM120_DATA, voltage, current, active_power, apparent_power, reactive_power, power_factor, frequency, energy_total);
#endif // USE_SDM220
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns23(uint8_t function)
{
bool result = false;
if (sdm120_type) {
switch (function) {
case FUNC_INIT:
SDM120Init();
break;
case FUNC_EVERY_250_MSECOND:
SDM120250ms();
break;
case FUNC_JSON_APPEND:
SDM120Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
SDM120Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_SDM120

View File

@ -1,362 +0,0 @@
/*
xsns_25_sdm630.ino - Eastron SDM630-Modbus energy meter support for Sonoff-Tasmota
Copyright (C) 2019 Gennaro Tortone
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SDM630
/*********************************************************************************************\
* Eastron SDM630-Modbus energy meter
*
* Based on: https://github.com/reaper7/SDM_Energy_Meter
\*********************************************************************************************/
#define XSNS_25 25
#include <TasmotaSerial.h>
TasmotaSerial *SDM630Serial;
uint8_t sdm630_type = 1;
//uint8_t sdm630_state = 0;
float sdm630_voltage[] = {0,0,0};
float sdm630_current[] = {0,0,0};
float sdm630_active_power[] = {0,0,0};
float sdm630_reactive_power[] = {0,0,0};
float sdm630_power_factor[] = {0,0,0};
float sdm630_energy_total = 0;
bool SDM630_ModbusReceiveReady(void)
{
return (SDM630Serial->available() > 1);
}
void SDM630_ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count)
{
uint8_t frame[8];
frame[0] = 0x01; // default SDM630 Modbus address
frame[1] = function_code;
frame[2] = (uint8_t)(start_address >> 8);
frame[3] = (uint8_t)(start_address);
frame[4] = (uint8_t)(register_count >> 8);
frame[5] = (uint8_t)(register_count);
uint16_t crc = SDM630_calculateCRC(frame, 6); // calculate out crc only from first 6 bytes
frame[6] = lowByte(crc);
frame[7] = highByte(crc);
while (SDM630Serial->available() > 0) { // read serial if any old data is available
SDM630Serial->read();
}
SDM630Serial->flush();
SDM630Serial->write(frame, sizeof(frame));
}
uint8_t SDM630_ModbusReceive(float *value)
{
uint8_t buffer[9];
*value = NAN;
uint8_t len = 0;
while (SDM630Serial->available() > 0) {
buffer[len++] = (uint8_t)SDM630Serial->read();
}
if (len < 9)
return 3; // SDM_ERR_NOT_ENOUGHT_BYTES
if (len == 9) {
if (buffer[0] == 0x01 && buffer[1] == 0x04 && buffer[2] == 4) { // check node number, op code and reply bytes count
if((SDM630_calculateCRC(buffer, 7)) == ((buffer[8] << 8) | buffer[7])) { //calculate crc from first 7 bytes and compare with received crc (bytes 7 & 8)
((uint8_t*)value)[3] = buffer[3];
((uint8_t*)value)[2] = buffer[4];
((uint8_t*)value)[1] = buffer[5];
((uint8_t*)value)[0] = buffer[6];
} else return 1; // SDM_ERR_CRC_ERROR
} else return 2; // SDM_ERR_WRONG_BYTES
}
return 0; // SDM_ERR_NO_ERROR
}
uint16_t SDM630_calculateCRC(uint8_t *frame, uint8_t num)
{
uint16_t crc, flag;
crc = 0xFFFF;
for (uint32_t i = 0; i < num; i++) {
crc ^= frame[i];
for (uint32_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
/*********************************************************************************************/
const uint16_t sdm630_start_addresses[] {
0x0000, // L1 - SDM630_VOLTAGE [V]
0x0002, // L2 - SDM630_VOLTAGE [V]
0x0004, // L3 - SDM630_VOLTAGE [V]
0x0006, // L1 - SDM630_CURRENT [A]
0x0008, // L2 - SDM630_CURRENT [A]
0x000A, // L3 - SDM630_CURRENT [A]
0x000C, // L1 - SDM630_POWER [W]
0x000E, // L2 - SDM630_POWER [W]
0x0010, // L3 - SDM630_POWER [W]
0x0018, // L1 - SDM630_REACTIVE_POWER [VAR]
0x001A, // L2 - SDM630_REACTIVE_POWER [VAR]
0x001C, // L3 - SDM630_REACTIVE_POWER [VAR]
0x001E, // L1 - SDM630_POWER_FACTOR
0x0020, // L2 - SDM630_POWER_FACTOR
0x0022, // L3 - SDM630_POWER_FACTOR
0x0156 // Total - SDM630_TOTAL_ACTIVE_ENERGY [Wh]
};
uint8_t sdm630_read_state = 0;
uint8_t sdm630_send_retry = 0;
void SDM630250ms(void) // Every 250 mSec
{
// sdm630_state++;
// if (6 == sdm630_state) { // Every 300 mSec
// sdm630_state = 0;
float value = 0;
bool data_ready = SDM630_ModbusReceiveReady();
if (data_ready) {
uint8_t error = SDM630_ModbusReceive(&value);
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "SDM630 response error %d"), error);
} else {
switch(sdm630_read_state) {
case 0:
sdm630_voltage[0] = value;
break;
case 1:
sdm630_voltage[1] = value;
break;
case 2:
sdm630_voltage[2] = value;
break;
case 3:
sdm630_current[0] = value;
break;
case 4:
sdm630_current[1] = value;
break;
case 5:
sdm630_current[2] = value;
break;
case 6:
sdm630_active_power[0] = value;
break;
case 7:
sdm630_active_power[1] = value;
break;
case 8:
sdm630_active_power[2] = value;
break;
case 9:
sdm630_reactive_power[0] = value;
break;
case 10:
sdm630_reactive_power[1] = value;
break;
case 11:
sdm630_reactive_power[2] = value;
break;
case 12:
sdm630_power_factor[0] = value;
break;
case 13:
sdm630_power_factor[1] = value;
break;
case 14:
sdm630_power_factor[2] = value;
break;
case 15:
sdm630_energy_total = value;
break;
} // end switch
sdm630_read_state++;
if (sizeof(sdm630_start_addresses)/2 == sdm630_read_state) {
sdm630_read_state = 0;
}
}
} // end data ready
if (0 == sdm630_send_retry || data_ready) {
sdm630_send_retry = 5;
SDM630_ModbusSend(0x04, sdm630_start_addresses[sdm630_read_state], 2);
} else {
sdm630_send_retry--;
}
// } // end 300 ms
}
void SDM630Init(void)
{
sdm630_type = 0;
if ((pin[GPIO_SDM630_RX] < 99) && (pin[GPIO_SDM630_TX] < 99)) {
SDM630Serial = new TasmotaSerial(pin[GPIO_SDM630_RX], pin[GPIO_SDM630_TX], 1);
#ifdef SDM630_SPEED
if (SDM630Serial->begin(SDM630_SPEED)) {
#else
if (SDM630Serial->begin(2400)) {
#endif
if (SDM630Serial->hardwareSerial()) { ClaimSerial(); }
sdm630_type = 1;
}
}
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_SDM630_DATA[] PROGMEM =
"{s}SDM630 " D_VOLTAGE "{m}%s/%s/%s " D_UNIT_VOLT "{e}"
"{s}SDM630 " D_CURRENT "{m}%s/%s/%s " D_UNIT_AMPERE "{e}"
"{s}SDM630 " D_POWERUSAGE_ACTIVE "{m}%s/%s/%s " D_UNIT_WATT "{e}"
"{s}SDM630 " D_POWERUSAGE_REACTIVE "{m}%s/%s/%s " D_UNIT_VAR "{e}"
"{s}SDM630 " D_POWER_FACTOR "{m}%s/%s/%s{e}"
"{s}SDM630 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}";
#endif // USE_WEBSERVER
void SDM630Show(bool json)
{
char voltage_l1[33];
dtostrfd(sdm630_voltage[0], Settings.flag2.voltage_resolution, voltage_l1);
char voltage_l2[33];
dtostrfd(sdm630_voltage[1], Settings.flag2.voltage_resolution, voltage_l2);
char voltage_l3[33];
dtostrfd(sdm630_voltage[2], Settings.flag2.voltage_resolution, voltage_l3);
char current_l1[33];
dtostrfd(sdm630_current[0], Settings.flag2.current_resolution, current_l1);
char current_l2[33];
dtostrfd(sdm630_current[1], Settings.flag2.current_resolution, current_l2);
char current_l3[33];
dtostrfd(sdm630_current[2], Settings.flag2.current_resolution, current_l3);
char active_power_l1[33];
dtostrfd(sdm630_active_power[0], Settings.flag2.wattage_resolution, active_power_l1);
char active_power_l2[33];
dtostrfd(sdm630_active_power[1], Settings.flag2.wattage_resolution, active_power_l2);
char active_power_l3[33];
dtostrfd(sdm630_active_power[2], Settings.flag2.wattage_resolution, active_power_l3);
char reactive_power_l1[33];
dtostrfd(sdm630_reactive_power[0], Settings.flag2.wattage_resolution, reactive_power_l1);
char reactive_power_l2[33];
dtostrfd(sdm630_reactive_power[1], Settings.flag2.wattage_resolution, reactive_power_l2);
char reactive_power_l3[33];
dtostrfd(sdm630_reactive_power[2], Settings.flag2.wattage_resolution, reactive_power_l3);
char power_factor_l1[33];
dtostrfd(sdm630_power_factor[0], 2, power_factor_l1);
char power_factor_l2[33];
dtostrfd(sdm630_power_factor[1], 2, power_factor_l2);
char power_factor_l3[33];
dtostrfd(sdm630_power_factor[2], 2, power_factor_l3);
char energy_total[33];
dtostrfd(sdm630_energy_total, Settings.flag2.energy_resolution, energy_total);
if (json) {
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\""
D_JSON_ACTIVE_POWERUSAGE "\":[%s,%s,%s],\"" D_JSON_REACTIVE_POWERUSAGE "\":[%s,%s,%s],\""
D_JSON_POWERFACTOR "\":[%s,%s,%s],\"" D_JSON_VOLTAGE "\":[%s,%s,%s],\"" D_JSON_CURRENT "\":[%s,%s,%s]}"),
energy_total, active_power_l1, active_power_l2, active_power_l3,
reactive_power_l1, reactive_power_l2, reactive_power_l3,
power_factor_l1, power_factor_l2, power_factor_l3,
voltage_l1, voltage_l2, voltage_l3,
current_l1, current_l2, current_l3);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
char energy_total_chr[33];
dtostrfd(sdm630_energy_total * 1000, 1, energy_total_chr);
DomoticzSensor(DZ_VOLTAGE, voltage_l1);
DomoticzSensor(DZ_CURRENT, current_l1);
DomoticzSensorPowerEnergy((int)sdm630_active_power[0], energy_total_chr);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_SDM630_DATA,
voltage_l1, voltage_l2, voltage_l3, current_l1, current_l2, current_l3,
active_power_l1, active_power_l2, active_power_l3,
reactive_power_l1, reactive_power_l2, reactive_power_l3,
power_factor_l1, power_factor_l2, power_factor_l3, energy_total);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns25(uint8_t function)
{
bool result = false;
if (sdm630_type) {
switch (function) {
case FUNC_INIT:
SDM630Init();
break;
case FUNC_EVERY_250_MSECOND:
SDM630250ms();
break;
case FUNC_JSON_APPEND:
SDM630Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
SDM630Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif